Ejemplo n.º 1
0
####################

O, P, G = Param(OBJ), Param(POSE), Param(GRASP)
O2, P2 = Param(OBJ), Param(POSE)
Q, Q2 = Param(CONF), Param(CONF)
T = Param(TRAJ)

rename_easy(locals())

####################

actions = [
  Action(name='pick', parameters=[O, P, G, Q, T],
    condition=And(PoseEq(O, P), HandEmpty(), ConfEq(Q), GraspMotion(P, G, Q, T),
                  ForAll([O2], Or(Equal(O, O2), SafeTraj(O2, T)))),
                  #ForAll([O2], Or(Equal(O, O2), And(SafePose(O2, P), SafeGTraj(O2, GT))))),
    effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),

  Action(name='place', parameters=[O, P, G, Q, T],
    condition=And(GraspEq(O, G), ConfEq(Q), GraspMotion(P, G, Q, T),
                  ForAll([O2], Or(Equal(O, O2), And(SafePose(O2, P), SafeTraj(O2, T))))),
    effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),

  Action(name='move', parameters=[Q, Q2, T],
    condition=And(ConfEq(Q), HandEmpty(), FreeMotion(Q, Q2, T),
                  ForAll([O2], SafeTraj(O2, T))),
    effect=And(ConfEq(Q2), Not(ConfEq(Q)))),

  Action(name='move_holding', parameters=[Q, Q2, T, O, G],
    condition=And(ConfEq(Q), GraspEq(O, G), HoldingMotion(Q, Q2, G, T),
Ejemplo n.º 2
0
def create_problem():
  """
  Creates the 1D task and motion planning STRIPStream problem.
  This models the same problem as :module:`.run_tutorial` but does so without using any streams.

  :return: a :class:`.STRIPStreamProblem`
  """

  num_blocks = 3
  blocks = ['block%i'%i for i in range(num_blocks)]
  num_poses = num_blocks+1

  initial_config = 0 # the initial robot configuration is 0
  initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i

  goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1

  ####################

  # Data types
  CONF, BLOCK, POSE = Type(), Type(), Type()

  # Fluent predicates
  AtConf = Pred(CONF)
  AtPose = Pred(BLOCK, POSE)
  HandEmpty = Pred()
  Holding = Pred(BLOCK)

  # Derived predicates
  Safe = Pred(BLOCK, BLOCK, POSE)

  # Static predicates
  LegalKin = Pred(POSE, CONF)
  CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE)

  # Free parameters
  B1, B2 = Param(BLOCK), Param(BLOCK)
  P1, P2 = Param(POSE), Param(POSE)
  Q1, Q2 = Param(CONF), Param(CONF)

  rename_easy(locals()) # Trick to make debugging easier

  ####################

  actions = [
    Action(name='pick', parameters=[B1, P1, Q1],
      condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)),
      effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),

    Action(name='place', parameters=[B1, P1, Q1],
      condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
        ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), # TODO - convert to finite blocks case?
      effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),

    Action(name='move', parameters=[Q1, Q2],
      condition=AtConf(Q1),
      effect=And(AtConf(Q2), Not(AtConf(Q1)))),
  ]

  axioms = [
    Axiom(effect=Safe(B2, B1, P1),
          condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1
  ]

  ####################

  cond_streams = []
  constants = []

  initial_atoms = [
    AtConf(initial_config),
    HandEmpty()
  ] + [
    AtPose(block, pose) for block, pose in initial_poses.iteritems()
  ] + [
    LegalKin(i, i) for i in range(num_poses)
  ] + [
    CollisionFree(b1, p1, b2, p2) for b1, p1, b2, p2 in product(blocks, range(num_poses), blocks, range(num_poses)) if p1 != p2 and b1 != b2
  ]

  goal_literals = [AtPose(block, pose) for block, pose in goal_poses.iteritems()]

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

  return problem
Ejemplo n.º 3
0
def compile_problem(tamp_problem):
    """
    Constructs a STRIPStream problem for the countable TMP problem.

    :param tamp_problem: a :class:`.TMPProblem`
    :return: a :class:`.STRIPStreamProblem`
    """

    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(name='place',
               parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))),
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        Axiom(effect=Safe(B2, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1,
                                                                       P2)))),
    ]

    cond_streams = [
        EasyGenStream(inputs=[],
                      outputs=[P1],
                      conditions=[],
                      effects=[],
                      generator=lambda: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([p])),
        EasyTestStream(inputs=[P1, P2],
                       conditions=[],
                       effects=[CollisionFree(P1, P2)],
                       test=lambda p1, p2: p1 != p2,
                       eager=EAGER_TESTS),
    ]

    constants = []

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ]
    if tamp_problem.initial_holding is False:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK))

    goal_literals = []
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses.iteritems():
        goal_literals.append(AtPose(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
def compile_problem(oracle):
  problem = oracle.problem
  for obj in problem.goal_poses:
    if problem.goal_poses[obj] == 'initial':
      problem.goal_poses[obj] = oracle.initial_poses[obj]
    elif problem.goal_poses[obj] in oracle.initial_poses: # Goal names other object (TODO - compile with initial)
      problem.goal_poses[obj] = oracle.initial_poses[problem.goal_poses[obj]]

