Ejemplo n.º 1
0
    def __init__(self, data, time_axis, freq_axis, start, end, t_init=None,
                 t_label="Time", f_label="Frequency", content="",
                 instruments=None):
        # Because of how object creation works, there is no avoiding
        # unused arguments in this case.
        self.data = data

        if t_init is None:
            diff = start - get_day(start)
            t_init = diff.seconds
        if instruments is None:
            instruments = set()

        self.start = start
        self.end = end

        self.t_label = t_label
        self.f_label = f_label

        self.t_init = t_init

        self.time_axis = time_axis
        self.freq_axis = freq_axis

        self.content = content
        self.instruments = instruments
Ejemplo n.º 2
0
    def __init__(self, data, time_axis, freq_axis, start, end, t_init=None,
                 t_label="Time", f_label="Frequency", content="",
                 instruments=None):
        # Because of how object creation works, there is no avoiding
        # unused arguments in this case.
        self.data = data

        if t_init is None:
            diff = start - get_day(start)
            t_init = diff.seconds
        if instruments is None:
            instruments = set()

        self.start = start
        self.end = end

        self.t_label = t_label
        self.f_label = f_label

        self.t_init = t_init

        self.time_axis = time_axis
        self.freq_axis = freq_axis

        self.content = content
        self.instruments = instruments
Ejemplo n.º 3
0
    def in_interval(self, start=None, end=None):
        """Return part of spectrogram that lies in [start, end).

        Parameters
        ----------
        start : None or `~datetime.datetime` or `~sunpy.time.parse_time` compatible string or time string
            Start time of the part of the spectrogram that is returned. If the
            measurement only spans over one day, a colon separated string
            representing the time can be passed.
        end : None or `~datetime.datetime` or `~sunpy.time.parse_time` compatible string or time string
            See start.
        """
        if start is not None:
            try:
                start = parse_time(start)
            except ValueError:
                # XXX: We could do better than that.
                if get_day(self.start) != get_day(self.end):
                    raise TypeError(
                        "Time ambiguous because data spans over more than one day"
                    )
                start = datetime.datetime(
                    self.start.year, self.start.month, self.start.day,
                    *list(map(int, start.split(":")))
                )
            start = self.time_to_x(start)
        if end is not None:
            try:
                end = parse_time(end)
            except ValueError:
                if get_day(self.start) != get_day(self.end):
                    raise TypeError(
                        "Time ambiguous because data spans over more than one day"
                    )
                end = datetime.datetime(
                    self.start.year, self.start.month, self.start.day,
                    *list(map(int, end.split(":")))
                )
            end = self.time_to_x(end)
        if start:
            start = int(start)
        if end:
            end = int(end)
        return self[:, start:end]
Ejemplo n.º 4
0
    def in_interval(self, start=None, end=None):
        """Return part of spectrogram that lies in [start, end).

        Parameters
        ----------
        start : None or `~datetime.datetime` or `~sunpy.time.parse_time` compatible string or time string
            Start time of the part of the spectrogram that is returned. If the
            measurement only spans over one day, a colon separated string
            representing the time can be passed.
        end : None or `~datetime.datetime` or `~sunpy.time.parse_time` compatible string or time string
            See start.
        """
        if start is not None:
            try:
                start = parse_time(start)
            except ValueError:
                # XXX: We could do better than that.
                if get_day(self.start) != get_day(self.end):
                    raise TypeError(
                        "Time ambiguous because data spans over more than one day"
                    )
                start = datetime.datetime(
                    self.start.year, self.start.month, self.start.day,
                    *list(map(int, start.split(":")))
                )
            start = self.time_to_x(start)
        if end is not None:
            try:
                end = parse_time(end)
            except ValueError:
                if get_day(self.start) != get_day(self.end):
                    raise TypeError(
                        "Time ambiguous because data spans over more than one day"
                    )
                end = datetime.datetime(
                    self.start.year, self.start.month, self.start.day,
                    *list(map(int, end.split(":")))
                )
            end = self.time_to_x(end)
        if start:
            start = int(start)
        if end:
            end = int(end)
        return self[:, start:end]
Ejemplo n.º 5
0
def test_get_day():
    end_of_day = datetime(year=2017, month=1, day=1, hour=23, minute=59, second=59,
                          microsecond=999)

