Ejemplo n.º 1
0
def main():
    sagemaker_session = sagemaker.Session()
    stepfunctions.set_stream_logger(level=logging.INFO)

    bucket = 's3://pixiv-image-backet'

    sagemaker_execution_role = 'arn:aws:iam::829044821271:role/service-role/AmazonSageMaker-ExecutionRole-20200412T194702'
    workflow_execution_role = 'arn:aws:iam::829044821271:role/StepFunctionsWorkflowExecutionRole'

    estimator1 = PyTorch(entry_point='train.py',
                         source_dir='projection_discriminator',
                         role=sagemaker_execution_role,
                         framework_version='1.4.0',
                         train_instance_count=2,
                         train_instance_type='ml.m5.2xlarge',
                         hyperparameters={
                             'train_epoch': 1,
                         })

    estimator2 = PyTorch(entry_point='train.py',
                         source_dir='wgan_gp',
                         role=sagemaker_execution_role,
                         framework_version='1.4.0',
                         train_instance_count=2,
                         train_instance_type='ml.m5.2xlarge',
                         hyperparameters={
                             'train_epoch': 1,
                         })

    training_step1 = steps.TrainingStep(state_id='Train Step1',
                                        estimator=estimator1,
                                        data={
                                            'training': bucket,
                                        },
                                        job_name='PD-Train-{0}'.format(
                                            uuid.uuid4()))

    training_step2 = steps.TrainingStep(state_id='Train Step2',
                                        estimator=estimator2,
                                        data={
                                            'training': bucket,
                                        },
                                        job_name='PD-Train-{0}'.format(
                                            uuid.uuid4()))

    parallel_state = steps.Parallel(state_id='Parallel', )

    parallel_state.add_branch(training_step1)
    parallel_state.add_branch(training_step2)

    workflow_definition = steps.Chain([parallel_state])

    workflow = Workflow(
        name='MyTraining-{0}'.format(uuid.uuid4()),
        definition=workflow_definition,
        role=workflow_execution_role,
    )

    workflow.create()
    workflow.execute()
Ejemplo n.º 2
0
def main():
    stepfunctions.set_stream_logger(level=logging.INFO)
    workflow_execution_role = 'arn:aws:iam::829044821271:role/StepFunctionsWorkflowExecutionRole'

    # Load job name
    with open('./stepfunctions_name.json', 'r') as f:
        stepfunctions_name = json.load(f)

    with open('./face_clip/aws_batch/batch_names.json', 'r') as f:
        face_clip_name = json.load(f)
        
    with open('./tag_extraction/aws_batch/batch_names.json', 'r') as f:
        tag_extraction_name = json.load(f)

    # Define steps
    face_clip_step = steps.BatchSubmitJobStep(
        state_id = 'Face Clip Step',
        parameters={
            'JobDefinition': face_clip_name['jobDefinition'],
            'JobName': face_clip_name['job'],
            'JobQueue': face_clip_name['jobQueue']
        }
    )

    tag_extraction_step = steps.BatchSubmitJobStep(
        state_id = 'Tag Extraction Step',
        parameters={
            'JobDefinition': tag_extraction_name['jobDefinition'],
            'JobName': tag_extraction_name['job'],
            'JobQueue': tag_extraction_name['jobQueue']
        }
    )

    # Define workflow
    chain_list = [face_clip_step, tag_extraction_step]
    workflow_definition = steps.Chain(chain_list)

    workflow = Workflow(
        name=stepfunctions_name['workflow'],
        definition=workflow_definition,
        role=workflow_execution_role,
    )

    #  workflow
    workflow.create()
Ejemplo n.º 3
0
from sagemaker import get_execution_role
from sagemaker.estimator import Estimator
from sagemaker.inputs import TrainingInput
from sagemaker.processing import Processor
from sagemaker.processing import ProcessingInput, ProcessingOutput

import stepfunctions
from stepfunctions.inputs import ExecutionInput
from stepfunctions.workflow import Workflow
from stepfunctions.steps import (
    Chain,
    ProcessingStep,
    TrainingStep,
)

stepfunctions.set_stream_logger(level=logging.INFO)
config_name = 'flow.yaml'


def get_parameters():
    params = {}
    with open(config_name) as file:
        config = yaml.safe_load(file)
        params['region'] = config['config']['region']
        params['sagemaker-role-arn'] = config['config']['sagemaker-role-arn']
        params['sfn-workflow-name'] = os.environ['SFN_WORKFLOW_NAME']
        params['sfn-role-arn'] = config['config']['sfn-role-arn']
        params['job-name-prefix'] = config['config']['job-name-prefix']
        params['secretsmanager-arn'] = config['config']['secretsmanager-arn']
        params['mlflow-server-uri'] = config['experiments']['mlflow-server-uri']
        params['experiment-name'] = config['experiments']['experiment-name']