  ####################

  def sample_poses(o, num_samples=1):
    while True:
      if AVOID_INITIAL:
        oracle.set_all_object_poses(oracle.initial_poses)
      else:
        oracle.set_all_object_poses({o: oracle.initial_poses[o]})
      yield list(islice(random_region_placements(oracle, o, oracle.get_counters(), region_weights=True), num_samples))

  def sample_grasps(o):
    yield get_grasps(oracle, o)

  def sample_region(o, r, num_samples=1):
    while True:
      oracle.set_all_object_poses({o: oracle.initial_poses[o]})
      yield list(islice(random_region_placements(oracle, o, [r], region_weights=True), num_samples))

  def sample_motion(o, p, g, max_calls=1, max_failures=50):
    oracle.set_all_object_poses({o: p}) # TODO - saver for the initial state as well?
    if oracle.approach_collision(o, p, g):
      return
    for i in range(max_calls):
      pap = PickAndPlace(oracle.get_geom_hash(o), p, g)
      if not pap.sample(oracle, o, max_failures=max_failures,
                        sample_vector=DO_ARM_MOTION, sample_arm=DO_ARM_MOTION, check_base=CHECK_BASE):
        break
      pap.obj = o
      yield [(pap.approach_config, pap)]

  def collision_free(o, p, t):
    if p is None or o == t.obj:
      return True
    holding = ObjGrasp(t.obj, t.grasp)
    #holding = Holding(self.oracle.get_body_name(pap.geom_hash), pap.grasp)
    if not DO_ARM_MOTION:
      return not oracle.holding_collision(t.grasp_config, o, p, holding)
    return not oracle.traj_holding_collision(t.approach_config, t.trajs, o, p, holding)

  ####################

  # Types
  CONF, TRAJ, REG = Type(), Type(), Type()
  BLOCK, POSE, GRASP = Type(), Type(), Type()

  # Fluent predicates
  AtConfig = Pred(CONF)
  HandEmpty = Pred()
  AtPose = Pred(BLOCK, POSE)
  Holding = Pred(BLOCK, GRASP)

  # Static predicates
  IsPose = Pred(BLOCK, POSE)
  IsGrasp = Pred(BLOCK, GRASP)
  IsKin = Pred(BLOCK, POSE, GRASP, CONF, TRAJ)
  IsCollisionFree = Pred(BLOCK, POSE, TRAJ)
  IsContained = Pred(REG, BLOCK, POSE)

  # Derived predicates
  Safe = Pred(BLOCK, TRAJ)
  InRegion = Pred(BLOCK, REG)

  # Parameters
  O, P, G = Param(BLOCK), Param(POSE), Param(GRASP)
  Q, Q2, T = Param(CONF), Param(CONF), Param(TRAJ)
  OB, R = Param(BLOCK), Param(REG)

  actions = [
    Action(name='pick', parameters=[O, P, G, Q, T],
      condition=And(AtPose(O, P), HandEmpty(),
        IsKin(O, P, G, Q, T), AtConfig(Q),
        ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
      effect=And(Holding(O, G),
        Not(HandEmpty()), Not(AtPose(O, P)))),
    Action(name='place', parameters=[O, P, G, Q, T],
      condition=And(Holding(O, G),
        IsKin(O, P, G, Q, T), AtConfig(Q),
        ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
      effect=And(AtPose(O, P), HandEmpty(),
        Not(Holding(O, G)))),
    Action(name='move', parameters=[Q, Q2],
      condition=AtConfig(Q),
      effect=And(AtConfig(Q2),
        Not(AtConfig(Q))))]

  axioms = [
    Axiom(effect=InRegion(O, R), condition=Exists([P],
      And(AtPose(O, P), IsContained(R, O, P)))),
    Axiom(effect=Safe(O, T), condition=Exists([P],
      And(AtPose(O, P), IsCollisionFree(O, P, T))))]

  cond_streams = [
    GenStream(inputs=[O], outputs=[P],
      conditions=[],
      effects=[IsPose(O, P)],
      generator=sample_poses),
    GenStream(inputs=[O], outputs=[G],
      conditions=[],
      effects=[IsGrasp(O, G)],
      generator=sample_grasps),
    GenStream(inputs=[O, R], outputs=[P],
      conditions=[],
      effects=[IsPose(O, P), IsContained(R, O, P)],
      generator=sample_region),
    GenStream(inputs=[O, P, G], outputs=[Q, T],
      conditions=[IsPose(O, P), IsGrasp(O, G)],
      effects=[IsKin(O, P, G, Q, T)],
      generator=sample_motion),
    TestStream(inputs=[O, P, T],
      conditions=[IsPose(O, P)],
      effects=[IsCollisionFree(O, P, T)],
      test=collision_free)]

  ####################

  constants = [POSE(None)]

  initial_atoms = [AtConfig(oracle.initial_config)] # TODO - toggle
  holding = set()
  if problem.start_holding is not False:
    obj, grasp = problem.start_holding
    initial_atoms += [Holding(obj, grasp), AtPose(obj, None), IsGrasp(obj, grasp)]
    holding.add(obj)
  if not holding:
    initial_atoms.append(HandEmpty())
  for obj, pose in oracle.initial_poses.iteritems():
    if obj not in holding:
      initial_atoms += [AtPose(obj, pose), IsPose(obj, pose)]

  goal_literals = []
  if problem.goal_holding is not None:
    if problem.goal_holding is False:
      goal_literals.append(HandEmpty())
    elif isinstance(problem.goal_holding, ObjGrasp):
      goal_literals.append(Holding(problem.goal_holding.object_name, problem.goal_holding.grasp))
    elif problem.goal_holding in oracle.get_objects():
      goal_literals.append(Holding(problem.goal_holding))
    else:
      raise Exception()
  for obj, pose in problem.goal_poses.iteritems():
    goal_literals.append(AtPose(obj, pose))
    initial_atoms.append(IsPose(obj, pose))
  for obj, region in problem.goal_regions.iteritems():
    goal_literals.append(InRegion(obj, region))

