Ejemplo n.º 1
0
xmin, xmax = (-3,6)
N_x = xmax-xmin+1 # number of states
dpsolv.discretize_state(xmin, xmax, N_x)

# discretize the perturbation
N_w = len(demand_values)
dpsolv.discretize_perturb(demand_values[0], demand_values[-1], N_w)
# control discretization step:
dpsolv.control_steps=(1,) #

#dpsolv.print_summary()

### Value iteration
J_0 = np.zeros(N_x)
# first iteration
J,u = dpsolv.value_iteration(J_0)
print(u[...,0])
# A few more iterations
J,u = dpsolv.value_iteration(J)
print(u[...,0])
J,u = dpsolv.value_iteration(J)
print(u[...,0])
J,u = dpsolv.value_iteration(J)
print(u[...,0])
J,u = dpsolv.value_iteration(J)
print(u[...,0])
J,u = dpsolv.value_iteration(J)
print(u[...,0])

print('stock + order (x+u):')
x_grid = dpsolv.state_grid[0]
Ejemplo n.º 2
0
xmin, xmax = (-3, 6)
N_x = xmax - xmin + 1  # number of states
dpsolv.discretize_state(xmin, xmax, N_x)

# discretize the perturbation
N_w = len(demand_values)
dpsolv.discretize_perturb(demand_values[0], demand_values[-1], N_w)
# control discretization step:
dpsolv.control_steps = (1, )  #

#dpsolv.print_summary()

### Value iteration
J_0 = np.zeros(N_x)
# first iteration
J, u = dpsolv.value_iteration(J_0)
print(u[..., 0])
# A few more iterations
J, u = dpsolv.value_iteration(J)
print(u[..., 0])
J, u = dpsolv.value_iteration(J)
print(u[..., 0])
J, u = dpsolv.value_iteration(J)
print(u[..., 0])
J, u = dpsolv.value_iteration(J)
print(u[..., 0])
J, u = dpsolv.value_iteration(J)
print(u[..., 0])

print('stock + order (x+u):')
x_grid = dpsolv.state_grid[0]
Ejemplo n.º 3
0
def optimize(crtReachMovementTask):
    minimum_movement_length = crtReachMovementTask.minimum_movement_length
    maximum_movement_length = crtReachMovementTask.maximum_movement_length
    c = crtReachMovementTask.c
    target_position = crtReachMovementTask.target_position
    number_of_iterations = crtReachMovementTask.number_of_iterations

    #functions defined here inside the optimizer
    def dyn_inv(x, u, w):
        'dynamical equation of the inventory stock `x`. Returns x(k+1).'
        return (x + u + w, )

    def op_cost(x, u, w):
        'energy cost'

        cost = abs(target_position - x) + c * u

        #cost = abs(20-x)+c*u
        # print(cost)
        return cost

    def admissible_movements(x):
        'interval of allowed orders movements(x_k)'
        U1 = (minimum_movement_length, maximum_movement_length)
        return (U1, )  # tuple, to support several controls

    # Attach it to the system description.

    # Attach the dynamical equation to the system description:
    movement_sys.dyn = dyn_inv

    mov_values = [-6, -4, -2, 0, 2, 4, 6]
    mov_proba = [0.1, 0.1, 0.15, 0.3, 0.15, 0.1, 0.1]
    demand_law = stats.rv_discrete(values=(mov_values, mov_proba))
    demand_law = demand_law.freeze()

    demand_law.pmf([0, 3])  # Probality Mass Function
    demand_law.rvs(10)  # Random Variables generation

    movement_sys.perturb_laws = [demand_law
                                 ]  # a list, to support several perturbations
    movement_sys.control_box = admissible_movements
    movement_sys.cost = op_cost

    print('Movement Control with (c={:.1f})'.format(c))

    dpsolv = DPSolver(movement_sys)

    # discretize the state space
    xmin, xmax = (0, 100)
    N_x = xmax - xmin + 1  # number of states
    dpsolv.discretize_state(xmin, xmax, N_x)

    # discretize the perturbation
    N_w = len(mov_values)
    dpsolv.discretize_perturb(mov_values[0], mov_values[-1], N_w)
    # control discretization step:
    dpsolv.control_steps = (1, )  #

    #dpsolv.print_summary()

    ### Value iteration
    J_0 = np.zeros(N_x)
    # first iteration
    J, u = dpsolv.value_iteration(J_0)
    print(u[..., 0])
    for i in xrange(number_of_iterations):
        J, u = dpsolv.value_iteration(J)

    # print(u[...,0])

    return [movement_sys, dpsolv, u]