Ejemplo n.º 1
0
def test_get_QT_kernel(T_A, T_B):
    m = 3
    M_T, Σ_T = core.compute_mean_std(T_B, m)
    μ_Q, σ_Q = core.compute_mean_std(T_A, m)
    QT, QT_first = _get_QT(0, T_B, T_A, m)

    device_T_A = cuda.to_device(T_B)
    device_T_B = cuda.to_device(T_A)
    device_M_T = cuda.to_device(M_T)
    device_Σ_T = cuda.to_device(Σ_T)
    device_QT_odd = cuda.to_device(QT)
    device_QT_even = cuda.to_device(QT)
    device_QT_first = cuda.to_device(QT_first)

    threads_per_block = THREADS_PER_BLOCK
    blocks_per_grid = math.ceil(QT_first.shape[0] / threads_per_block)

    for i in range(1, QT_first.shape[0]):
        left = core.sliding_dot_product(T_A[i:i + m], T_B)

        _get_QT_kernel[blocks_per_grid,
                       threads_per_block](i, device_T_A, device_T_B, m,
                                          device_QT_even, device_QT_odd,
                                          device_QT_first)

        if i % 2 == 0:
            right = device_QT_even.copy_to_host()
            npt.assert_almost_equal(left, right)
        else:
            right = device_QT_odd.copy_to_host()
            npt.assert_almost_equal(left, right)
Ejemplo n.º 2
0
def test_calculate_distance_profile(Q, T):
    m = Q.shape[0]
    left = np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                          core.z_norm(Q),
                          axis=1)
    QT = core.sliding_dot_product(Q, T)
    μ_Q, σ_Q = core.compute_mean_std(Q, m)
    M_T, Σ_T = core.compute_mean_std(T, m)
    right = core.calculate_distance_profile(m, QT, μ_Q, σ_Q, M_T, Σ_T)
    npt.assert_almost_equal(left, right)
Ejemplo n.º 3
0
def test_calculate_squared_distance_profile(Q, T):
    m = Q.shape[0]
    ref = (np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                          core.z_norm(Q),
                          axis=1)**2)
    QT = core.sliding_dot_product(Q, T)
    μ_Q, σ_Q = core.compute_mean_std(Q, m)
    M_T, Σ_T = core.compute_mean_std(T, m)
    comp = core._calculate_squared_distance_profile(m, QT, μ_Q.item(0),
                                                    σ_Q.item(0), M_T, Σ_T)
    npt.assert_almost_equal(ref, comp)
Ejemplo n.º 4
0
def test_compute_mean_std(Q, T):
    m = Q.shape[0]

    left_μ_Q, left_σ_Q = naive_compute_mean_std(Q, m)
    left_M_T, left_Σ_T = naive_compute_mean_std(T, m)
    right_μ_Q, right_σ_Q = core.compute_mean_std(Q, m)
    right_M_T, right_Σ_T = core.compute_mean_std(T, m)

    npt.assert_almost_equal(left_μ_Q, right_μ_Q)
    npt.assert_almost_equal(left_σ_Q, right_σ_Q)
    npt.assert_almost_equal(left_M_T, right_M_T)
    npt.assert_almost_equal(left_Σ_T, right_Σ_T)
Ejemplo n.º 5
0
def test_compute_mean_std(Q, T):
    m = Q.shape[0]
    left_μ_Q = np.sum(Q) / m
    left_σ_Q = np.sqrt(np.sum(np.square(Q - left_μ_Q) / m))
    left_M_T = np.mean(core.rolling_window(T, m), axis=1)
    left_Σ_T = np.std(core.rolling_window(T, m), axis=1)
    right_μ_Q, right_σ_Q = core.compute_mean_std(Q, m)
    right_M_T, right_Σ_T = core.compute_mean_std(T, m)
    npt.assert_almost_equal(left_μ_Q, right_μ_Q)
    npt.assert_almost_equal(left_σ_Q, right_σ_Q)
    npt.assert_almost_equal(left_M_T, right_M_T)
    npt.assert_almost_equal(left_Σ_T, right_Σ_T)
Ejemplo n.º 6
0
def test_compute_mean_std(Q, T):
    m = Q.shape[0]