  goal_formula = goal_literals

  return STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants)
def compile_problem(tamp_problem):
    O = Param(OBJECT)
    O1, O2 = Param(OBJECT), Param(OBJECT)
    L = Param(LOCATION)
    L_s, L_g = Param(LOCATION), Param(LOCATION)  # generic location
    Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param(
        STOVE_L_G)  # locations for stove and sink
    Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G)

    actions = [
        Action(name='wash',
               parameters=[O],
               condition=And(InSink(O)),
               effect=And(Clean(O))),
        Action(name='cook',
               parameters=[O],
               condition=And(InStove(O), Clean(O)),
               effect=And(Cooked(O))),
        Action(name='pickplace',
               parameters=[O, L_s, L_g],
               condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)),
               effect=And(AtPose(O, L_g),
                          Not(AtPose(O, L_s))))  # You should delete! 
    ]

    axioms = [
     # For all objects in the world, either object is O1 or if not, then it is not in the region
     Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\
                                                    Or(Equal(O,O2),\
                                                    Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))),
     Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))),
     Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))),
    ]

    cond_streams = [
      EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\
                    generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))),
      EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS),
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),
      EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS),
      # OutsideRegion tests if the block at L is outside of the region (Ls,Lg)
    ]

    ####################

    # instantiate the environment region?
    constants = [
        STOVE_L_S(tamp_problem.stove_region_s),
        STOVE_L_G(tamp_problem.stove_region_g),
        SINK_L_S(tamp_problem.sink_region_s),
        SINK_L_G(tamp_problem.sink_region_g),
    ]

    # define initial state using initial poses of objects
    initial_atoms = [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [
        IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g)
    ]
    # static predicate but on steroid

    # define goal state as target object to be cooked - can you infer that target object is on Stove
    goal_literals = []
    #  goal_literals.append( AtPose(tamp_problem.blue_obj,1) ) #NOTE: This works; so planner knows how to clear the area
    #  goal_literals.append( AtPose(tamp_problem.target_obj,3.0) ) #NOTE: But doing this does not work
    goal_literals.append(Cooked(tamp_problem.target_obj))
    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants), static_pred_names
    effect=And(HasState(O, clean), Not(HasState(O, S))),
    cost=COST_SCALE*1),

  Action(name='paint', parameters=[O, L1],
    condition=And(At(O, L1), HasState(O, clean), IsPainter(L1)),
    effect=And(HasState(O, wet), Not(HasState(O, clean))),
    cost=COST_SCALE*1),

  Action(name='dry', parameters=[O, L1],
    condition=And(At(O, L1), HasState(O, wet), IsDryer(L1)),
    effect=And(HasState(O, dry), Not(HasState(O, wet))),
    cost=COST_SCALE*1),

  Axiom(effect=Clear(L2), condition=ForAll([O2], Safe(O2, L2))),

  Axiom(effect=Safe(O, L1), condition=Exists([L2], And(At(O, L2), Not(Equal(L1, L2))))), # NOTE - automatically includes UnsureLoc
]

# TODO - do I need lower confidence bound that the object isn't there to prevent it from doing nothing or impossible things?

LOC_CONFIDENCE = .95
STATE_CONFIDENCE = LOC_CONFIDENCE
CLEAR_CONFIDENCE = STATE_CONFIDENCE

MIN_CONFIDENCE = .001 # TODO - how does this work in continuous domains?
MIN_P = 1e-6

def observable_problem(belief, goal, costs=True): # NOTE - costs is really important here
  #objects = belief.objLoc.keys()
  locations = belief.occupancies.keys()
  states = [dirty, clean, dry, wet]
Ejemplo n.º 7
0
def solve_incrementally():

    O = Param(OBJECT)
    O1, O2 = Param(OBJECT), Param(OBJECT)
    L = Param(LOCATION)
    L_s, L_g = Param(LOCATION), Param(LOCATION)  # generic location
    Stove_l_s, Stove_l_g = Param(STOVE_L_S), Param(
        STOVE_L_G)  # locations for stove and sink
    Sink_l_s, Sink_l_g = Param(SINK_L_S), Param(SINK_L_G)

    actions = [
        Action(name='wash',
               parameters=[O],
               condition=And(InSink(O)),
               effect=And(Clean(O))),
        Action(name='cook',
               parameters=[O],
               condition=And(InStove(O), Clean(O)),
               effect=And(Cooked(O))),
        Action(name='pickplace',
               parameters=[O, L_s, L_g],
               condition=And(EmptySweptVolume(O, L_s, L_g), AtPose(O, L_s)),
               effect=And(AtPose(O, L_g),
                          Not(AtPose(O, L_s))))  # You should delete!
    ]

    axioms = [
     # For all objects in the world, either object is O1 or if not, then it is not in the region
     Axiom(effect=EmptySweptVolume(O,L_s,L_g),condition=ForAll([O2],\
                                                    Or(Equal(O,O2),\
                                                        Exists([L],(And(AtPose(O2,L),OutsideRegion(O,O2,L,L_s,L_g))))))),
     # Object is in the stove if it is at pose L for which Ls and Lg define stove
     Axiom(effect=InStove(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsStove(L_s,L_g)))),
     Axiom(effect=InSink(O),condition=Exists([L,L_s,L_g],And(AtPose(O,L), Contained(O,L,L_s,L_g), IsSink(L_s,L_g)))),
    ]

    cond_streams = [
      EasyGenStream(inputs=[O,L_s,L_g], outputs=[L], conditions=[IsSmaller(L_s,L_g)], effects=[Contained(O,L,L_s,L_g)],\
                    generator=lambda b, ls, lg: (sample_region_pose(b, ls, lg ) for _ in irange(0, INF))),
      EasyTestStream(inputs=[L_s,L_g],conditions=[],effects=[IsSmaller(L_s,L_g)],test=is_smaller,eager=EAGER_TESTS),

