Ejemplo n.º 1
0
def build_model(params: dict) -> CompartmentalModel:
    """
    Build the master function to run a simple SIR model
    """
    # Define model compartments.
    compartments = ["S", "I", "R"]

    time = params["time"]
    model = CompartmentalModel(
        times=[time["start"], time["end"]],
        compartments=compartments,
        infectious_compartments=["I"],
        timestep=time["step"],
    )
    model.set_initial_population({
        "I": 1,
        "S": 999999,
    })
    # Add flows
    model.add_infection_frequency_flow("infection", params["contact_rate"],
                                       "S", "I")
    model.add_fractional_flow("recovery", params["recovery_rate"], "I", "R")

    # Request derived outputs
    model.request_output_for_compartments("prevalence_susceptible",
                                          compartments=["S"])
    model.request_output_for_compartments("prevalence_infectious",
                                          compartments=["I"])
    return model
Ejemplo n.º 2
0
def request_victorian_outputs(model: CompartmentalModel, params: Parameters):
    # Victorian cluster model outputs.
    clusters = [
        Region.to_filename(region) for region in Region.VICTORIA_SUBREGIONS
    ]
    # Track incidence of disease (transition from exposed to active) - overall and for each cluster
    model.request_output_for_flow(name="incidence", flow_name="incidence")
    for cluster in clusters:
        model.request_output_for_flow(
            name=f"incidence_for_cluster_{cluster}",
            flow_name="incidence",
            dest_strata={"cluster": cluster},
        )

    # Track progress of disease (transition from early to late active)
    # - overall, by cluster, by clinical stratum and by both
    model.request_output_for_flow(name="progress", flow_name="progress")
    for cluster in clusters:
        model.request_output_for_flow(
            name=f"progress_for_cluster_{cluster}",
            flow_name="progress",
            dest_strata={"cluster": cluster},
        )

    # Notifications.
    notification_sources = []
    for clinical in NOTIFICATION_STRATA:
        name = f"progressX{clinical}"
        notification_sources.append(name)
        model.request_output_for_flow(
            name=name,
            flow_name="progress",
            dest_strata={"clinical": clinical},
            save_results=False,
        )

    model.request_aggregate_output(name="notifications",
                                   sources=notification_sources)
    # Cluster-specific notifications.
    for cluster in clusters:
        cluster_notification_sources = []
        for clinical in NOTIFICATION_STRATA:
            name = f"progress_for_cluster_{cluster}X{clinical}"
            cluster_notification_sources.append(name)
            model.request_output_for_flow(
                name=name,
                flow_name="progress",
                dest_strata={
                    "cluster": cluster,
                    "clinical": clinical
                },
                save_results=False,
            )

        model.request_aggregate_output(
            name=f"notifications_for_cluster_{cluster}",
            sources=cluster_notification_sources)
        model.request_cumulative_output(
            name=f"accum_notifications_for_cluster_{cluster}",
            source=f"notifications_for_cluster_{cluster}",
        )

    # Track non-ICU hospital admissions (transition from early to late active in hospital, non-ICU stratum)
    model.request_output_for_flow(
        name="non_icu_admissions",
        flow_name="progress",
        source_strata={"clinical": Clinical.HOSPITAL_NON_ICU},
        dest_strata={"clinical": Clinical.HOSPITAL_NON_ICU},
    )
    for cluster in clusters:
        model.request_output_for_flow(
            name=f"non_icu_admissions_for_cluster_{cluster}",
            flow_name="progress",
            source_strata={
                "clinical": Clinical.HOSPITAL_NON_ICU,
                "cluster": cluster
            },
            dest_strata={
                "clinical": Clinical.HOSPITAL_NON_ICU,
                "cluster": cluster
            },
        )

    # Track ICU admissions (transition from early to late active in ICU stratum)
    model.request_output_for_flow(
        name="icu_admissions",
        flow_name="progress",
        source_strata={"clinical": Clinical.ICU},
        dest_strata={"clinical": Clinical.ICU},
    )
    for cluster in clusters:
        model.request_output_for_flow(
            name=f"icu_admissions_for_cluster_{cluster}",
            flow_name="progress",
            source_strata={
                "clinical": Clinical.ICU,
                "cluster": cluster
            },
            dest_strata={
                "clinical": Clinical.ICU,
                "cluster": cluster
            },
        )
        model.request_cumulative_output(
            name=f"accum_icu_admissions_for_cluster_{cluster}",
            source=f"icu_admissions_for_cluster_{cluster}",
        )