    ref_μ_Q, ref_σ_Q = naive_compute_mean_std(Q, m)
    ref_M_T, ref_Σ_T = naive_compute_mean_std(T, m)
    comp_μ_Q, comp_σ_Q = core.compute_mean_std(Q, m)
    comp_M_T, comp_Σ_T = core.compute_mean_std(T, m)

    npt.assert_almost_equal(ref_μ_Q, comp_μ_Q)
    npt.assert_almost_equal(ref_σ_Q, comp_σ_Q)
    npt.assert_almost_equal(ref_M_T, comp_M_T)
    npt.assert_almost_equal(ref_Σ_T, comp_Σ_T)
Ejemplo n.º 7
0
def test_compute_mean_std_chunked_many(Q, T):
    m = Q.shape[0]

    config.STUMPY_MEAN_STD_NUM_CHUNKS = 128
    ref_μ_Q, ref_σ_Q = naive_compute_mean_std(Q, m)
    ref_M_T, ref_Σ_T = naive_compute_mean_std(T, m)
    comp_μ_Q, comp_σ_Q = core.compute_mean_std(Q, m)
    comp_M_T, comp_Σ_T = core.compute_mean_std(T, m)
    config.STUMPY_MEAN_STD_NUM_CHUNKS = 1

    npt.assert_almost_equal(ref_μ_Q, comp_μ_Q)
    npt.assert_almost_equal(ref_σ_Q, comp_σ_Q)
    npt.assert_almost_equal(ref_M_T, comp_M_T)
    npt.assert_almost_equal(ref_Σ_T, comp_Σ_T)
Ejemplo n.º 8
0
def test_compute_mean_std_chunked_many(Q, T):
    m = Q.shape[0]

    config.STUMPY_MEAN_STD_NUM_CHUNKS = 128
    left_μ_Q, left_σ_Q = naive_compute_mean_std(Q, m)
    left_M_T, left_Σ_T = naive_compute_mean_std(T, m)
    right_μ_Q, right_σ_Q = core.compute_mean_std(Q, m)
    right_M_T, right_Σ_T = core.compute_mean_std(T, m)
    config.STUMPY_MEAN_STD_NUM_CHUNKS = 1

    npt.assert_almost_equal(left_μ_Q, right_μ_Q)
    npt.assert_almost_equal(left_σ_Q, right_σ_Q)
    npt.assert_almost_equal(left_M_T, right_M_T)
    npt.assert_almost_equal(left_Σ_T, right_Σ_T)
Ejemplo n.º 9
0
def test_compute_mean_std_multidimensional(Q, T):
    m = Q.shape[0]

    Q = np.array([Q, np.random.uniform(-1000, 1000, [Q.shape[0]])])
    T = np.array([T, T, np.random.uniform(-1000, 1000, [T.shape[0]])])

    left_μ_Q, left_σ_Q = naive_compute_mean_std_multidimensional(Q, m)
    left_M_T, left_Σ_T = naive_compute_mean_std_multidimensional(T, m)
    right_μ_Q, right_σ_Q = core.compute_mean_std(Q, m)
    right_M_T, right_Σ_T = core.compute_mean_std(T, m)

    npt.assert_almost_equal(left_μ_Q, right_μ_Q)
    npt.assert_almost_equal(left_σ_Q, right_σ_Q)
    npt.assert_almost_equal(left_M_T, right_M_T)
    npt.assert_almost_equal(left_Σ_T, right_Σ_T)
Ejemplo n.º 10
0
def test_compute_mean_std_multidimensional_chunked_many(Q, T):
    m = Q.shape[0]

    Q = np.array([Q, np.random.uniform(-1000, 1000, [Q.shape[0]])])
    T = np.array([T, T, np.random.uniform(-1000, 1000, [T.shape[0]])])

    config.STUMPY_MEAN_STD_NUM_CHUNKS = 128
    left_μ_Q, left_σ_Q = naive_compute_mean_std_multidimensional(Q, m)
    left_M_T, left_Σ_T = naive_compute_mean_std_multidimensional(T, m)
    right_μ_Q, right_σ_Q = core.compute_mean_std(Q, m)
    right_M_T, right_Σ_T = core.compute_mean_std(T, m)
    config.STUMPY_MEAN_STD_NUM_CHUNKS = 1

    npt.assert_almost_equal(left_μ_Q, right_μ_Q)
    npt.assert_almost_equal(left_σ_Q, right_σ_Q)
    npt.assert_almost_equal(left_M_T, right_M_T)
    npt.assert_almost_equal(left_Σ_T, right_Σ_T)
Ejemplo n.º 11
0
def test_multi_distance_profile(T, m):
    for query_idx in range(T.shape[0] - m + 1):
        ref_D = naive.multi_distance_profile(query_idx, T, m)