      # Generate static predicates that object is contained in sink for which Ls and Lg define the sink. If L was not continuous value,
      # then we would define this in the intial condition and would not be changed by any of the actions (hence static predicate)
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsSink(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),
      EasyTestStream(inputs=[L_s,L_g,O,L],conditions=[IsStove(L_s,L_g)],effects=[Contained(O,L,L_s,L_g)],test=in_region,eager=EAGER_TESTS),

      # OutsideRegion tests if O2 is is outside of the region (Ls,Lg)
      EasyTestStream(inputs=[O,O2,L,L_s,L_g],conditions=[],effects=[OutsideRegion(O,O2,L,L_s,L_g)],test=not_in_region,eager=EAGER_TESTS),
    ]

    ####################
    tamp_problem = sample_one_d_kitchen_problem()

    # instantiate the environment region?
    constants = [
        STOVE_L_S(tamp_problem.stove_region_s),
        STOVE_L_G(tamp_problem.stove_region_g),
        SINK_L_S(tamp_problem.sink_region_s),
        SINK_L_G(tamp_problem.sink_region_g),
    ]

    # define initial state using initial poses of objects
    initial_atoms = [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ] + [IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)] + [
        IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g)
    ]  # initial_atoms = static predicates, but on steroid

    goal_literals = []
    subgoal_list = [ InSink(tamp_problem.target_obj), \
                     InStove(tamp_problem.target_obj), Cooked(tamp_problem.target_obj) ]
    for i in range(len(subgoal_list)):
        goal_literals = [subgoal_list[0]]

        stream_problem = STRIPStreamProblem(initial_atoms, goal_literals, \
                                              actions+axioms, cond_streams, constants)
        search = get_fast_downward('eager')
        plan, universe = incremental_planner(stream_problem, search=search,\
                                             frequency=1, verbose=True, max_time=200)
        plan = convert_plan(plan)
        # move the object to the new locations; todo: add new predicates
        if len(plan) > 0:  # if no action needed, keep last initial atoms
            initial_atoms = []
        for action in plan:
            action_name = action[0].name
            action_args = action[1]
            if action_name == 'pickplace':
                O = action_args[0].name
                pick_l = action_args[1]
                place_l = action_args[2]
                block = [b for b in tamp_problem.blocks if b.name == O][0]
                initial_atoms += [AtPose(block, place_l)]
        if len(initial_atoms) == 1:
            block = [b for b in tamp_problem.blocks if b.name != O][0]
            initial_atoms += [AtPose(block, tamp_problem.initial_poses[block])]
        initial_atoms += [
            IsSink(tamp_problem.sink_region_s, tamp_problem.sink_region_g)
        ]
        initial_atoms += [
            IsStove(tamp_problem.stove_region_s, tamp_problem.stove_region_g)
        ]
        name='paint',
        parameters=[O, L1],
        condition=And(At(O, L1), Clean(O), IsPainter(L1)),
        #effect=And(WetPaint(O))),
        effect=And(WetPaint(O), Not(Clean(O)))),
    Action(
        name='dry',
        parameters=[O, L1],
        condition=And(At(O, L1), WetPaint(O), IsDryer(L1)),
        #effect=And(DryPaint(O))),
        effect=And(DryPaint(O), Not(WetPaint(O)))),

    #Axiom(effect=Clear(L2), condition=ForAll([O2], Or(Equal(O, O2), Safe(O2, L2)))), # Don't need because only place
    Axiom(effect=Clear(L2), condition=ForAll([O2], Safe(O2, L2))),
    Axiom(effect=Safe(O, L1),
          condition=Exists([L2], And(At(O, L2), Not(Equal(L1, L2))))),
]

rename_easy(locals())


def observable_problem(env, start, goal):
    locations = start.details.occupancies.keys()

    initial_atoms = []
    constants = []
    occupied = set()
    for obj in env.objects:
        for attr in env.objects[obj]:
            if attr == 'clean':
                initial_atoms.append(Clean(obj))
Ejemplo n.º 9
0
def create_problem():
    """
    Creates the 1D task and motion planning STRIPStream problem.

