def test_fuse_image_create_vector(tmpdir):
    tmpdir = Path(tmpdir)

    projects = sa.search_projects(PROJECT_NAME_VECTOR, return_metadata=True)
    for project in projects:
        sa.delete_project(project)

    project = sa.create_project(PROJECT_NAME_VECTOR, "test", "Vector")

    sa.upload_image_to_project(
        project,
        "./tests/sample_project_vector/example_image_1.jpg",
        annotation_status="QualityCheck"
    )

    sa.create_annotation_classes_from_classes_json(
        project, "./tests/sample_project_vector/classes/classes.json"
    )

    sa.add_annotation_bbox_to_image(
        project, "example_image_1.jpg", [20, 20, 40, 40], "Human"
    )
    sa.add_annotation_polygon_to_image(
        project, "example_image_1.jpg", [60, 60, 100, 100, 80, 100],
        "Personal vehicle"
    )
    sa.add_annotation_polyline_to_image(
        project, "example_image_1.jpg", [200, 200, 300, 200, 350, 300],
        "Personal vehicle"
    )
    sa.add_annotation_point_to_image(
        project, "example_image_1.jpg", [400, 400], "Personal vehicle"
    )
    sa.add_annotation_ellipse_to_image(
        project, "example_image_1.jpg", [600, 600, 50, 100, 20],
        "Personal vehicle"
    )
    sa.add_annotation_template_to_image(
        project, "example_image_1.jpg",
        [600, 300, 600, 350, 550, 250, 650, 250, 550, 400, 650, 400],
        [1, 2, 3, 1, 4, 1, 5, 2, 6, 2], "Human"
    )
    sa.add_annotation_cuboid_to_image(
        project, "example_image_1.jpg", [60, 300, 200, 350, 120, 325, 250, 500],
        "Human"
    )

    export = sa.prepare_export(project, include_fuse=True)
    (tmpdir / "export").mkdir()
    sa.download_export(project, export, (tmpdir / "export"))

    # sa.create_fuse_image(
    #     "./tests/sample_project_vector/example_image_1.jpg",
    #     "./tests/sample_project_vector/classes/classes.json", "Vector"
    # )

    paths = sa.download_image(
        project,
        "example_image_1.jpg",
        tmpdir,
        include_annotations=True,
        include_fuse=True,
        include_overlay=True
    )
    im1 = Image.open(tmpdir / "export" / "example_image_1.jpg___fuse.png")
    im1_array = np.array(im1)

    im2 = Image.open(paths[2][0])
    im2_array = np.array(im2)

    assert im1_array.shape == im2_array.shape
    assert im1_array.dtype == im2_array.dtype
Ejemplo n.º 2
0
def test_basic_images(project_type, name, description, from_folder, tmpdir):
    tmpdir = Path(tmpdir)

    projects_found = sa.search_projects(name, return_metadata=True)
    for pr in projects_found:
        sa.delete_project(pr)

    projects_found = sa.search_projects(name, return_metadata=True)
    project = sa.create_project(name, description, project_type)
    sa.upload_images_from_folder_to_project(project,
                                            from_folder,
                                            annotation_status="InProgress")
    sa.create_annotation_classes_from_classes_json(
        project, from_folder / "classes" / "classes.json")
    images = sa.search_images(project, "example_image_1")
    assert len(images) == 1

    image_name = images[0]
    sa.download_image(project, image_name, tmpdir, True)
    # assert sa.get_image_preannotations(project, image_name
    #                                   )["preannotation_json_filename"] is None
    assert len(
        sa.get_image_annotations(
            project, image_name)["annotation_json"]["instances"]) == 0
    sa.download_image_annotations(project, image_name, tmpdir)
    assert len(list(Path(tmpdir).glob("*"))) == 2
    # sa.download_image_preannotations(project, image_name, tmpdir)
    # assert len(list(Path(tmpdir).glob("*"))) == 2

    assert (Path(tmpdir) / image_name).is_file()

    sa.upload_image_annotations(
        project, image_name,
        sa.image_path_to_annotation_paths(from_folder / image_name,
                                          project_type)[0],
        None if project_type == "Vector" else
        sa.image_path_to_annotation_paths(from_folder /
                                          image_name, project_type)[1])
    assert sa.get_image_annotations(
        project, image_name)["annotation_json_filename"] is not None

    sa.download_image_annotations(project, image_name, tmpdir)
    annotation = list(Path(tmpdir).glob("*.json"))
    assert len(annotation) == 1
    annotation = json.load(open(annotation[0]))

    sa.download_annotation_classes_json(project, tmpdir)
    downloaded_classes = json.load(open(tmpdir / "classes.json"))

    for a in annotation:
        if "className" not in a:
            continue
        for c1 in downloaded_classes:
            if a["className"] == c1["name"] or a[
                    "className"] == "Personal vehicle1":  # "Personal vehicle1" is not existing class in annotations
                break
        else:
            assert False

    input_classes = json.load(open(from_folder / "classes" / "classes.json"))
    assert len(downloaded_classes) == len(input_classes)
    for c1 in downloaded_classes:
        found = False
        for c2 in input_classes:
            if c1["name"] == c2["name"]:
                found = True
                break
        assert found

    sa.delete_project(project)
Ejemplo n.º 3
0
def test_add_bbox(tmpdir):
    tmpdir = Path(tmpdir)

    projects_found = sa.search_projects(PROJECT_NAME, return_metadata=True)
    for pr in projects_found:
        if pr["name"] == PROJECT_NAME:
            sa.delete_project(pr)