    # Create hospitalisation functions as sum of hospital non-ICU and ICU
    model.request_aggregate_output(
        "hospital_admissions",
        sources=["icu_admissions", "non_icu_admissions"])
    for cluster in clusters:
        model.request_aggregate_output(
            f"hospital_admissions_for_cluster_{cluster}",
            sources=[
                f"icu_admissions_for_cluster_{cluster}",
                f"non_icu_admissions_for_cluster_{cluster}",
            ],
        )
        model.request_cumulative_output(
            name=f"accum_hospital_admissions_for_cluster_{cluster}",
            source=f"hospital_admissions_for_cluster_{cluster}",
        )

    # Hospital occupancy
    # We count all ICU and hospital late active compartments and a proportion of early active ICU cases.
    compartment_periods = params.sojourn.compartment_periods
    icu_early_period = compartment_periods["icu_early"]
    hospital_early_period = compartment_periods["hospital_early"]
    period_icu_patients_in_hospital = max(
        icu_early_period - hospital_early_period, 0.0)
    proportion_icu_patients_in_hospital = period_icu_patients_in_hospital / icu_early_period
    model.request_output_for_compartments(
        "_late_active_hospital",
        compartments=[Compartment.LATE_ACTIVE],
        strata={"clinical": Clinical.HOSPITAL_NON_ICU},
        save_results=False,
    )
    model.request_output_for_compartments(
        "icu_occupancy",
        compartments=[Compartment.LATE_ACTIVE],
        strata={"clinical": Clinical.ICU},
    )
    model.request_output_for_compartments(
        "_early_active_icu",
        compartments=[Compartment.EARLY_ACTIVE],
        strata={"clinical": Clinical.ICU},
        save_results=False,
    )
    model.request_function_output(
        name="_early_active_icu_proportion",
        func=lambda patients: patients * proportion_icu_patients_in_hospital,
        sources=["_early_active_icu"],
        save_results=False,
    )
    model.request_aggregate_output(
        name="hospital_occupancy",
        sources=[
            "_late_active_hospital",
            "icu_occupancy",
            "_early_active_icu_proportion",
        ],
    )
    for cluster in clusters:
        model.request_output_for_compartments(
            f"_late_active_hospital_for_cluster_{cluster}",
            compartments=[Compartment.LATE_ACTIVE],
            strata={
                "clinical": Clinical.HOSPITAL_NON_ICU,
                "cluster": cluster
            },
            save_results=False,
        )
        model.request_output_for_compartments(
            f"icu_occupancy_for_cluster_{cluster}",
            compartments=[Compartment.LATE_ACTIVE],
            strata={
                "clinical": Clinical.ICU,
                "cluster": cluster
            },
        )
        model.request_output_for_compartments(
            f"_early_active_icu_for_cluster_{cluster}",
            compartments=[Compartment.EARLY_ACTIVE],
            strata={
                "clinical": Clinical.ICU,
                "cluster": cluster
            },
            save_results=False,
        )
        model.request_function_output(
            name=f"_early_active_icu_proportion_for_cluster_{cluster}",
            func=lambda patients: patients *
            proportion_icu_patients_in_hospital,
            sources=["_early_active_icu"],
            save_results=False,
        )
        model.request_aggregate_output(
            name=f"hospital_occupancy_for_cluster_{cluster}",
            sources=[
                f"_late_active_hospital_for_cluster_{cluster}",
                f"icu_occupancy_for_cluster_{cluster}",
                f"_early_active_icu_proportion_for_cluster_{cluster}",
            ],
        )

    # Infection deaths.
    model.request_output_for_flow(name="infection_deaths",
                                  flow_name="infect_death")
    model.request_cumulative_output(name="accum_deaths",
                                    source="infection_deaths")
    for cluster in clusters:
        model.request_output_for_flow(
            name=f"infection_deaths_for_cluster_{cluster}",
            flow_name="infect_death",
            source_strata={"cluster": cluster},
        )
        model.request_cumulative_output(
            name=f"accum_infection_deaths_for_cluster_{cluster}",
            source="infection_deaths")