    :return: a :class:`.STRIPStreamProblem`
    """

    blocks = ['block%i' % i for i in range(3)]
    num_poses = pow(10, 10)

    initial_config = 0  # the initial robot configuration is 0
    initial_poses = {block: i for i, block in enumerate(
        blocks)}  # the initial pose for block i is i

    # the goal pose for block i is i+1
    goal_poses = {block: i + 1 for i, block in enumerate(blocks)}

    ####################

    # Data types
    CONF, BLOCK, POSE = Type(), Type(), Type()

    # Fluent predicates
    AtConf = Pred(CONF)
    AtPose = Pred(BLOCK, POSE)
    HandEmpty = Pred()
    Holding = Pred(BLOCK)

    # Derived predicates
    Safe = Pred(BLOCK, BLOCK, POSE)

    # Static predicates
    LegalKin = Pred(POSE, CONF)
    CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE)

    # Free parameters
    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='pick', parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(),
                             AtConf(Q1), LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),

        Action(name='place', parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))),  # TODO - convert to finite blocks case?
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),

        Action(name='move', parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        Axiom(effect=Safe(B2, B1, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))),  # Infers B2 is at a safe pose wrt B1 at P1
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[],
                        generator=lambda: ((p,) for p in xrange(num_poses))),  # Enumerating all the poses

        GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)],
                        generator=lambda p: [(p,)]),  # Inverse kinematics

        TestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)],
                   test=lambda b1, p1, b2, p2: p1 != p2, eager=True),  # Collision checking
    ]

    ####################

    constants = [
        CONF(initial_config)  # Any additional objects
    ]

    initial_atoms = [
        AtConf(initial_config),
        HandEmpty()
    ] + [
        AtPose(block, pose) for block, pose in initial_poses.iteritems()
    ]

    goal_literals = [AtPose(block, pose)
                     for block, pose in goal_poses.iteritems()]

    problem = STRIPStreamProblem(
        initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

    return problem
def compile_problem(tamp_problem):
    """
  Constructs a STRIPStream problem for the countable TMP problem.

  :param tamp_problem: a :class:`.TMPProblem`
  :return: a :class:`.STRIPStreamProblem`
  """

    # NOTE - the simple focused algorithm gives "Could not find instantiation for PNE!" when this is moved outside
    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(
            name='place',
            parameters=[B1, P1, Q1],
            condition=And(
                Holding(B1),
                AtConf(Q1),
                LegalKin(P1, Q1),
                #ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))),
                ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))),
            #*[Or(Equal(B1, BLOCK(b2)), Safe(b2, P1)) for b2 in tamp_problem.initial_poses]),
            effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        #Axiom(effect=Safe(B2, B1, P1), condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))),
        Axiom(effect=Safe(B2, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1,
                                                                       P2)))),
    ]

    # NOTE - this needs to be inside the method so you make new streams each time
    cond_streams = [
        #EasyGenStream(inputs=[P2], outputs=[P1], conditions=[], effects=[],
        #              generator=lambda a: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[],
                      outputs=[P1],
                      conditions=[],
                      effects=[],
                      generator=lambda: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([p])),
        #EasyTestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)],
        #               test=lambda b1, p1, b2, p2: p1 != p2, eager=EAGER_TESTS),
        EasyTestStream(inputs=[P1, P2],
                       conditions=[],
                       effects=[CollisionFree(P1, P2)],
                       test=lambda p1, p2: p1 != p2,
                       eager=EAGER_TESTS),
    ]

    constants = []

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ]
    if tamp_problem.initial_holding is False:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK))

    goal_literals = []
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses.iteritems():
        goal_literals.append(AtPose(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
Ejemplo n.º 11
0
def compile_problem(tamp_problem):
    """
    Constructs a STRIPStream problem for the continuous TMP problem.

    :param tamp_problem: a :class:`.TMPProblem`
    :return: a :class:`.STRIPStreamProblem`
    """

    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)
    R = Param(REGION)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(name='place',
               parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1,
                                                                 P1)))),
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
        Action(name='clean',
               parameters=[B1, R],
               condition=And(InRegion(B1, R), IsSink(R)),
               effect=And(Cleaned(B1))),
        Action(name='cook',
               parameters=[B1, R],
               condition=And(InRegion(B1, R), IsStove(R)),
               effect=And(Cooked(B1))),
    ]

    axioms = [
        Axiom(effect=InRegion(B1, R),
              condition=Exists([P1], And(AtPose(B1, P1), Contained(B1, P1,
                                                                   R)))),
        Axiom(effect=Safe(B2, B1, P1),
              condition=Exists([P2],
                               And(AtPose(B2, P2),
                                   CollisionFree(B1, P1, B2, P2)))),
    ]

    cond_streams = [
        EasyGenStream(inputs=[R, B1],
                      outputs=[P1],
                      conditions=[CanPlace(B1, R)],
                      effects=[Contained(B1, P1, R)],
                      generator=lambda r, b:
                      (sample_region_pose(r, b) for _ in irange(0, INF))),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([inverse_kinematics(p)])),
        EasyTestStream(inputs=[R, B1, P1],
                       conditions=[],
                       effects=[Contained(B1, P1, R)],
                       test=in_region,
                       eager=EAGER_TESTS,
                       plannable=False),
        EasyTestStream(inputs=[B1, P1, B2, P2],
                       conditions=[],
                       effects=[CollisionFree(B1, P1, B2, P2)],
                       test=lambda *args: not are_colliding(*args),
                       eager=EAGER_TESTS),
    ]

    constants = [
        REGION(tamp_problem.env_region),
    ]

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ] + [
        CanPlace(block, tamp_problem.env_region)
        for block in tamp_problem.initial_poses
    ]

    if tamp_problem.initial_holding is None:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding))

    goal_literals = []
    if tamp_problem.goal_config is not None:
        goal_literals.append(AtConf(tamp_problem.goal_config))
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses:
        goal_literals.append(AtPose(block, goal))
    for block, goal in tamp_problem.goal_regions:
        initial_atoms.append(CanPlace(block, goal))
        goal_literals.append(InRegion(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
  #  condition=And(PoseEq(O, P), HandEmpty(), BaseEq(BQ), ManipEq(MQ), Kin(P, G, BQ, MQ)), #ForAll([OB], Or(Equal(O, OB), Safe(OB, T))))),
  #  effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),
  #
  #Action(name='place', parameters=[O, P, G, BQ, MQ],
  #  condition=And(GraspEq(O, G), BaseEq(BQ), ManipEq(MQ), Kin(P, G, BQ, MQ),
  #                ForAll([O2], Or(Equal(O, O2), SafePose(O2, P)))),
  #  effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),

