Ejemplo n.º 1
0
ax = figure.add_subplot(1, 1, 1)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
"""Erstellen der Groundtruth"""
velocity = 300.0
acceleration = 9.0
omega = acceleration / (2 * velocity)
A = (velocity**2) / acceleration

truth = GroundTruthPath()

for t in range(math.ceil((2 * math.pi) / omega)):
    x = A * np.sin(omega * t)
    y = A * np.sin(2 * omega * t)

    truth.append(GroundTruthState(np.array([[x], [y]]), timestamp=t))

# Plot
ax.plot([state.state_vector[0, 0] for state in truth],
        [state.state_vector[1, 0] for state in truth],
        linestyle="--",
        color="grey")
"""Erstellen der Messungen"""
measurements = []
for state in truth:
    if state.timestamp % 5 == 0:
        x = state.state_vector[0, 0]
        y = state.state_vector[1, 0]

        mean = [x, y]
        cov = [[2500, 0], [0, 2500]]
Ejemplo n.º 2
0
#                        & \ddots &  \\
#                        \mathbf{0} & & F_k^d \\
#                        \end{bmatrix}\\
#           Q_{k}^{D} &= \begin{bmatrix}
#                        Q_k^{1} &  & \mathbf{0} \\
#                        & \ddots &  \\
#                        \mathbf{0} & & Q_k^d \\
#                        \end{bmatrix}
#
# We want a 2d simulation, so we'll do:
transition_model = CombinedLinearGaussianTransitionModel(
    [ConstantVelocity(0.05), ConstantVelocity(0.05)])

# %%
# A 'truth path' is created starting at 0,0 moving to the NE
truth = GroundTruthPath([GroundTruthState([0, 1, 0, 1], timestamp=start_time)])

for k in range(1, 21):
    truth.append(
        GroundTruthState(transition_model.function(
            truth[k - 1], noise=True, time_interval=timedelta(seconds=1)),
                         timestamp=start_time + timedelta(seconds=k)))

# %%
# Thus the ground truth is generated and we can plot the result
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
ax.axis('equal')
ax.plot([state.state_vector[0] for state in truth],
# Figure to plot truth (and future data)
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")

truth = GroundTruthPath()
start_time = datetime.now()
for n in range(1, 21):
    x = n
    y = n
    varxy = np.array([[0.05,0],[0,0.05]])
    xy = np.random.multivariate_normal(np.array([x,y]),varxy)
    truth.append(GroundTruthState(np.array([[xy[0]], [xy[1]]]), timestamp=start_time+timedelta(seconds=n)))

#Plot the result
ax.plot([state.state_vector[0, 0] for state in truth], 
        [state.state_vector[1, 0] for state in truth], 
        color='g', linestyle="--")

from scipy.stats import multivariate_normal

from stonesoup.types.detection import Detection

measurementss = [set() for _ in range(20)]
for n, state in enumerate(truth):
    if np.random.rand() <= 0.85: # Probability of detection
        x, y = multivariate_normal.rvs(
            state.state_vector.ravel(), cov=np.diag([0.25, 0.25]))
Ejemplo n.º 4
0
def generate_scenario_3(seed=1996,
                        permanent_save=True,
                        radar_meas_rate=1,
                        ais_meas_rate=5,
                        sigma_process=0.01,
                        sigma_meas_radar=3,
                        sigma_meas_ais=1,
                        timesteps=20):
    """
    Generates scenario 3. Scenario 3 consists of radar and ais measurements with different sampling rate. The sampling
    rate is specified in the input params. A groundtruth is generated for each second.
    :param seed:
    :param permanent_save:
    :param radar_meas_rate:
    :param ais_meas_rate:
    :param sigma_process:
    :param sigma_meas_radar:
    :param sigma_meas_ais:
    :param timesteps: The amount of measurements from the slowest sensor
    :return: Nothing. Saves the scenario to a specified folder
    """
    start_time = datetime.now()

    # specify seed to be able to repeat the example
    np.random.seed(seed)

    # combine two 1-D CV models to create a 2-D CV model
    transition_model = CombinedLinearGaussianTransitionModel(
        [ConstantVelocity(sigma_process),
         ConstantVelocity(sigma_process)])

    # starting at 0,0 and moving NE
    truth = GroundTruthPath(
        [GroundTruthState([0, 1, 0, 1], timestamp=start_time)])

    # generate truth using transition_model and noise
    end_time = start_time + timedelta(seconds=timesteps *
                                      max(radar_meas_rate, ais_meas_rate))
    time = start_time + timedelta(seconds=1)
    while time < end_time:
        truth.append(
            GroundTruthState(transition_model.function(
                truth[-1], noise=True, time_interval=timedelta(seconds=1)),
                             timestamp=time))
        time += timedelta(seconds=1)

    # Simulate measurements
    # Specify measurement model for radar
    measurement_model_radar = LinearGaussian(
        ndim_state=4,  # number of state dimensions
        mapping=(0, 2),  # mapping measurement vector index to state index
        noise_covar=np.array([
            [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
            [0, sigma_meas_radar]
        ]))

    # Specify measurement model for AIS (Same as for radar)
    measurement_model_ais = LinearGaussian(ndim_state=4,
                                           mapping=(0, 2),
                                           noise_covar=np.array(
                                               [[sigma_meas_ais, 0],
                                                [0, sigma_meas_ais]]))