    # Proportion seropositive
    model.request_output_for_compartments(name="_total_population",
                                          compartments=COMPARTMENTS,
                                          save_results=False)
    model.request_output_for_compartments(name="_recovered",
                                          compartments=[Compartment.RECOVERED],
                                          save_results=False)
    model.request_function_output(
        name="proportion_seropositive",
        sources=["_recovered", "_total_population"],
        func=lambda recovered, total: recovered / total,
    )
    for agegroup in AGEGROUP_STRATA:
        total_name = f"_total_populationXagegroup_{agegroup}"
        recovered_name = f"_recoveredXagegroup_{agegroup}"
        model.request_output_for_compartments(
            name=total_name,
            compartments=COMPARTMENTS,
            strata={"agegroup": agegroup},
            save_results=False,
        )
        model.request_output_for_compartments(
            name=recovered_name,
            compartments=[Compartment.RECOVERED],
            strata={"agegroup": agegroup},
            save_results=False,
        )
        model.request_function_output(
            name=f"proportion_seropositiveXagegroup_{agegroup}",
            sources=[recovered_name, total_name],
            func=lambda recovered, total: recovered / total,
        )
    for cluster in clusters:
        total_name = f"_total_populationXcluster_{cluster}"
        recovered_name = f"_recoveredXcluster_{cluster}"
        model.request_output_for_compartments(
            name=total_name,
            compartments=COMPARTMENTS,
            strata={"cluster": cluster},
            save_results=False,
        )
        model.request_output_for_compartments(
            name=recovered_name,
            compartments=[Compartment.RECOVERED],
            strata={"cluster": cluster},
            save_results=False,
        )
        model.request_function_output(
            name=f"proportion_seropositiveXcluster_{cluster}",
            sources=[recovered_name, total_name],
            func=lambda recovered, total: recovered / total,
        )
Ejemplo n.º 3
0
def _get_test_model(timestep=1, times=[0, 150]):
    comps = ["S", "EE", "LE", "EA", "LA", "R"]
    infectious_comps = ["LE", "EA", "LA"]
    model = CompartmentalModel(
        times=times,
        compartments=comps,
        infectious_compartments=infectious_comps,
        timestep=timestep,
    )
    model.set_initial_population({"S": int(20e6), "LA": 100})

    # Add flows
    model.add_infection_frequency_flow(name="infection", contact_rate=0.03, source="S", dest="EE")
    model.add_sojourn_flow(name="infect_onset", sojourn_time=7, source="EE", dest="LE")
    model.add_sojourn_flow(name="incidence", sojourn_time=7, source="LE", dest="EA")
    model.add_sojourn_flow(name="progress", sojourn_time=7, source="EA", dest="LA")
    model.add_sojourn_flow(name="recovery", sojourn_time=7, source="LA", dest="R")
    model.add_death_flow(name="infect_death", death_rate=0.005, source="LA")
    model.add_transition_flow(name="warning_immunity", fractional_rate=0.01, source="R", dest="S")

    # Stratify by age
    age_strat = Stratification("age", AGE_STRATA, comps)
    age_strat.set_population_split(AGE_SPLIT_PROPORTIONS)
    age_strat.set_mixing_matrix(AGE_MIXING_MATRIX)
    age_strat.add_flow_adjustments(
        "infection", {s: Multiply(v) for s, v in AGE_SUSCEPTIBILITY.items()}
    )
    model.stratify_with(age_strat)

    # Stratify by clinical status
    clinical_strat = Stratification("clinical", CLINICAL_STRATA, infectious_comps)
    clinical_strat.add_infectiousness_adjustments("LE", {**ADJ_BASE, "non_sympt": Overwrite(0.25)})
    clinical_strat.add_infectiousness_adjustments("EA", {**ADJ_BASE, "non_sympt": Overwrite(0.25)})
    clinical_strat.add_infectiousness_adjustments(
        "LA",
        {
            **ADJ_BASE,
            "non_sympt": Overwrite(0.25),
            "sympt_isolate": Overwrite(0.2),
            "hospital": Overwrite(0.2),
            "icu": Overwrite(0.2),
        },
    )
    clinical_strat.add_flow_adjustments(
        "infect_onset",
        {
            "non_sympt": Multiply(0.26),
            "icu": Multiply(0.01),
            "hospital": Multiply(0.04),
            "sympt_public": Multiply(0.66),
            "sympt_isolate": Multiply(0.03),
        },
    )
    model.stratify_with(clinical_strat)