    begining_of_day = get_day(end_of_day)
    assert begining_of_day.year == 2017
    assert begining_of_day.month == 1
    assert begining_of_day.day == 1
    assert begining_of_day.hour == 0
    assert begining_of_day.minute == 0
    assert begining_of_day.second == 0
    assert begining_of_day.microsecond == 0
Ejemplo n.º 6
0
def test_get_day():
    end_of_day = datetime(year=2017, month=1, day=1, hour=23, minute=59, second=59,
                          microsecond=999)

    begining_of_day = get_day(end_of_day)
    assert begining_of_day.year == 2017
    assert begining_of_day.month == 1
    assert begining_of_day.day == 1
    assert begining_of_day.hour == 0
    assert begining_of_day.minute == 0
    assert begining_of_day.second == 0
    assert begining_of_day.microsecond == 0
Ejemplo n.º 7
0
    def join_many(cls, specs, mk_arr=None, nonlinear=False,
        maxgap=0, fill=JOIN_REPEAT):
        """ Produce new Spectrogram that contains spectrograms
        joined together in time.
        
        Parameters
        ----------
        specs : list
            List of spectrograms to join together in time.
        nonlinear : bool
            If True, leave out gaps between spectrograms. Else, fill them with
            the value specified in fill. 
        maxgap : float, int or None
            Largest gap to allow in second. If None, allow gap of arbitrary
            size.
        fill : float or int
            Value to fill missing values (assuming nonlinear=False) with.
            Can be LinearTimeSpectrogram.JOIN_REPEAT to repeat the values for
            the time just before the gap.
        mk_array: function
            Function that is called to create the resulting array. Can be set
            to LinearTimeSpectrogram.memap(filename) to create a memory mapped
            result array.
        """
        # XXX: Only load header and load contents of files
        # on demand.
        mask = None

        if mk_arr is None:
            mk_arr = cls.make_array

        specs = sorted(specs, key=lambda x: x.start)

        freqs = specs[0].freq_axis
        if not all(np.array_equal(freqs, sp.freq_axis) for sp in specs):
            raise ValueError("Frequency channels do not match.")

        # Smallest time-delta becomes the common time-delta.
        min_delt = min(sp.t_delt for sp in specs)
        dtype_ = max(sp.dtype for sp in specs)

        specs = [sp.resample_time(min_delt) for sp in specs]
        size = sum(sp.shape[1] for sp in specs)

        data = specs[0]
        init = data.t_init
        start_day = data.start

        xs = []
        last = data
        for elem in specs[1:]:
            e_init = (
                SECONDS_PER_DAY * (
                    get_day(elem.start) - get_day(start_day)
                ).days + elem.t_init
            )
            x = int((e_init - last.t_init) / min_delt)
            xs.append(x)
            diff = last.shape[1] - x

            if maxgap is not None and -diff > maxgap / min_delt:
                raise ValueError("Too large gap.")

            # If we leave out undefined values, we do not want to
            # add values here if x > t_res.
            if nonlinear:
                size -= max(0, diff)
            else:
                size -= diff

            last = elem

        # The non existing element after the last one starts after
        # the last one. Needed to keep implementation below sane.
        xs.append(specs[-1].shape[1])