        M_T, Σ_T = core.compute_mean_std(T, m)
        comp_D = multi_distance_profile(query_idx, T, m)

        npt.assert_almost_equal(ref_D, comp_D)
Ejemplo n.º 12
0
def test_gpu_calculate_squared_distance_profile(Q, T):
    m = Q.shape[0]
    left = np.linalg.norm(core.z_norm(core.rolling_window(T, m), 1) -
                          core.z_norm(Q),
                          axis=1)
    left = np.square(left)
    M_T, Σ_T = core.compute_mean_std(T, m)
    QT = core.sliding_dot_product(Q, T)
    μ_Q, σ_Q = core.compute_mean_std(Q, m)
    QT = cp.asarray(QT)
    μ_Q = cp.asarray(μ_Q)
    σ_Q = cp.asarray(σ_Q)
    M_T = cp.asarray(M_T)
    Σ_T = cp.asarray(Σ_T)
    right = _gpu_calculate_squared_distance_profile(m, QT, μ_Q[0], σ_Q[0], M_T,
                                                    Σ_T)
    right = cp.asnumpy(right)
    npt.assert_almost_equal(left, right)
Ejemplo n.º 13
0
def test_multi_mass(T, m):
    trivial_idx = 2
    Q = T[:, trivial_idx:trivial_idx + m]

    left = utils.naive_multi_mass(Q, T, m)

    M_T, Σ_T = core.compute_mean_std(T, m)
    right = _multi_mass(Q, T, m, M_T, Σ_T)

    npt.assert_almost_equal(left, right)
Ejemplo n.º 14
0
def test_multi_mass(T, m):
    trivial_idx = 2

    Q = T[:, trivial_idx : trivial_idx + m]

    ref = naive.multi_mass(Q, T, m)

    M_T, Σ_T = core.compute_mean_std(T, m)
    comp = _multi_mass(Q, T, m, M_T, Σ_T, M_T[:, trivial_idx], Σ_T[:, trivial_idx])

    npt.assert_almost_equal(ref, comp, decimal=config.STUMPY_TEST_PRECISION)
Ejemplo n.º 15
0
def test_multi_mass(T, m):
    trivial_idx = 2

    Q = T[:, trivial_idx:trivial_idx + m]

    left = naive.multi_mass(Q, T, m)

    M_T, Σ_T = core.compute_mean_std(T, m)
    right = _multi_mass(Q, T, m, M_T, Σ_T, M_T[:, trivial_idx],
                        Σ_T[:, trivial_idx])

    npt.assert_almost_equal(left, right, decimal=naive.PRECISION)
Ejemplo n.º 16
0
def test_calculate_squared_distance_kernel(T_A, T_B):
    m = 3
    for i in range(T_A.shape[0] - m + 1):
        Q = T_A[i:i + m]
        left = np.linalg.norm(core.z_norm(core.rolling_window(T_B, m), 1) -
                              core.z_norm(Q),
                              axis=1)
        left = np.square(left)
        M_T, Σ_T = core.compute_mean_std(T_B, m)
        QT = core.sliding_dot_product(Q, T_B)
        μ_Q, σ_Q = core.compute_mean_std(T_A, m)

        device_M_T = cuda.to_device(M_T)
        device_Σ_T = cuda.to_device(Σ_T)
        device_QT_even = cuda.to_device(QT)
        device_QT_odd = cuda.to_device(QT)
        device_QT_first = cuda.to_device(QT)
        device_μ_Q = cuda.to_device(μ_Q)
        device_σ_Q = cuda.to_device(σ_Q)
        device_D = cuda.device_array(QT.shape, dtype=np.float64)
        device_denom = cuda.device_array(QT.shape, dtype=np.float64)

        threads_per_block = THREADS_PER_BLOCK
        blocks_per_grid = math.ceil(QT.shape[0] / threads_per_block)