    # Request derived outputs.
    model.request_output_for_flow(name="incidence", flow_name="incidence")
    model.request_output_for_flow(name="progress", flow_name="progress")
    for age in AGE_STRATA:
        for clinical in NOTIFICATION_STRATA:
            model.request_output_for_flow(
                name=f"progressXage_{age}Xclinical_{clinical}",
                flow_name="progress",
                dest_strata={"age": age, "clinical": clinical},
            )

    hospital_sources = []
    icu_sources = []
    for age in AGE_STRATA:
        icu_sources.append(f"progressXage_{age}Xclinical_icu")
        hospital_sources += [
            f"progressXage_{age}Xclinical_icu",
            f"progressXage_{age}Xclinical_hospital",
        ]

    model.request_aggregate_output(
        name="new_hospital_admissions",
        sources=hospital_sources,
    )
    model.request_aggregate_output(name="new_icu_admissions", sources=icu_sources)

    # Get notifications, which may included people detected in-country as they progress, or imported cases which are detected.
    notification_sources = [
        f"progressXage_{a}Xclinical_{c}" for a in AGE_STRATA for c in NOTIFICATION_STRATA
    ]
    model.request_aggregate_output(name="notifications", sources=notification_sources)

    # Infection deaths.
    model.request_output_for_flow(name="infection_deaths", flow_name="infect_death")
    model.request_cumulative_output(name="accum_deaths", source="infection_deaths")

    # Track hospital occupancy.
    # We count all ICU and hospital late active compartments and a proportion of early active ICU cases.
    model.request_output_for_compartments(
        "_late_active_hospital",
        compartments=["LA"],
        strata={"clinical": "hospital"},
        save_results=False,
    )
    model.request_output_for_compartments(
        "icu_occupancy",
        compartments=["LA"],
        strata={"clinical": "icu"},
    )
    model.request_output_for_compartments(
        "_early_active_icu",
        compartments=["EA"],
        strata={"clinical": "icu"},
        save_results=False,
    )
    proportion_icu_patients_in_hospital = 0.25
    model.request_function_output(
        name="_early_active_icu_proportion",
        func=lambda patients: patients * proportion_icu_patients_in_hospital,
        sources=["_early_active_icu"],
        save_results=False,
    )
    model.request_aggregate_output(
        name="hospital_occupancy",
        sources=[
            "_late_active_hospital",
            "icu_occupancy",
            "_early_active_icu_proportion",
        ],
    )

    # Proportion seropositive
    model.request_output_for_compartments(
        name="_total_population", compartments=comps, save_results=False
    )
    model.request_output_for_compartments(name="_recovered", compartments=["R"], save_results=False)
    model.request_function_output(
        name="proportion_seropositive",
        sources=["_recovered", "_total_population"],
        func=lambda recovered, total: recovered / total,
    )

    return model
Ejemplo n.º 4
0
def build_model(params: dict) -> CompartmentalModel:
    time = params["time"]
    model = CompartmentalModel(
        times=[time["start"], time["end"]],
        compartments=COMPARTMENTS,
        infectious_compartments=INFECTIOUS_COMPS,
        timestep=time["step"],
    )

    # Add initial population
    init_pop = {
        Compartment.EARLY_LATENT: params["initial_early_latent_population"],
        Compartment.LATE_LATENT: params["initial_late_latent_population"],
        Compartment.INFECTIOUS: params["initial_infectious_population"],
        Compartment.DETECTED: params["initial_detected_population"],
        Compartment.ON_TREATMENT: params["initial_on_treatment_population"],
        Compartment.RECOVERED: 0,
    }
    sum_init_pop = sum(init_pop.values())
    init_pop[Compartment.
             SUSCEPTIBLE] = params["start_population_size"] - sum_init_pop
    model.set_initial_population(init_pop)