        # We do that here so the user can pass a memory mapped
        # array if they'd like to.
        arr = mk_arr((data.shape[0], size), dtype_)
        time_axis = np.zeros((size,))
        sx = 0
        # Amount of pixels left out due to nonlinearity. Needs to be
        # considered for correct time axes.
        sd = 0
        for x, elem in izip(xs, specs):
            diff = x - elem.shape[1]
            e_time_axis = elem.time_axis
            
            if x > elem.shape[1]:
                if nonlinear:
                    x = elem.shape[1]
                else:
                    # If we want to stay linear, fill up the missing
                    # pixels with placeholder zeros.
                    filler = np.zeros((data.shape[0], diff))
                    if fill is cls.JOIN_REPEAT:
                        filler[:, :] = elem[:, -1, np.newaxis]
                    else:
                        filler[:] = fill
                    minimum = elem.time_axis[-1]
                    e_time_axis = np.concatenate([
                        elem.time_axis,
                        np.linspace(
                            minimum + min_delt,
                            minimum + diff * min_delt,
                            diff
                        )
                    ])
                    elem = np.concatenate([elem, filler], 1)
            
            arr[:, sx:sx + x] = elem[:, :x]
            if diff > 0:
                if mask is None:
                    mask = np.zeros((data.shape[0], size), dtype=np.uint8)
                mask[:, sx + x - diff:sx + x] = 1
            time_axis[sx:sx + x] = e_time_axis[:x] + data.t_delt * (sx + sd)
            if nonlinear:
                sd += max(0, diff)
            sx += x
        params = {
            'time_axis': time_axis,
            'freq_axis': data.freq_axis,
            'start': data.start,
            'end': specs[-1].end,
            't_delt': data.t_delt,
            't_init': data.t_init,
            't_label': data.t_label,
            'f_label': data.f_label,
            'content': data.content,
            'instruments': _union(spec.instruments for spec in specs),
        }
        if mask is not None:
            arr = ma.array(arr, mask=mask)
        if nonlinear:
            del params['t_delt']
            return Spectrogram(arr, **params)
        return common_base(specs)(arr, **params)
Ejemplo n.º 8
0
    def plot(self, figure=None, overlays=[], colorbar=True, min_=None, max_=None,
             linear=True, showz=True, yres=DEFAULT_YRES,
             max_dist=None, **matplotlib_args):
        """
        Plot spectrogram onto figure.
        
        Parameters
        ----------
        figure : matplotlib.figure.Figure
            Figure to plot the spectrogram on. If None, new Figure is created.
        overlays : list
            List of overlays (functions that receive figure and axes and return
            new ones) to be applied after drawing.
        colorbar : bool
            Flag that determines whether or not to draw a colorbar. If existing
            figure is passed, it is attempted to overdraw old colorbar.
        min_ : float
            Clip intensities lower than min_ before drawing.
        max_ : float
            Clip intensities higher than max_ before drawing.
        linear :  bool
            If set to True, "stretch" image to make frequency axis linear.
        showz : bool
            If set to True, the value of the pixel that is hovered with the
            mouse is shown in the bottom right corner.
        yres : int or None
            To be used in combination with linear=True. If None, sample the
            image with half the minimum frequency delta. Else, sample the
            image to be at most yres pixels in vertical dimension. Defaults
            to 1080 because that's a common screen size.
        max_dist : float or None
            If not None, mask elements that are further than max_dist away
            from actual data points (ie, frequencies that actually have data 
            from the receiver and are not just nearest-neighbour interpolated).
        """
        # [] as default argument is okay here because it is only read.
        # pylint: disable=W0102,R0914
        if linear:
            delt = yres
            if delt is not None:
                delt = max(
                    (self.freq_axis[0] - self.freq_axis[-1]) / (yres - 1),
                    min_delt(self.freq_axis) / 2.
                )
                delt = float(delt)
            
            data = _LinearView(self.clip_values(min_, max_), delt)
            freqs = np.arange(
                self.freq_axis[0], self.freq_axis[-1], -data.delt
            )
        else:
            data = np.array(self.clip_values(min_, max_))
            freqs = self.freq_axis
        newfigure = figure is None
        if figure is None:
            figure = plt.figure(frameon=True, FigureClass=SpectroFigure)
            axes = figure.add_subplot(111)
        else:
            if figure.axes:
                axes = figure.axes[0]
            else:
                axes = figure.add_subplot(111)
        