    # generate "radar" measurements
    measurements_radar = []
    measurements_ais = []
    next_radar_meas_time = start_time
    next_ais_meas_time = start_time
    for state in truth:
        # check whether we want to generate a measurement from this gt
        if state.timestamp == next_radar_meas_time:
            measurement = measurement_model_radar.function(state, noise=True)
            measurements_radar.append(
                Detection(measurement, timestamp=state.timestamp))
            next_radar_meas_time += timedelta(seconds=radar_meas_rate)

        if state.timestamp == next_ais_meas_time:
            measurement = measurement_model_ais.function(state, noise=True)
            measurements_ais.append(
                Detection(measurement, timestamp=state.timestamp))
            next_ais_meas_time += timedelta(seconds=ais_meas_rate)

    if permanent_save:
        save_folder_name = seed.__str__()
    else:
        save_folder_name = "temp"

    save_folder = "../scenarios/scenario3/" + save_folder_name + "/"

    # save the ground truth and the measurements for the radar and the AIS
    store_object.store_object(truth, save_folder, "ground_truth.pk1")
    store_object.store_object(measurements_radar, save_folder,
                              "measurements_radar.pk1")
    store_object.store_object(measurements_ais, save_folder,
                              "measurements_ais.pk1")
    store_object.store_object(start_time, save_folder, "start_time.pk1")
    store_object.store_object(measurement_model_radar, save_folder,
                              "measurement_model_radar.pk1")
    store_object.store_object(measurement_model_ais, save_folder,
                              "measurement_model_ais.pk1")
    store_object.store_object(transition_model, save_folder,
                              "transition_model.pk1")
Ejemplo n.º 5
0
def generate_scenario_1(seed=1996,
                        permanent_save=True,
                        sigma_process=0.01,
                        sigma_meas_radar=3,
                        sigma_meas_ais=1):
    """
    Generates scenario 1. Todo define scenario 1
    :param seed:
    :param permanent_save:
    :param sigma_process:
    :param sigma_meas_radar:
    :param sigma_meas_ais:
    :return:
    """
    # specify seed to be able repeat example
    start_time = datetime.now()

    np.random.seed(seed)

    # combine two 1-D CV models to create a 2-D CV model
    transition_model = CombinedLinearGaussianTransitionModel(
        [ConstantVelocity(sigma_process),
         ConstantVelocity(sigma_process)])

    # starting at 0,0 and moving NE
    truth = GroundTruthPath(
        [GroundTruthState([0, 1, 0, 1], timestamp=start_time)])

    # generate truth using transition_model and noise
    for k in range(1, 21):
        truth.append(
            GroundTruthState(transition_model.function(
                truth[k - 1], noise=True, time_interval=timedelta(seconds=1)),
                             timestamp=start_time + timedelta(seconds=k)))

    # Simulate measurements
    # Specify measurement model for radar
    measurement_model_radar = LinearGaussian(
        ndim_state=4,  # number of state dimensions
        mapping=(0, 2),  # mapping measurement vector index to state index
        noise_covar=np.array([
            [sigma_meas_radar, 0],  # covariance matrix for Gaussian PDF
            [0, sigma_meas_radar]
        ]))

    # Specify measurement model for AIS
    measurement_model_ais = LinearGaussian(ndim_state=4,
                                           mapping=(0, 2),
                                           noise_covar=np.array(
                                               [[sigma_meas_ais, 0],
                                                [0, sigma_meas_ais]]))

    # generate "radar" measurements
    measurements_radar = []
    for state in truth:
        measurement = measurement_model_radar.function(state, noise=True)
        measurements_radar.append(
            Detection(measurement, timestamp=state.timestamp))

    # generate "AIS" measurements
    measurements_ais = []
    state_num = 0
    for state in truth:
        state_num += 1
        if not state_num % 2:  # measurement every second time step
            measurement = measurement_model_ais.function(state, noise=True)
            measurements_ais.append(
                Detection(measurement, timestamp=state.timestamp))

    if permanent_save:
        save_folder_name = seed.__str__()
    else:
        save_folder_name = "temp"

    save_folder = "../scenarios/scenario1/" + save_folder_name + "/"

    # save the ground truth and the measurements for the radar and the AIS
    store_object.store_object(truth, save_folder, "ground_truth.pk1")
    store_object.store_object(measurements_radar, save_folder,
                              "measurements_radar.pk1")
    store_object.store_object(measurements_ais, save_folder,
                              "measurements_ais.pk1")
    store_object.store_object(start_time, save_folder, "start_time.pk1")
    store_object.store_object(measurement_model_radar, save_folder,
                              "measurement_model_radar.pk1")
    store_object.store_object(measurement_model_ais, save_folder,
                              "measurement_model_ais.pk1")
    store_object.store_object(transition_model, save_folder,
                              "transition_model.pk1")
Ejemplo n.º 6
0
start_time = datetime.now()
truths = set()  # Truths across all time
current_truths = set()  # Truths alive at current time
start_truths = set()
number_steps = 20
death_probability = 0.005
birth_probability = 0.2

# Initialize 3 truths. This can be changed to any number of truths you wish.
truths_by_time.append([])
for i in range(3):
    x, y = initial_position = np.random.uniform(
        -30, 30, 2)  # Range [-30, 30] for x and y
    x_vel, y_vel = (
        np.random.rand(2)) * 2 - 1  # Range [-1, 1] for x and y velocity
    state = GroundTruthState([x, x_vel, y, y_vel], timestamp=start_time)

    truth = GroundTruthPath([state])
    current_truths.add(truth)
    truths.add(truth)
    start_truths.add(truth)
    truths_by_time[0].append(state)

# Simulate the ground truth over time
for k in range(number_steps):
    truths_by_time.append([])
    # Death
    for truth in current_truths.copy():
        if np.random.rand() <= death_probability:
            current_truths.remove(truth)
    # Update truths