    # Add inter-compartmental flows
    params = _get_derived_params(params)
    # Entry flows
    model.add_crude_birth_flow(
        "birth",
        params["crude_birth_rate"],
        Compartment.SUSCEPTIBLE,
    )
    # Infection flows.
    model.add_infection_frequency_flow(
        "infection",
        params["contact_rate"],
        Compartment.SUSCEPTIBLE,
        Compartment.EARLY_LATENT,
    )
    model.add_infection_frequency_flow(
        "infection_from_latent",
        params["contact_rate_from_latent"],
        Compartment.LATE_LATENT,
        Compartment.EARLY_LATENT,
    )
    model.add_infection_frequency_flow(
        "infection_from_recovered",
        params["contact_rate_from_recovered"],
        Compartment.RECOVERED,
        Compartment.EARLY_LATENT,
    )

    # Transition flows.
    model.add_fractional_flow(
        "treatment_early",
        params["preventive_treatment_rate"],
        Compartment.EARLY_LATENT,
        Compartment.RECOVERED,
    )
    model.add_fractional_flow(
        "treatment_late",
        params["preventive_treatment_rate"],
        Compartment.LATE_LATENT,
        Compartment.RECOVERED,
    )
    model.add_fractional_flow(
        "stabilisation",
        params["stabilisation_rate"],
        Compartment.EARLY_LATENT,
        Compartment.LATE_LATENT,
    )
    model.add_fractional_flow(
        "early_activation",
        params["early_activation_rate"],
        Compartment.EARLY_LATENT,
        Compartment.INFECTIOUS,
    )
    model.add_fractional_flow(
        "late_activation",
        params["late_activation_rate"],
        Compartment.LATE_LATENT,
        Compartment.INFECTIOUS,
    )

    # Post-active-disease flows
    model.add_fractional_flow(
        "detection",
        params["detection_rate"],
        Compartment.INFECTIOUS,
        Compartment.DETECTED,
    )
    model.add_fractional_flow(
        "treatment_commencement",
        params["treatment_commencement_rate"],
        Compartment.DETECTED,
        Compartment.ON_TREATMENT,
    )
    model.add_fractional_flow(
        "missed_to_active",
        params["missed_to_active_rate"],
        Compartment.DETECTED,
        Compartment.INFECTIOUS,
    )
    model.add_fractional_flow(
        "self_recovery_infectious",
        params["self_recovery_rate"],
        Compartment.INFECTIOUS,
        Compartment.LATE_LATENT,
    )
    model.add_fractional_flow(
        "self_recovery_detected",
        params["self_recovery_rate"],
        Compartment.DETECTED,
        Compartment.LATE_LATENT,
    )
    model.add_fractional_flow(
        "treatment_recovery",
        params["treatment_recovery_rate"],
        Compartment.ON_TREATMENT,
        Compartment.RECOVERED,
    )
    model.add_fractional_flow(
        "treatment_default",
        params["treatment_default_rate"],
        Compartment.ON_TREATMENT,
        Compartment.INFECTIOUS,
    )
    model.add_fractional_flow(
        "failure_retreatment",
        params["failure_retreatment_rate"],
        Compartment.ON_TREATMENT,
        Compartment.DETECTED,
    )
    model.add_fractional_flow(
        "spontaneous_recovery",
        params["spontaneous_recovery_rate"],
        Compartment.ON_TREATMENT,
        Compartment.LATE_LATENT,
    )

    # Death flows
    # Universal death rate to be overriden by a multiply in age stratification.
    uni_death_flow_names = model.add_universal_death_flows("universal_death",
                                                           death_rate=1)
    model.add_death_flow(
        "infectious_death",
        params["infect_death_rate"],
        Compartment.INFECTIOUS,
    )
    model.add_death_flow(
        "detected_death",
        params["infect_death_rate"],
        Compartment.DETECTED,
    )
    model.add_death_flow(
        "treatment_death",
        params["treatment_death_rate"],
        Compartment.ON_TREATMENT,
    )

    # Apply age-stratification
    age_strat = _build_age_strat(params, uni_death_flow_names)
    model.stratify_with(age_strat)