        params = {
            'origin': 'lower',
            'aspect': 'auto',
        }
        params.update(matplotlib_args)
        if linear and max_dist is not None:
            toplot = ma.masked_array(data, mask=data.make_mask(max_dist))
        else:
            toplot = data
        im = axes.imshow(toplot, **params)
        
        xa = axes.get_xaxis()
        ya = axes.get_yaxis()

        xa.set_major_formatter(
            FuncFormatter(self.time_formatter)
        )
        
        if linear:
            # Start with a number that is divisible by 5.
            init = (self.freq_axis[0] % 5) / data.delt
            nticks = 15.
            # Calculate MHz difference between major ticks.
            dist = (self.freq_axis[0] - self.freq_axis[-1]) / nticks
            # Round to next multiple of 10, at least ten.
            dist = max(round(dist, -1), 10)
            # One pixel in image space is data.delt MHz, thus we can convert
            # our distance between the major ticks into image space by dividing
            # it by data.delt.
            
            ya.set_major_locator(
                IndexLocator(
                    dist / data.delt, init
                )
            )
            ya.set_minor_locator(
                IndexLocator(
                    dist / data.delt / 10, init
                )
            )
            def freq_fmt(x, pos):
                # This is necessary because matplotlib somehow tries to get
                # the mid-point of the row, which we do not need here.
                x = x + 0.5
                return self.format_freq(self.freq_axis[0] - x * data.delt)
        else:
            freq_fmt = _list_formatter(freqs, self.format_freq)
            ya.set_major_locator(MaxNLocator(integer=True, steps=[1, 5, 10]))
        
        ya.set_major_formatter(
            FuncFormatter(freq_fmt)
        )
        
        axes.set_xlabel(self.t_label)
        axes.set_ylabel(self.f_label)
        # figure.suptitle(self.content)
        
        figure.suptitle(
            ' '.join([
                get_day(self.start).strftime("%d %b %Y"),
                'Radio flux density',
                '(' + ', '.join(self.instruments) + ')',
            ])
        )
        
        for tl in xa.get_ticklabels():
            tl.set_fontsize(10)
            tl.set_rotation(30)
        figure.add_axes(axes)
        figure.subplots_adjust(bottom=0.2)
        figure.subplots_adjust(left=0.2)
        
        if showz:
            figure.gca().format_coord = self._mk_format_coord(
                data, figure.gca().format_coord)
        
        if colorbar:
            if newfigure:
                figure.colorbar(im).set_label("Intensity")
            else:
                if len(figure.axes) > 1:
                    Colorbar(figure.axes[1], im).set_label("Intensity")

        for overlay in overlays:
            figure, axes = overlay(figure, axes)
            
        for ax in figure.axes:
            ax.autoscale()
        figure._init(self, freqs)
        return figure
Ejemplo n.º 9
0
    def join_many(cls, specs, mk_arr=None, nonlinear=False,
                  maxgap=0, fill=JOIN_REPEAT):
        """Produce new Spectrogram that contains spectrograms
        joined together in time.

        Parameters
        ----------
        specs : list
            List of spectrograms to join together in time.
        nonlinear : bool
            If True, leave out gaps between spectrograms. Else, fill them with
            the value specified in fill.
        maxgap : float, int or None
            Largest gap to allow in second. If None, allow gap of arbitrary
            size.
        fill : float or int
            Value to fill missing values (assuming nonlinear=False) with.
            Can be LinearTimeSpectrogram.JOIN_REPEAT to repeat the values for
            the time just before the gap.
        mk_array: function
            Function that is called to create the resulting array. Can be set
            to LinearTimeSpectrogram.memap(filename) to create a memory mapped
            result array.
        """
        # XXX: Only load header and load contents of files
        # on demand.
        mask = None

        if mk_arr is None:
            mk_arr = cls.make_array

        specs = sorted(specs, key=lambda x: x.start)

        freqs = specs[0].freq_axis
        if not all(np.array_equal(freqs, sp.freq_axis) for sp in specs):
            raise ValueError("Frequency channels do not match.")