  # With grasp trajectory
  Action(name='pick', parameters=[O, P, G, BQ, MQ, GT],
    condition=And(PoseEq(O, P), HandEmpty(), BaseEq(BQ), ManipEq(MQ), GraspTraj(P, G, BQ, MQ, GT)),
    effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),

  Action(name='place', parameters=[O, P, G, BQ, MQ, GT],
    condition=And(GraspEq(O, G), BaseEq(BQ), ManipEq(MQ), GraspTraj(P, G, BQ, MQ, GT),
                  ForAll([O2], Or(Equal(O, O2), SafePose(O2, P)))),
    effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),
  # NOTE - I could make actions that backup or move forward instead

  Action(name='move_arm', parameters=[MQ, MQ2, BQ, MT],
    #condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ), ForAll([O2], SafePoseMove(O2, MT))),
    condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ), ForAll([O2], SafeMove(O2, MT))),
    #condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ),
    #              ForAll([O2], Or(SafeGraspMove(O2, MT), SafePoseMove(O2, MT)))), # NOTE - bad idea, creates one per each combo
    effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))),

  #Action(name='move_arm', parameters=[MQ, MQ2, BQ, MT],
  #  condition=And(HandEmpty(), ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ), ForAll([OB], SafePoseMove(OB, MT))),
  #  effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))),
  #
  #Action(name='move_arm_holding', parameters=[MQ, MQ2, BQ, O, G, MT],
Ejemplo n.º 13
0
def compile_problem(oracle):
    problem = oracle.problem
    for obj in problem.goal_poses:
        if problem.goal_poses[obj] == 'initial':
            problem.goal_poses[obj] = oracle.initial_poses[obj]
        elif problem.goal_poses[
                obj] in oracle.initial_poses:  # Goal names other object (TODO - compile with initial)
            problem.goal_poses[obj] = oracle.initial_poses[
                problem.goal_poses[obj]]

    ####################

    O, P, G, Q, T = Param(OBJ), Param(POSE), Param(GRASP), Param(CONF), Param(
        TRAJ)
    Q1, Q2, OB, R = Param(CONF), Param(CONF), Param(OBJ), Param(REG)
    #BT = Param(BASE_TRAJ)

    rename_easy(locals())

    actions = [
        Action(
            name='pick',
            parameters=[O, P, G, Q, T],
            condition=And(
                PoseEq(O, P),
                HandEmpty(),
                Manip(O, P, G, Q, T),
                ConfEq(Q),  # NOTE - can remove ConfEq(Q)
                ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
            effect=And(PoseEq(O, None), GraspEq(O, G), Not(HandEmpty()),
                       Not(PoseEq(O, P)))),
        Action(
            name='place',
            parameters=[O, P, G, Q, T],
            condition=And(
                PoseEq(O, None),
                GraspEq(O, G),
                Manip(O, P, G, Q, T),
                ConfEq(Q),  # NOTE - can remove ConfEq(Q)
                ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
            effect=And(PoseEq(O, P), HandEmpty(), Not(PoseEq(O, None)),
                       Not(GraspEq(O, G)))),
        Action('clean',
               parameters=[O, R],
               condition=And(InRegion(O, R), IsSink(R)),
               effect=Cleaned(O)),
        Action('cook',
               parameters=[O, R],
               condition=And(Cleaned(O), InRegion(O, R), IsStove(R)),
               effect=And(Cooked(O), Not(Cleaned(O)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=ConfEq(Q1),
               effect=And(ConfEq(Q2), Not(ConfEq(Q1)))),
    ]

    axioms = [
        #Axiom(effect=Holding(O), condition=Exists([G], And(GraspEq(O, G), LegalGrasp(O, G)))),
        STRIPSAxiom(conditions=[GraspEq(O, G), LegalGrasp(O, G)],
                    effects=[Holding(O)]),
        Axiom(effect=InRegion(O, R),
              condition=Exists([P], And(PoseEq(O, P), Contained(R, O, P)))),
        #STRIPSAxiom(conditions=[PoseEq(O, P), ContainedCon(R, O, P)], effects=[InRegion(O, R)]),
        Axiom(effect=Safe(O, T),
              condition=Exists([P], And(PoseEq(O, P), CFree(O, P, T)))),
        #STRIPSAxiom(conditions=[PoseEq(O, P), CFreeCon(O, P, T)], effects=[Safe(O, T)]),
    ]