    # Add vaccination stratification.
    vac_strat = _build_vac_strat(params)
    model.stratify_with(vac_strat)

    # Apply organ stratification
    organ_strat = _build_organ_strat(params)
    model.stratify_with(organ_strat)

    # Apply strain stratification
    strain_strat = _build_strain_strat(params)
    model.stratify_with(strain_strat)

    # Add amplification flow
    model.add_fractional_flow(
        name="amplification",
        fractional_rate=params["amplification_rate"],
        source=Compartment.ON_TREATMENT,
        dest=Compartment.ON_TREATMENT,
        source_strata={"strain": "ds"},
        dest_strata={"strain": "mdr"},
        expected_flow_count=9,
    )

    # Add cross-strain reinfection flows
    model.add_infection_frequency_flow(
        name="reinfection_ds_to_mdr",
        contact_rate=params["reinfection_rate"],
        source=Compartment.EARLY_LATENT,
        dest=Compartment.EARLY_LATENT,
        source_strata={"strain": "ds"},
        dest_strata={"strain": "mdr"},
        expected_flow_count=3,
    )
    model.add_infection_frequency_flow(
        name="reinfection_mdr_to_ds",
        contact_rate=params["reinfection_rate"],
        source=Compartment.EARLY_LATENT,
        dest=Compartment.EARLY_LATENT,
        source_strata={"strain": "mdr"},
        dest_strata={"strain": "ds"},
        expected_flow_count=3,
    )

    model.add_infection_frequency_flow(
        name="reinfection_late_ds_to_mdr",
        contact_rate=params["reinfection_rate"],
        source=Compartment.LATE_LATENT,
        dest=Compartment.EARLY_LATENT,
        source_strata={"strain": "ds"},
        dest_strata={"strain": "mdr"},
        expected_flow_count=3,
    )
    model.add_infection_frequency_flow(
        name="reinfection_late_mdr_to_ds",
        contact_rate=params["reinfection_rate"],
        source=Compartment.LATE_LATENT,
        dest=Compartment.EARLY_LATENT,
        source_strata={"strain": "mdr"},
        dest_strata={"strain": "ds"},
        expected_flow_count=3,
    )

    # Apply classification stratification
    class_strat = _build_class_strat(params)
    model.stratify_with(class_strat)

    # Apply retention stratification
    retention_strat = _build_retention_strat(params)
    model.stratify_with(retention_strat)

    # Register derived output functions, which are calculations based on the model's compartment values or flows.
    # These are calculated after the model is run.
    model.request_output_for_flow("notifications", flow_name="detection")
    model.request_output_for_flow("early_activation",
                                  flow_name="early_activation")
    model.request_output_for_flow("late_activation",
                                  flow_name="late_activation")
    model.request_output_for_flow("infectious_deaths",
                                  flow_name="infectious_death")
    model.request_output_for_flow("detected_deaths",
                                  flow_name="detected_death")
    model.request_output_for_flow("treatment_deaths",
                                  flow_name="treatment_death")
    model.request_output_for_flow("progression_early",
                                  flow_name="early_activation")
    model.request_output_for_flow("progression_late",
                                  flow_name="late_activation")
    model.request_aggregate_output("progression",
                                   ["progression_early", "progression_late"])
    model.request_output_for_compartments("population_size", COMPARTMENTS)
    model.request_aggregate_output(
        "_incidence",
        sources=["early_activation", "late_activation"],
        save_results=False)
    model.request_function_output("incidence",
                                  sources=["_incidence", "population_size"],
                                  func=lambda i, p: 1e5 * i / p)
    model.request_aggregate_output(
        "disease_deaths",
        sources=["infectious_deaths", "detected_deaths", "treatment_deaths"])
    cum_start_time = params["cumulative_output_start_time"]
    model.request_cumulative_output("cumulative_diseased",
                                    source="_incidence",
                                    start_time=cum_start_time)
    model.request_cumulative_output("cumulative_deaths",
                                    source="disease_deaths",
                                    start_time=cum_start_time)
    model.request_output_for_compartments("_count_infectious",
                                          INFECTIOUS_COMPS,
                                          save_results=False)
    model.request_function_output(
        "prevalence_infectious",
        sources=["_count_infectious", "population_size"],
        func=lambda c, p: 1e5 * c / p,
    )
    model.request_output_for_compartments(
        "_count_latent", [Compartment.EARLY_LATENT, Compartment.LATE_LATENT],
        save_results=False)
    model.request_function_output(
        "percentage_latent",
        sources=["_count_latent", "population_size"],
        func=lambda c, p: 100 * c / p,
    )
    return model
Ejemplo n.º 5
0
def request_standard_outputs(
    model: CompartmentalModel,
    params: Parameters,
):
    country = params.country
    pop = params.population
    is_region_vic = pop.region and Region.to_name(
        pop.region) in Region.VICTORIA_SUBREGIONS