        # Smallest time-delta becomes the common time-delta.
        min_delt = min(sp.t_delt for sp in specs)
        dtype_ = max(sp.dtype for sp in specs)

        specs = [sp.resample_time(min_delt) for sp in specs]
        size = sum(sp.shape[1] for sp in specs)

        data = specs[0]
        start_day = data.start

        xs = []
        last = data
        for elem in specs[1:]:
            e_init = (
                SECONDS_PER_DAY * (
                    get_day(elem.start) - get_day(start_day)
                ).days + elem.t_init
            )
            x = int((e_init - last.t_init) / min_delt)
            xs.append(x)
            diff = last.shape[1] - x

            if maxgap is not None and -diff > maxgap / min_delt:
                raise ValueError("Too large gap.")

            # If we leave out undefined values, we do not want to
            # add values here if x > t_res.
            if nonlinear:
                size -= max(0, diff)
            else:
                size -= diff

            last = elem

        # The non existing element after the last one starts after
        # the last one. Needed to keep implementation below sane.
        xs.append(specs[-1].shape[1])

        # We do that here so the user can pass a memory mapped
        # array if they'd like to.
        arr = mk_arr((data.shape[0], size), dtype_)
        time_axis = np.zeros((size,))
        sx = 0
        # Amount of pixels left out due to non-linearity. Needs to be
        # considered for correct time axes.
        sd = 0
        for x, elem in zip(xs, specs):
            diff = x - elem.shape[1]
            e_time_axis = elem.time_axis

            elem = elem.data

            if x > elem.shape[1]:
                if nonlinear:
                    x = elem.shape[1]
                else:
                    # If we want to stay linear, fill up the missing
                    # pixels with placeholder zeros.
                    filler = np.zeros((data.shape[0], diff))
                    if fill is cls.JOIN_REPEAT:
                        filler[:, :] = elem[:, -1, np.newaxis]
                    else:
                        filler[:] = fill
                    minimum = e_time_axis[-1]
                    e_time_axis = np.concatenate([
                        e_time_axis,
                        np.linspace(
                            minimum + min_delt,
                            minimum + diff * min_delt,
                            diff
                        )
                    ])
                    elem = np.concatenate([elem, filler], 1)
            arr[:, sx:sx + x] = elem[:, :x]

            if diff > 0:
                if mask is None:
                    mask = np.zeros((data.shape[0], size), dtype=np.uint8)
                mask[:, sx + x - diff:sx + x] = 1
            time_axis[sx:sx + x] = e_time_axis[:x] + data.t_delt * (sx + sd)
            if nonlinear:
                sd += max(0, diff)
            sx += x
        params = {
            'time_axis': time_axis,
            'freq_axis': data.freq_axis,
            'start': data.start,
            'end': specs[-1].end,
            't_delt': data.t_delt,
            't_init': data.t_init,
            't_label': data.t_label,
            'f_label': data.f_label,
            'content': data.content,
            'instruments': _union(spec.instruments for spec in specs),
        }
        if mask is not None:
            arr = ma.array(arr, mask=mask)
        if nonlinear:
            del params['t_delt']
            return Spectrogram(arr, **params)
        return common_base(specs)(arr, **params)
Ejemplo n.º 10
0
    def plot(self, figure=None, overlays=[], colorbar=True, vmin=None,
             vmax=None, linear=True, showz=True, yres=DEFAULT_YRES,
             max_dist=None, **matplotlib_args):
        """
        Plot spectrogram onto figure.