        _calculate_squared_distance_kernel[blocks_per_grid, threads_per_block](
            i,
            m,
            device_M_T,
            device_Σ_T,
            device_QT_even,
            device_QT_odd,
            device_μ_Q,
            device_σ_Q,
            device_D,
            device_denom,
        )

        right = device_D.copy_to_host()
        npt.assert_almost_equal(left, right)
Ejemplo n.º 17
0
def test_get_first_mstump_profile(T, m):
    excl_zone = int(np.ceil(m / 4))
    start = 0

    left_P, left_I = utils.naive_mstump(T, m, excl_zone)
    left_P = left_P[start, :]
    left_I = left_I[start, :]

    M_T, Σ_T = core.compute_mean_std(T, m)
    right_P, right_I = _get_first_mstump_profile(start, T, T, m, excl_zone, M_T, Σ_T)

    npt.assert_almost_equal(left_P, right_P)
    npt.assert_equal(left_I, right_I)
Ejemplo n.º 18
0
def test_query_mstump_profile(T, m):
    excl_zone = int(np.ceil(m / 4))
    for query_idx in range(T.shape[0] - m + 1):
        ref_P, ref_I = naive.mstump(T, m, excl_zone)
        ref_P = ref_P[:, query_idx]
        ref_I = ref_I[:, query_idx]

        M_T, Σ_T = core.compute_mean_std(T, m)
        comp_P, comp_I = _query_mstump_profile(query_idx, T, T, m, excl_zone,
                                               M_T, Σ_T, M_T, Σ_T)

        npt.assert_almost_equal(ref_P, comp_P)
        npt.assert_equal(ref_I, comp_I)
Ejemplo n.º 19
0
def test_prescrump(T):
    m = 3
    zone = int(np.ceil(m / 4))
    left = np.array(
        [
            utils.naive_mass(Q, T, m, i, zone, True)
            for i, Q in enumerate(core.rolling_window(T, m))
        ],
        dtype=object,
    )
    μ, σ = core.compute_mean_std(T, m)
    # Note that the below code only works for `s=1`
    right = prescrump(T, m, μ, σ, s=1)
Ejemplo n.º 20
0
def test_get_first_mstump_profile(T, m):
    excl_zone = int(np.ceil(m / 4))
    start = 0

    ref_P, ref_I = naive.mstump(T, m, excl_zone)
    ref_P = ref_P[start, :]
    ref_I = ref_I[start, :]

    M_T, Σ_T = core.compute_mean_std(T, m)
    comp_P, comp_I = _get_first_mstump_profile(start, T, T, m, excl_zone, M_T,
                                               Σ_T, M_T, Σ_T)

    npt.assert_almost_equal(ref_P, comp_P)
    npt.assert_equal(ref_I, comp_I)
Ejemplo n.º 21
0
def test_multi_mass_seeded():
    np.random.seed(5)
    T = np.random.uniform(-1000, 1000, [3, 10]).astype(np.float64)
    m = 5

    trivial_idx = 2

    Q = T[:, trivial_idx : trivial_idx + m]

    ref = naive.multi_mass(Q, T, m)

    M_T, Σ_T = core.compute_mean_std(T, m)
    comp = _multi_mass(Q, T, m, M_T, Σ_T, M_T[:, trivial_idx], Σ_T[:, trivial_idx])

    npt.assert_almost_equal(ref, comp, decimal=config.STUMPY_TEST_PRECISION)
Ejemplo n.º 22
0
def test_multi_mass_seeded():
    np.random.seed(5)
    T = np.random.uniform(-1000, 1000, [3, 10]).astype(np.float64)
    m = 5

    trivial_idx = 2

    Q = T[:, trivial_idx:trivial_idx + m]

    left = naive.multi_mass(Q, T, m)