    # Disease incidence
    model.request_output_for_flow(name="incidence", flow_name="incidence")
    notification_at_sympt_onset_sources = []
    for agegroup in AGEGROUP_STRATA:
        # Track incidence for each agegroup.
        model.request_output_for_flow(
            name=f"incidenceXagegroup_{agegroup}",
            flow_name="incidence",
            dest_strata={"agegroup": agegroup},
        )
        for clinical in CLINICAL_STRATA:
            # Track incidence for each agegroup and clinical status.
            name = f"incidenceXagegroup_{agegroup}Xclinical_{clinical}"
            model.request_output_for_flow(
                name=name,
                flow_name="incidence",
                dest_strata={
                    "agegroup": agegroup,
                    "clinical": clinical
                },
            )
            if clinical in NOTIFICATION_STRATA:
                notification_at_sympt_onset_sources.append(name)

    # Notifications at symptom onset.
    model.request_aggregate_output(name="notifications_at_sympt_onset",
                                   sources=notification_at_sympt_onset_sources)

    # Disease progresssion
    model.request_output_for_flow(name="progress", flow_name="progress")
    for agegroup in AGEGROUP_STRATA:
        for clinical in NOTIFICATION_STRATA:
            model.request_output_for_flow(
                name=f"progressXagegroup_{agegroup}Xclinical_{clinical}",
                flow_name="progress",
                dest_strata={
                    "agegroup": agegroup,
                    "clinical": clinical
                },
            )

    # New hospital admissions
    hospital_sources = []
    icu_sources = []
    for agegroup in AGEGROUP_STRATA:
        icu_sources.append(
            f"progressXagegroup_{agegroup}Xclinical_{Clinical.ICU}")
        hospital_sources += [
            f"progressXagegroup_{agegroup}Xclinical_{Clinical.ICU}",
            f"progressXagegroup_{agegroup}Xclinical_{Clinical.HOSPITAL_NON_ICU}",
        ]

    model.request_aggregate_output(
        name="new_hospital_admissions",
        sources=hospital_sources,
    )
    model.request_aggregate_output(name="new_icu_admissions",
                                   sources=icu_sources)

    # Get notifications, which may included people detected in-country as they progress, or imported cases which are detected.
    notification_sources = [
        f"progressXagegroup_{a}Xclinical_{c}" for a in AGEGROUP_STRATA
        for c in NOTIFICATION_STRATA
    ]
    model.request_aggregate_output(name="local_notifications",
                                   sources=notification_sources)
    model.request_aggregate_output(
        name="notifications", sources=notification_sources
    )  # Used to be different coz we had imports.

    # Notification by age group
    for agegroup in AGEGROUP_STRATA:
        sympt_isolate_name = f"progressXagegroup_{agegroup}Xclinical_sympt_isolate"
        hospital_non_icu_name = f"progressXagegroup_{agegroup}Xclinical_hospital_non_icu"
        icu_name = f"progressXagegroup_{agegroup}Xclinical_icu"

        model.request_function_output(
            name=f"notificationsXagegroup_{agegroup}",
            sources=[sympt_isolate_name, hospital_non_icu_name, icu_name],
            func=lambda sympt, hosp, icu: sympt + hosp + icu,
        )

    # Infection deaths.
    model.request_output_for_flow(name="infection_deaths",
                                  flow_name="infect_death")
    for agegroup in AGEGROUP_STRATA:
        model.request_output_for_flow(
            name=f"infection_deathsXagegroup_{agegroup}",
            flow_name="infect_death",
            source_strata={"agegroup": agegroup},
            save_results=False,
        )
        for clinical in CLINICAL_STRATA:
            model.request_output_for_flow(
                name=
                f"infection_deathsXagegroup_{agegroup}Xclinical_{clinical}",
                flow_name="infect_death",
                source_strata={
                    "agegroup": agegroup,
                    "clinical": clinical
                },
            )

    model.request_cumulative_output(name="accum_deaths",
                                    source="infection_deaths")
    if not is_region_vic:
        for agegroup in AGEGROUP_STRATA:
            model.request_cumulative_output(
                name=f"accum_deathsXagegroup_{agegroup}",
                source=f"infection_deathsXagegroup_{agegroup}",
            )