        Parameters
        ----------
        figure : `~matplotlib.Figure`
            Figure to plot the spectrogram on. If None, new Figure is created.
        overlays : list
            List of overlays (functions that receive figure and axes and return
            new ones) to be applied after drawing.
        colorbar : bool
            Flag that determines whether or not to draw a colorbar. If existing
            figure is passed, it is attempted to overdraw old colorbar.
        vmin : float
            Clip intensities lower than vmin before drawing.
        vmax : float
            Clip intensities higher than vmax before drawing.
        linear : bool
            If set to True, "stretch" image to make frequency axis linear.
        showz : bool
            If set to True, the value of the pixel that is hovered with the
            mouse is shown in the bottom right corner.
        yres : int or None
            To be used in combination with linear=True. If None, sample the
            image with half the minimum frequency delta. Else, sample the
            image to be at most yres pixels in vertical dimension. Defaults
            to 1080 because that's a common screen size.
        max_dist : float or None
            If not None, mask elements that are further than max_dist away
            from actual data points (ie, frequencies that actually have data
            from the receiver and are not just nearest-neighbour interpolated).
        """
        # [] as default argument is okay here because it is only read.
        # pylint: disable=W0102,R0914
        if linear:
            delt = yres
            if delt is not None:
                delt = max(
                    (self.freq_axis[0] - self.freq_axis[-1]) / (yres - 1),
                    _min_delt(self.freq_axis) / 2.
                )
                delt = float(delt)

            data = _LinearView(self.clip_values(vmin, vmax), delt)
            freqs = np.arange(
                self.freq_axis[0], self.freq_axis[-1], -data.delt
            )
        else:
            data = np.array(self.clip_values(vmin, vmax))
            freqs = self.freq_axis

        figure = plt.gcf()

        if figure.axes:
            axes = figure.axes[0]
        else:
            axes = figure.add_subplot(111)

        params = {
            'origin': 'lower',
            'aspect': 'auto',
        }
        params.update(matplotlib_args)
        if linear and max_dist is not None:
            toplot = ma.masked_array(data, mask=data.make_mask(max_dist))
            pass
        else:
            toplot = data
        im = axes.imshow(toplot, **params)

        xa = axes.get_xaxis()
        ya = axes.get_yaxis()

        xa.set_major_formatter(
            FuncFormatter(self.time_formatter)
        )

        if linear:
            # Start with a number that is divisible by 5.
            init = (self.freq_axis[0] % 5) / data.delt
            nticks = 15.
            # Calculate MHz difference between major ticks.
            dist = (self.freq_axis[0] - self.freq_axis[-1]) / nticks
            # Round to next multiple of 10, at least ten.
            dist = max(round(dist, -1), 10)
            # One pixel in image space is data.delt MHz, thus we can convert
            # our distance between the major ticks into image space by dividing
            # it by data.delt.

            ya.set_major_locator(
                IndexLocator(
                    dist / data.delt, init
                )
            )
            ya.set_minor_locator(
                IndexLocator(
                    dist / data.delt / 10, init
                )
            )

            def freq_fmt(x, pos):
                # This is necessary because matplotlib somehow tries to get
                # the mid-point of the row, which we do not need here.
                x = x + 0.5
                return self.format_freq(self.freq_axis[0] - x * data.delt)
        else:
            freq_fmt = _list_formatter(freqs, self.format_freq)
            ya.set_major_locator(MaxNLocator(integer=True, steps=[1, 5, 10]))

        ya.set_major_formatter(
            FuncFormatter(freq_fmt)
        )

        axes.set_xlabel(self.t_label)
        axes.set_ylabel(self.f_label)
        # figure.suptitle(self.content)

        figure.suptitle(
            ' '.join([
                get_day(self.start).strftime("%d %b %Y"),
                'Radio flux density',
                '(' + ', '.join(self.instruments) + ')',
            ])
        )

        for tl in xa.get_ticklabels():
            tl.set_fontsize(10)
            tl.set_rotation(30)
        figure.add_axes(axes)
        figure.subplots_adjust(bottom=0.2)
        figure.subplots_adjust(left=0.2)

        if showz:
            axes.format_coord = self._mk_format_coord(
                data, figure.gca().format_coord)

        if colorbar:
            if len(figure.axes) > 1:
                Colorbar(figure.axes[1], im).set_label("Intensity")
            else:
                figure.colorbar(im).set_label("Intensity")

        for overlay in overlays:
            figure, axes = overlay(figure, axes)

        for ax in figure.axes:
            ax.autoscale()
        if isinstance(figure, SpectroFigure):
            figure._init(self, freqs)
        return axes