cs1_score = expr.behav_score(stage = 'test', trial_pos = ['cs1 -> nothing'], resp_pos = ['us']) cs2_score = expr.behav_score(stage = 'test', trial_pos = ['cs2 -> nothing'], resp_pos = ['us']) ##### DEFINE OATS AND EXPERIMENTS ##### # basic conditioning, i.e. acquistion of a conditioned response conditioning = expr.experiment(schedules = {'control': no_cond, 'experimental': cond}, oats = {'acquistion': expr.oat(schedule_pos = ['experimental'], schedule_neg = ['control'], behav_score_pos = cs_score, behav_score_neg = cs_score) }) # basic extinction of a conditioned response extinction = expr.experiment(schedules = {'control': cond, 'experimental': extn}, oats = {'extinction': expr.oat(schedule_pos = ['control'], schedule_neg = ['experimental'], behav_score_pos = cs_score, behav_score_neg = cs_score) }) # ABA renewal aba_renewal = expr.experiment(schedules = {'experimental': extn_aba, 'control': extn_aaa}, oats = {'renewal': expr.oat(schedule_pos = ['experimental'], schedule_neg = ['control'],
# learned predictiveness design = expr.schedule(resp_type = 'choice', stages = {'relevance': expr.stage(x_pn = [['a', 'x'], ['a', 'y'], ['b', 'x'], ['b', 'y']], y = [['cat1'], ['cat1'], ['cat2'], ['cat2']], n_rep = 10), 'transfer': expr.stage(x_pn = [['a', 'x'], ['b', 'y']], y = [['cat3'], ['cat4']], n_rep = 10), 'test': expr.stage(x_pn = [['a', 'y'], ['b', 'x']], y_psb = ['cat3', 'cat4'], lrn = False, n_rep = 1)}) rel_irl_oat = expr.oat(schedule_pos = ['design'], behav_score_pos = expr.behav_score(stage = 'test', trial_pos = ['a.y -> nothing', 'b.x -> nothing'], trial_neg = ['a.y -> nothing', 'b.x -> nothing'], resp_pos = ['cat3', 'cat4'], resp_neg = ['cat4', 'cat3'])) learned_predictiveness = expr.experiment(schedules = {'design': design}, oats = {'rel_irl': rel_irl_oat}) del design; del rel_irl_oat # inattention after blocking design = expr.schedule(resp_type = 'choice', stages = {'single_cue': expr.stage(x_pn = [['a'], ['b']], y = [['cat1'], ['cat2']], n_rep = 5), 'double_cue': expr.stage(x_pn = [['a', 'x'], ['b', 'y'], ['e', 'f'], ['g', 'h']], y = 2*[['cat1'], ['cat2']], n_rep = 5), 'transfer': expr.stage(x_pn = [['e', 'y'], ['g', 'x']], y = [['cat3'], ['cat4']], n_rep = 10), 'inattention_test': expr.stage(x_pn = [['e', 'x'], ['g', 'y']], y_psb = ['cat3', 'cat4'], lrn = False, n_rep = 1)})
cs2_score = expr.behav_score(stage='test', trial_pos=['cs2 -> nothing'], resp_pos=['us']) ##### DEFINE OATS AND EXPERIMENTS ##### # basic conditioning, i.e. acquistion of a conditioned response conditioning = expr.experiment(schedules={ 'control': no_cond, 'experimental': cond }, oats={ 'acquistion': expr.oat(schedule_pos=['experimental'], schedule_neg=['control'], behav_score_pos=cs_score, behav_score_neg=cs_score) }) # basic extinction of a conditioned response extinction = expr.experiment(schedules={ 'control': cond, 'experimental': extn }, oats={ 'extinction': expr.oat(schedule_pos=['control'], schedule_neg=['experimental'], behav_score_pos=cs_score, behav_score_neg=cs_score) })
'test': test_same }) # group "different" different = expr.schedule(resp_type='exct', stages={ 'cond': training, 'ex_cs1': extinction_cs1, 'ex_cs2': extinction_cs2, 'ex_cs2': extinction_cs2, 'ex_cs1': extinction_cs1, 'test': test_different }) # behavioral score cs1_score = expr.behav_score(stage='test', trial_pos=['cs1 -> nothing'], resp_pos=2 * ['us']) # experiment object oc_renewal = expr.experiment(schedules={ 'same': same, 'different': different }, oats={ 'renewal': expr.oat(schedule_pos=['different'], schedule_neg=['same'], behav_score_pos=cs1_score, behav_score_neg=cs1_score) })
y_psb = ['cat3', 'cat4'], n_rep = 8), 'test': expr.stage( x_pn = [['t5', 'b6'], ['t6', 'b5'], ['t1', 'b2'], ['t2', 'b1'], ['t3', 'b4'], ['t4', 'b3']], y_psb = ['cat3', 'cat4'], lrn = False, n_rep = 2)}, x_dims = {'fruits': ['alpha', 'beta', 'theta', 'phi'], 'benign_faces': ['b1', 'b2', 'b3', 'b4', 'b5', 'b6'], 'angry_faces': ['t1', 't2', 't3', 't4', 't5', 't6']}) rel_irl = expr.oat(schedule_pos = ['design'], behav_score_pos = expr.behav_score(stage = 'test', trial_pos = ['t1.b2 -> nothing', 't2.b1 -> nothing', 't3.b4 -> nothing', 't4.b3 -> nothing'], trial_neg = ['t1.b2 -> nothing', 't2.b1 -> nothing', 't3.b4 -> nothing', 't4.b3 -> nothing'], resp_pos = ['cat4', 'cat3', 'cat3', 'cat4'], resp_neg = ['cat3', 'cat4', 'cat4', 'cat3']) ) threat_benign_os = expr.oat(schedule_pos = ['design'], behav_score_pos = expr.behav_score(stage = 'test', trial_pos = ['t5.b6 -> nothing', 't6.b5 -> nothing'], trial_neg = ['t5.b6 -> nothing', 't6.b5 -> nothing'], resp_pos = ['cat3', 'cat4'], resp_neg = ['cat4', 'cat3']) )
['i2', 'pc2'], ['i2', 'pr2']], y=[['c1'], ['r1'], ['c2'], ['r2']], y_psb=['c1', 'r1', 'c2', 'r2'], n_rep=15), 'test': expr.stage(x_pn=[['pc1'], ['pr1'], ['pc2'], ['pr2'], ['pc1', 'pr1'], ['pc2', 'pr2']], y_psb=['c1', 'r1', 'c2', 'r2'], lrn=False, n_rep=2) }) pc_pr = expr.oat(schedule_pos=['design'], behav_score_pos=expr.behav_score( stage='test', trial_pos=['pc1.pr1 -> nothing', 'pc2.pr2 -> nothing'], trial_neg=['pc1.pr1 -> nothing', 'pc2.pr2 -> nothing'], resp_pos=['r1', 'r2'], resp_neg=['c1', 'c2'])) basic_ibre = expr.experiment(schedules={'design': design}, oats={'pc_pr': pc_pr}) del design del pc_pr ##### NOVEL TEST CUES IN THE INVERSE BASE RATE EFFECT DESIGN ##### # Juslin, Wennerholm and Winman (2001), Experiment 1 # This is a basic inverse base rate effect design with added novel cue test trials. # Participants preferred the rare outcomes on the novel test trials, which