    # Track years of life lost per year.
    life_expectancy = inputs.get_life_expectancy_by_agegroup(
        AGEGROUP_STRATA, country.iso3)[0]
    life_expectancy_latest = [
        life_expectancy[agegroup][-1] for agegroup in life_expectancy
    ]
    yoll_sources = []
    for idx, agegroup in enumerate(AGEGROUP_STRATA):
        # Use default parameter to bind loop variable to function.
        l = life_expectancy_latest[idx]

        def get_yoll(deaths, life_exp=l):
            return deaths * life_exp

        yoll_source = f"_yoll_{agegroup}"
        yoll_sources.append(yoll_source)
        model.request_function_output(
            name=yoll_source,
            func=get_yoll,
            sources=[f"infection_deathsXagegroup_{agegroup}"],
            save_results=False,
        )

    model.request_aggregate_output(name="years_of_life_lost",
                                   sources=yoll_sources)
    if params.country.iso3 in OPTI_ISO3S:
        # Derived outputs for the optimization project.
        model.request_cumulative_output(name="accum_years_of_life_lost",
                                        source="years_of_life_lost")

    # Track hospital occupancy.
    # We count all ICU and hospital late active compartments and a proportion of early active ICU cases.
    compartment_periods = params.sojourn.compartment_periods
    icu_early_period = compartment_periods["icu_early"]
    hospital_early_period = compartment_periods["hospital_early"]
    period_icu_patients_in_hospital = max(
        icu_early_period - hospital_early_period, 0.0)
    proportion_icu_patients_in_hospital = period_icu_patients_in_hospital / icu_early_period
    model.request_output_for_compartments(
        "_late_active_hospital",
        compartments=[Compartment.LATE_ACTIVE],
        strata={"clinical": Clinical.HOSPITAL_NON_ICU},
        save_results=False,
    )
    model.request_output_for_compartments(
        "icu_occupancy",
        compartments=[Compartment.LATE_ACTIVE],
        strata={"clinical": Clinical.ICU},
    )
    model.request_output_for_compartments(
        "_early_active_icu",
        compartments=[Compartment.EARLY_ACTIVE],
        strata={"clinical": Clinical.ICU},
        save_results=False,
    )
    model.request_function_output(
        name="_early_active_icu_proportion",
        func=lambda patients: patients * proportion_icu_patients_in_hospital,
        sources=["_early_active_icu"],
        save_results=False,
    )
    model.request_aggregate_output(
        name="hospital_occupancy",
        sources=[
            "_late_active_hospital",
            "icu_occupancy",
            "_early_active_icu_proportion",
        ],
    )

    # Proportion seropositive
    model.request_output_for_compartments(name="_total_population",
                                          compartments=COMPARTMENTS,
                                          save_results=False)
    model.request_output_for_compartments(name="_recovered",
                                          compartments=[Compartment.RECOVERED],
                                          save_results=False)
    model.request_function_output(
        name="proportion_seropositive",
        sources=["_recovered", "_total_population"],
        func=lambda recovered, total: recovered / total,
    )
    if not is_region_vic:
        for agegroup in AGEGROUP_STRATA:
            total_name = f"_total_populationXagegroup_{agegroup}"
            recovered_name = f"_recoveredXagegroup_{agegroup}"
            model.request_output_for_compartments(
                name=total_name,
                compartments=COMPARTMENTS,
                strata={"agegroup": agegroup},
                save_results=False,
            )
            model.request_output_for_compartments(
                name=recovered_name,
                compartments=[Compartment.RECOVERED],
                strata={"agegroup": agegroup},
                save_results=False,
            )
            model.request_function_output(
                name=f"proportion_seropositiveXagegroup_{agegroup}",
                sources=[recovered_name, total_name],
                func=lambda recovered, total: recovered / total,
            )

    if params.stratify_by_immunity and params.vaccination:
        model.request_output_for_flow(name="vaccination",
                                      flow_name="vaccination")