    # TODO - include parameters in STRIPS axiom?

    ####################

    def sample_poses(o, num_samples=1):
        while True:
            if AVOID_INITIAL:
                oracle.set_all_object_poses(oracle.initial_poses)
            else:
                oracle.set_all_object_poses({o: oracle.initial_poses[o]})
            yield list(
                islice(
                    random_region_placements(oracle,
                                             o,
                                             oracle.get_counters(),
                                             region_weights=True),
                    num_samples))

    def sample_grasps(o):
        yield get_grasps(oracle, o)

    def sample_region(o, r, num_samples=1):
        while True:
            oracle.set_all_object_poses({o: oracle.initial_poses[o]})
            yield list(
                islice(
                    random_region_placements(oracle,
                                             o, [r],
                                             region_weights=True),
                    num_samples))

    def sample_motion(o, p, g, max_calls=1, max_failures=50):
        oracle.set_all_object_poses(
            {o: p})  # TODO - saver for the initial state as well?
        if oracle.approach_collision(o, p, g):
            return
        for i in range(max_calls):
            pap = PickAndPlace(oracle.get_geom_hash(o), p, g)
            if not pap.sample(oracle,
                              o,
                              max_failures=max_failures,
                              sample_vector=DO_ARM_MOTION,
                              sample_arm=DO_ARM_MOTION,
                              check_base=CHECK_BASE):
                break
            pap.obj = o
            yield [(pap.approach_config, pap)]

    def collision_free(o, p, t):
        if p is None or o == t.obj:
            return True
        holding = ObjGrasp(t.obj, t.grasp)
        #holding = Holding(self.oracle.get_body_name(pap.geom_hash), pap.grasp)
        if not DO_ARM_MOTION:
            return not oracle.holding_collision(t.grasp_config, o, p, holding)
        return not oracle.traj_holding_collision(t.approach_config, t.trajs, o,
                                                 p, holding)

    cond_streams = [
        EasyListGenStream(inputs=[O],
                          outputs=[P],
                          conditions=[],
                          effects=[LegalPose(O, P)],
                          generator=sample_poses),
        EasyListGenStream(inputs=[O],
                          outputs=[G],
                          conditions=[],
                          effects=[LegalGrasp(O, G)],
                          generator=sample_grasps),
        EasyListGenStream(inputs=[O, R],
                          outputs=[P],
                          conditions=[],
                          effects=[LegalPose(O, P),
                                   Contained(R, O, P)],
                          generator=sample_region),
        EasyListGenStream(inputs=[O, P, G],
                          outputs=[Q, T],
                          conditions=[LegalPose(O, P),
                                      LegalGrasp(O, G)],
                          effects=[Manip(O, P, G, Q, T)],
                          generator=sample_motion),

        #MultiEasyGenStream(inputs=[Q1, Q2], outputs=[BT], conditions=[],
        #           effects=[Motion(Q1, BT, Q2)], generator=lambda q1, q2: [[None]]),
        EasyTestStream(inputs=[O, P, T],
                       conditions=[LegalPose(O, P)],
                       effects=[CFree(O, P, T)],
                       test=collision_free,
                       eager=EAGER_TESTS),
    ]

    ####################

    constants = [POSE(None)]

    initial_atoms = [ConfEq(oracle.initial_config)]  # TODO - toggle
    holding = set()
    if problem.start_holding is not False:
        obj, grasp = problem.start_holding
        initial_atoms += [
            GraspEq(obj, grasp),
            PoseEq(obj, None),
            LegalGrasp(obj, grasp)
        ]
        holding.add(obj)
    if not holding:
        initial_atoms.append(HandEmpty())
    for obj, pose in oracle.initial_poses.iteritems():
        if obj not in holding:
            initial_atoms += [PoseEq(obj, pose), LegalPose(obj, pose)]
    initial_atoms += [IsSink(region) for region in oracle.sinks]
    initial_atoms += [IsStove(region) for region in oracle.stoves]

    goal_literals = []
    if problem.goal_holding is not None:
        if problem.goal_holding is False:
            goal_literals.append(HandEmpty())
        elif isinstance(problem.goal_holding, ObjGrasp):
            goal_literals.append(
                GraspEq(problem.goal_holding.object_name,
                        problem.goal_holding.grasp))
        elif problem.goal_holding in oracle.get_objects():
            goal_literals.append(Holding(problem.goal_holding))
        else:
            raise Exception()
    for obj, pose in problem.goal_poses.iteritems():
        goal_literals.append(PoseEq(obj, pose))
        initial_atoms.append(LegalPose(obj, pose))
    for obj, region in problem.goal_regions.iteritems():
        goal_literals.append(InRegion(obj, region))
    for obj in problem.goal_cleaned:
        goal_literals.append(Cleaned(obj))
    for obj in problem.goal_cooked:
        goal_literals.append(Cooked(obj))

    goal_formula = goal_literals
    #goal_formula = And(*goal_literals)
    #goal_formula = AbsCondition(goal_literals) # TODO - bug where goals must have And

    return STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms,
                              cond_streams, constants)
def create_problem2():
  """
  Creates the 1D task and motion planning STRIPStream problem.

  :return: a :class:`.STRIPStreamProblem`
  """

  # How would I specify table position
  # From goal specification can derive prior
  # Everything of same object type should be one variable? Otherwise, how would I update?
  # I do actually have limits on the number of things
  # Doing with would relive the strangeness when you have to update the others
  # The strange thing is that we would like to distinguish the clusters in space when we do find them

  p_table = 0.9
  p_hit_exists = 0.99
  p_miss_notexists = p_hit_exists
  # Could use count based things or could just indicate confidence in sensor model

  # Goal, object in hand
  # Object starts out with high probability that its on a surface


  surfaces = ['table%i'%i for i in range(3)]

  # Different predicates for course belief and fine belief?
  # Do I want to expose blocks as objects to belief?


  # The probability that another table exists drops immensely once we find 3
  # I think I always have to fix this number
  # I suppose I could make a stream that generates new objects if desired
  # Decrease the likelihood of later numbered objects
  # Maybe I just use one table and allow it not to integrate to one?