    M_T, Σ_T = core.compute_mean_std(T, m)
    right = _multi_mass(Q, T, m, M_T, Σ_T, M_T[:, trivial_idx],
                        Σ_T[:, trivial_idx])

    npt.assert_almost_equal(left, right, decimal=naive.PRECISION)
Ejemplo n.º 23
0
def test_stamp_mass_PI(T_A, T_B):
    m = 3
    trivial_idx = 2
    zone = int(np.ceil(m / 2))
    Q = T_B[trivial_idx:trivial_idx + m]
    M_T, Σ_T = core.compute_mean_std(T_B, m)
    left_P, left_I, left_left_I, left_right_I = naive.mass(
        Q,
        T_B,
        m,
        trivial_idx=trivial_idx,
        excl_zone=zone,
        ignore_trivial=True)
    right_P, right_I = stamp._mass_PI(Q,
                                      T_B,
                                      M_T,
                                      Σ_T,
                                      trivial_idx=trivial_idx,
                                      excl_zone=zone)

    npt.assert_almost_equal(left_P, right_P)
    npt.assert_almost_equal(left_I, right_I)

    right_left_P, right_left_I = stamp._mass_PI(Q,
                                                T_B,
                                                M_T,
                                                Σ_T,
                                                trivial_idx=trivial_idx,
                                                excl_zone=zone,
                                                left=True)

    npt.assert_almost_equal(left_left_I, right_left_I)

    right_right_P, right_right_I = stamp._mass_PI(Q,
                                                  T_B,
                                                  M_T,
                                                  Σ_T,
                                                  trivial_idx=trivial_idx,
                                                  excl_zone=zone,
                                                  right=True)

    npt.assert_almost_equal(left_right_I, right_right_I)
Ejemplo n.º 24
0
    def update(self, t):
        """
        Append a single new data point, `t`, to the existing time series `T` and update
        the matrix profile and matrix profile indices.

        Parameters
        ----------
        t : float
            A single new data point to be appended to `T`

        Notes
        -----
        `DOI: 10.1007/s10618-017-0519-9 \
        <https://www.cs.ucr.edu/~eamonn/MP_journal.pdf>`__

        See Table V

        Note that line 11 is missing an important `sqrt` operation!
        """
        n = self._T.shape[0]
        l = n - self._m + 1
        T_new = np.append(self._T, t)
        QT_new = np.empty(self._QT.shape[0] + 1)
        S = T_new[l:]
        t_drop = T_new[l - 1]

        if np.isinf(t) or np.isnan(t):
            self._illegal = np.append(self._illegal, True)
            t = 0
            T_new[-1] = 0
            S[-1] = 0
        else:
            self._illegal = np.append(self._illegal, False)

        if np.any(self._illegal[-self._m:]):
            μ_Q = np.inf
            σ_Q = np.nan
        else:
            μ_Q, σ_Q = core.compute_mean_std(S, self._m)
            μ_Q = μ_Q[0]
            σ_Q = σ_Q[0]

        M_T_new = np.append(self._M_T, μ_Q)
        Σ_T_new = np.append(self._Σ_T, σ_Q)

        for j in range(l, 0, -1):
            QT_new[j] = (self._QT[j - 1] - T_new[j - 1] * t_drop +
                         T_new[j + self._m - 1] * t)
        QT_new[0] = 0

        for j in range(self._m):
            QT_new[0] = QT_new[0] + T_new[j] * S[j]

        D = core.calculate_distance_profile(self._m, QT_new, μ_Q, σ_Q, M_T_new,
                                            Σ_T_new)
        if np.any(self._illegal[-self._m:]):
            D[:] = np.inf

        core.apply_exclusion_zone(D, D.shape[0] - 1, self._excl_zone)

        for j in range(l):
            if D[j] < self._P[j]:
                self._I[j] = l
                self._P[j] = D[j]

        I_last = np.argmin(D)
        if np.isinf(D[I_last]):
            I_new = np.append(self._I, -1)
            P_new = np.append(self._P, np.inf)
        else:
            I_new = np.append(self._I, I_last)
            P_new = np.append(self._P, D[I_last])
        left_I_new = np.append(self._left_I, I_last)
        left_P_new = np.append(self._left_P, D[I_last])

        self._T = T_new
        self._P = P_new
        self._I = I_new
        self._left_I = left_I_new
        self._left_P = left_P_new
        self._QT = QT_new
        self._M_T = M_T_new
        self._Σ_T = Σ_T_new