Ejemplo n.º 1
0
import tensorflow as tf
from style_transfer import StyleTransfer
import utils

# enable eager execution
tf.enable_eager_execution()
print('Eager execution: {}'.format(tf.executing_eagerly()))

painter = StyleTransfer()
threshold = painter.miss_percentage_threshold
while True:
    best_img, miss_percentage = painter.run()
    if best_img is not None:
        utils.remove_earlier_checkpoints('./checkpoints')
    if miss_percentage > threshold:
        painter.learning_rate = painter.learning_rate * painter.lr_decay_rate
Ejemplo n.º 2
0
st = StyleTransfer(sess,
                   net,
                   ITERATIONS,
                   CONTENT_LAYERS,
                   STYLE_LAYERS,
                   content_image,
                   style_image,
                   CONTENT_LAYER_WEIGHTS,
                   STYLE_LAYER_WEIGHTS,
                   CONTENT_LOSS_WEIGHT,
                   STYLE_LOSS_WEIGHT,
                   TV_LOSS_WEIGHT,
                   OPTIMIZER,
                   learning_rate=LEARNING_RATE,
                   init_img_type=INIT_TYPE,
                   preserve_colors=PRESERVE_COLORS,
                   cvt_type=CVT_TYPE,
                   content_factor_type=CONTENT_FACTOR_TYPE,
                   save_it=SAVE_IT,
                   save_it_dir=SAVE_IT_DIR)

mixed_image = st.run()
summary = st.loss_summary()

sess.close()

save_image(mixed_image, OUTPUT_IMAGE_PATH)

with open(LOSS_SUMMARY_PATH, "wb") as handle:
    pickle.dump(summary, handle, protocol=pickle.HIGHEST_PROTOCOL)
from style_transfer import StyleTransfer

if __name__ == '__main__':
    ST = StyleTransfer('input/style1.jpg', 'input/face.jpg',
                       'input/mask_style1.jpg', 'input/mask_face.jpg')
    ST.run()