Ejemplo n.º 1
0
 def __init__(self, n_input=1):
     self.n_input = n_input
     self.plotter = utils.Plotter()
     self.roc = utils.Roccer()
Ejemplo n.º 2
0
environ["CUDA_VISIBLE_DEVICES"] = ""

import numpy as np

import extra_vars
from subtlenet import config, utils
from subtlenet.backend import obj
from subtlenet.generators.gen import make_coll
basedir = environ['BASEDIR']
figsdir = environ['FIGSDIR']

n_batches = 500
partition = 'test'

p = utils.Plotter()
r1 = utils.Roccer(y_range=range(-5, 1))
r2 = utils.Roccer(y_range=range(-4, 1))

OUTPUT = figsdir + '/'
system('mkdir -p %s' % OUTPUT)

components = [
    'singletons',
    'shallow',
    'baseline2_7_100',
    'kltest_7_100',
    'categorical_crossentropy2_7_100',
    'categorical_crossentropytest2_7_100',
    'categorical_crossentropytesttest2_7_100',
]
Ejemplo n.º 3
0
        bkg_hists['N2'] = roccer_hists_SS['N2'][BKG]
        #sig_hists['deepTagZqq'] = roccer_hists_SS['deepTagZqq'][SIG]
        #bkg_hists['deepTagZqq'] = roccer_hists_SS['deepTagZqq'][BKG]

        for model in models:
            for i in xrange(len(samples) if MULTICLASS else 2):

                roccer_hists = plot(np.linspace(0, 1, 50),
                                    lambda s, i=i: s.Yhat[model][s.vidx, i],
                                    samples,
                                    figsdir + 'class_%i_%s' % (i, model),
                                    xlabel='Class %i %s' % (i, model))

                sig_hists[model] = roccer_hists[SIG]
                bkg_hists[model] = roccer_hists[BKG]

        r1 = utils.Roccer(
            y_range=range(0, 1),
            axis=[0, 1, 0, 1],
        )
        #r1.clear()

        r1.add_vars(sig_hists, bkg_hists, {
            'Dense': 'Dense',
            'GRU': 'GRU',
            'N2': 'N2',
        }
                    #'deepZqq':'deepZqq'}
                    )
        r1.plot(figsdir + 'class_%s_ROC' % (str(args.version)))
Ejemplo n.º 4
0
environ['KERAS_BACKEND'] = 'tensorflow'
environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" 
environ["CUDA_VISIBLE_DEVICES"] = ""


import numpy as np

from subtlenet import config, utils
from subtlenet.backend import obj 
from subtlenet.generators.gen import make_coll

n_batches = 500
partition = 'test'

p = utils.Plotter()
r = utils.Roccer()

OUTPUT = environ['FIGSDIR'] + '/' 
system('mkdir -p %s'%OUTPUT)

components = [
              'singletons',
              'shallow_best', 
#              'trunc4_limit50_best', 
              'trunc7_limit100_best', 
              ]
components_gen = [
              'singletons',
              'shallow_best', 
#              'baseline_trunc4_limit50_best', 
              'baseline_Adam_7_100', 
Ejemplo n.º 5
0
environ["CUDA_VISIBLE_DEVICES"] = ""

import numpy as np

import extra_vars
from subtlenet import config, utils
from subtlenet.backend import obj
from subtlenet.generators.gen import make_coll
basedir = environ['BASEDIR']
figsdir = environ['FIGSDIR']

n_batches = 500
partition = 'test'

p = utils.Plotter()
r = utils.Roccer(y_range=range(-4, 1))

OUTPUT = figsdir + '/'
system('mkdir -p %s' % OUTPUT)

components = [
    'singletons',
    'shallow',
    #               'baseline_trunc4_limit50_clf_best',
    #               'decorrelated_trunc4_limit50_clf_best',
    #               'mse_decorrelated_trunc4_limit50_clf_best',
    #               'emd_decorrelated_trunc4_limit50_clf_best',
    #                'baseline_4_50',
    #              'baseline_Adam_4_10',
    'baseline_Adam_4_50',
    'baseline_Adam_4_100',
Ejemplo n.º 6
0
 def __init__(self, n_input=2, n_output=1):
     self.n_input = n_input
     self.n_output = n_output
     self.plotter = utils.Plotter()
     self.roc = utils.Roccer(y_range=range(-1,1))