  # Why does the online deferral to use objects in the focused algorithm work?
  # We often have streams for continuous values and these are the ones we want to defer
  # Could I do this for discrete objects as well?
  # Sure, just make a stream to generate them
  # This is all about hte optimistic, I think there is a pose but I don't actually know it stuff
  # Should the imaginary pose be explicit then?
  # Maybe I should find a true plan but allow some objects to be imaginary
  # Simultaneous actions to look and observe multiple things


  blocks = ['block%i'%i for i in range(3)]
  num_poses = pow(10, 10)

  initial_config = 0 # the initial robot configuration is 0
  initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i

  goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1

  ####################

  # Data types
  CONF, BLOCK, POSE = Type(), Type(), Type()
  ROOM = Type()


  # Fluent predicates
  AtConf = Pred(CONF)
  AtPose = Pred(BLOCK, POSE)
  HandEmpty = Pred()
  Holding = Pred(BLOCK)

  # Derived predicates
  Safe = Pred(BLOCK, BLOCK, POSE)

  # Static predicates
  LegalKin = Pred(POSE, CONF)
  CollisionFree = Pred(BLOCK, POSE, BLOCK, POSE)

  # Free parameters
  B1, B2 = Param(BLOCK), Param(BLOCK)
  P1, P2 = Param(POSE), Param(POSE)
  Q1, Q2 = Param(CONF), Param(CONF)

  rename_easy(locals()) # Trick to make debugging easier

  ####################

  actions = [
    Action(name='pick', parameters=[B1, P1, Q1],
      condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), LegalKin(P1, Q1)),
      effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),

    Action(name='place', parameters=[B1, P1, Q1],
      condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
        ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))), # TODO - convert to finite blocks case?
      effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),

    Action(name='move', parameters=[Q1, Q2],
      condition=AtConf(Q1),
      effect=And(AtConf(Q2), Not(AtConf(Q1)))),

    Action(name='scan', parameters=[Q1], # Looks at a particular object. Discount costs for subsequent looks from that spot
           condition=AtConf(Q1),
           effect=And()),

    Action(name='look', parameters=[Q1, O], # Look at surface vs object
            condition=AtConf(Q1),
            effect=And()),
  ]

  axioms = [
    Axiom(effect=Safe(B2, B1, P1),
          condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1
  ]

  ####################

  # Conditional stream declarations
  cond_streams = [
    GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[],
                    generator=lambda: ((p,) for p in xrange(num_poses))), # Enumerating all the poses

    GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[LegalKin(P1, Q1)],
                    generator=lambda p: [(p,)]), # Inverse kinematics

    TestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[CollisionFree(B1, P1, B2, P2)],
               test=lambda b1, p1, b2, p2: p1 != p2, eager=True), # Collision checking
  ]

  ####################

  constants = [
    CONF(initial_config) # Any additional objects
  ]

  initial_atoms = [
    AtConf(initial_config),
    HandEmpty()
  ] + [
    AtPose(block, pose) for block, pose in initial_poses.iteritems()
  ]

  goal_literals = [AtPose(block, pose) for block, pose in goal_poses.iteritems()]

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

  return problem
O, P, G = Param(OBJ), Param(POSE), Param(GRASP)
O2, O3 = Param(OBJ), Param(OBJ)
P2 = Param(POSE)

MQ, MQ2 = Param(MCONF), Param(MCONF)
MT = Param(MTRAJ)
GT = Param(GTRAJ)

rename_easy(locals())

####################

actions = [
  Action(name='pick', parameters=[O, P, G, MQ, GT],
    condition=And(PoseEq(O, P), HandEmpty(), ManipEq(MQ), GraspMotion(P, G, MQ, GT),
                  ForAll([O2], Or(Equal(O, O2), SafeGTraj(O2, GT)))),
                  #ForAll([O2], Or(Equal(O, O2), And(SafePose(O2, P), SafeGTraj(O2, GT))))),
    effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),

  Action(name='place', parameters=[O, P, G, MQ, GT],
    condition=And(GraspEq(O, G), ManipEq(MQ), GraspMotion(P, G, MQ, GT),
                  ForAll([O2], Or(Equal(O, O2), And(SafePose(O2, P), SafeGTraj(O2, GT))))),
    effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),

  Action(name='move', parameters=[MQ, MQ2, MT],
    condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, MT), ForAll([O2], SafeMTraj(O2, MT))),
    effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))),
]

axioms = [
  # Pick/Place collisions
P2 = Param(POSE)

MQ, MQ2 = Param(MCONF), Param(MCONF)
MT = Param(MTRAJ)
GT = Param(GTRAJ)

rename_easy(locals())

####################

actions = [
    Action(name='pick',
           parameters=[O, P, G, MQ, GT],
           condition=And(PoseEq(O, P), HandEmpty(), ManipEq(MQ),
                         GraspMotion(P, G, MQ, GT),
                         ForAll([O2], Or(Equal(O, O2), SafePose(O2, P)))),
           effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),
    Action(name='place',
           parameters=[O, P, G, MQ, GT],
           condition=And(GraspEq(O, G), ManipEq(MQ), GraspMotion(P, G, MQ, GT),
                         ForAll([O2], Or(Equal(O, O2), SafePose(O2, P)))),
           effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),
    Action(name='move',
           parameters=[MQ, MQ2, MT],
           condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, MT),
                         ForAll([O2], SafeMove(O2, MT))),
           effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))),
]

axioms = [
    # Pick/Place collisions