Ejemplo n.º 1
0
 def test_predict_feature_dimensions(self):
     X = np.random.rand(10, 5)
     y = np.random.randint(0, 2, 10)
     clf = Stree()
     clf.fit(X, y)
     with self.assertRaises(ValueError):
         clf.predict(X[:, :3])
Ejemplo n.º 2
0
 def test_single_vs_multiple_prediction(self):
     """Check if predicting sample by sample gives the same result as
     predicting all samples at once
     """
     X, y = load_dataset(self._random_state)
     for kernel in self._kernels:
         clf = Stree(
             kernel=kernel,
             multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
             random_state=self._random_state,
         )
         clf.fit(X, y)
         # Compute prediction line by line
         yp_line = np.array([], dtype=int)
         for xp in X:
             yp_line = np.append(yp_line,
                                 clf.predict(xp.reshape(-1, X.shape[1])))
         # Compute prediction at once
         yp_once = clf.predict(X)
         self.assertListEqual(yp_line.tolist(), yp_once.tolist())
Ejemplo n.º 3
0
 def test_simple_muticlass_dataset(self):
     for kernel in self._kernels:
         clf = Stree(
             kernel=kernel,
             multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
             random_state=self._random_state,
         )
         px = [[1, 2], [5, 6], [9, 10]]
         py = [0, 1, 2]
         clf.fit(px, py)
         self.assertEqual(1.0, clf.score(px, py))
         self.assertListEqual(py, clf.predict(px).tolist())
         self.assertListEqual(py, clf.classes_.tolist())
Ejemplo n.º 4
0
 def test_mask_samples_weighted_zero(self):
     X = np.array([
         [1, 1],
         [1, 1],
         [1, 1],
         [2, 2],
         [2, 2],
         [2, 2],
         [3, 3],
         [3, 3],
         [3, 3],
     ])
     y = np.array([1, 1, 1, 2, 2, 2, 5, 5, 5])
     yw = np.array([1, 1, 1, 1, 1, 1, 5, 5, 5])
     w = [1, 1, 1, 0, 0, 0, 1, 1, 1]
     model1 = Stree().fit(X, y)
     model2 = Stree().fit(X, y, w)
     predict1 = model1.predict(X)
     predict2 = model2.predict(X)
     self.assertListEqual(y.tolist(), predict1.tolist())
     self.assertListEqual(yw.tolist(), predict2.tolist())
     self.assertEqual(model1.score(X, y), 1)
     self.assertAlmostEqual(model2.score(X, y), 0.66666667)
     self.assertEqual(model2.score(X, y, w), 1)
Ejemplo n.º 5
0
 def test_score_binary(self):
     X, y = load_dataset(self._random_state)
     accuracies = [
         0.9506666666666667,
         0.9493333333333334,
         0.9606666666666667,
         0.9433333333333334,
         0.9153333333333333,
     ]
     for kernel, accuracy_expected in zip(self._kernels, accuracies):
         clf = Stree(
             random_state=self._random_state,
             multiclass_strategy="ovr" if kernel == "liblinear" else "ovo",
             kernel=kernel,
         )
         clf.fit(X, y)
         accuracy_score = clf.score(X, y)
         yp = clf.predict(X)
         accuracy_computed = np.mean(yp == y)
         self.assertEqual(accuracy_score, accuracy_computed)
         self.assertAlmostEqual(accuracy_expected, accuracy_score)