    project = sa.create_project(PROJECT_NAME, PROJECT_DESCRIPTION, "Vector")
    sa.upload_images_from_folder_to_project(
        PROJECT_NAME, PATH_TO_SAMPLE_PROJECT, annotation_status="InProgress"
    )
    sa.create_annotation_classes_from_classes_json(
        project, PATH_TO_SAMPLE_PROJECT / "classes" / "classes.json"
    )
    sa.create_annotation_class(
        project, "test_add", "#FF0000", [
            {
                "name": "height",
                "attributes": [{
                    "name": "tall"
                }, {
                    "name": "short"
                }]
            }
        ]
    )
    sa.upload_annotations_from_folder_to_project(
        project, PATH_TO_SAMPLE_PROJECT
    )

    images = sa.search_images(project, "example_image_1")

    image_name = images[0]
    annotations = sa.get_image_annotations(project,
                                           image_name)["annotation_json"]

    sa.add_annotation_bbox_to_image(
        project, image_name, [10, 10, 500, 100], "test_add"
    )
    sa.add_annotation_polyline_to_image(
        project, image_name, [110, 110, 510, 510, 600, 510], "test_add"
    )
    sa.add_annotation_polygon_to_image(
        project, image_name, [100, 100, 500, 500, 200, 300], "test_add",
        [{
            "name": "tall",
            "groupName": "height"
        }]
    )
    sa.add_annotation_point_to_image(
        project, image_name, [250, 250], "test_add"
    )
    sa.add_annotation_ellipse_to_image(
        project, image_name, [405, 405, 20, 70, 15], "test_add"
    )
    sa.add_annotation_template_to_image(
        project, image_name, [600, 30, 630, 30, 615, 60], [1, 3, 2, 3],
        "test_add"
    )
    sa.add_annotation_cuboid_to_image(
        project, image_name, [800, 500, 900, 600, 850, 450, 950, 700],
        "test_add"
    )
    sa.add_annotation_comment_to_image(
        project, image_name, "hey", [100, 100], "*****@*****.**",
        True
    )
    annotations_new = sa.get_image_annotations(project,
                                               image_name)["annotation_json"]
    json.dump(annotations_new, open(tmpdir / "new_anns.json", "w"))

    assert len(annotations_new) == len(annotations) + 8

    export = sa.prepare_export(project, include_fuse=True)
    sa.download_export(project, export, tmpdir)

    df = sa.aggregate_annotations_as_df(tmpdir)

    num = len(df[df["imageName"] == image_name]["instanceId"].dropna().unique())

    assert num == len(
        annotations
    ) - 6 + 7  # -6 for 3 comments and 3 invalid annotations, className or attributes
Ejemplo n.º 4
0
def test_basic_folders(tmpdir):
    PROJECT_NAME = "test folder simple"
    tmpdir = Path(tmpdir)

    projects_found = sa.search_projects(PROJECT_NAME, return_metadata=True)
    for pr in projects_found:
        sa.delete_project(pr)

    project = sa.create_project(PROJECT_NAME, 'test', 'Vector')
    project = project["name"]
    sa.upload_images_from_folder_to_project(project,
                                            FROM_FOLDER,
                                            annotation_status="InProgress")
    images = sa.search_images(project, "example_image_1")
    assert len(images) == 1

    folders = sa.search_folders(project)
    assert len(folders) == 0

    folder_metadata = sa.create_folder(project, "folder1")
    assert folder_metadata["name"] == "folder1"

    folders = sa.search_folders(project, return_metadata=True)
    assert len(folders) == 1

    assert folders[0]["name"] == "folder1"

    folders = sa.search_folders(project)
    assert len(folders) == 1

    assert folders[0] == "folder1"

    images = sa.search_images(project + "/folder1", "example_image_1")
    assert len(images) == 0

    images = sa.search_images_all_folders(project, "example_image_1")
    assert len(images) == 1

    folder = sa.get_folder_metadata(project, "folder1")
    assert isinstance(folder, dict)
    assert folder["name"] == "folder1"

    with pytest.raises(SABaseException) as e:
        folder = sa.get_folder_metadata(project, "folder2")
    assert 'Folder not found' in str(e)

    sa.upload_images_from_folder_to_project(project + "/folder1",
                                            FROM_FOLDER,
                                            annotation_status="InProgress")
    images = sa.search_images(project + "/folder1", "example_image_1")
    assert len(images) == 1

    sa.upload_images_from_folder_to_project(project + "/folder1",
                                            FROM_FOLDER,
                                            annotation_status="InProgress")
    images = sa.search_images(project + "/folder1")
    assert len(images) == 4

    with pytest.raises(SABaseException) as e:
        sa.upload_images_from_folder_to_project(project + "/folder2",
                                                FROM_FOLDER,
                                                annotation_status="InProgress")
    assert 'Folder not found' in str(e)

    folder_metadata = sa.create_folder(project, "folder2")
    assert folder_metadata["name"] == "folder2"

    folders = sa.search_folders(project)
    assert len(folders) == 2

    folders = sa.search_folders(project, folder_name="folder")
    assert len(folders) == 2

    folders = sa.search_folders(project, folder_name="folder2")
    assert len(folders) == 1
    assert folders[0] == "folder2"

    folders = sa.search_folders(project, folder_name="folder1")
    assert len(folders) == 1
    assert folders[0] == "folder1"

    folders = sa.search_folders(project, folder_name="old")
    assert len(folders) == 2
Ejemplo n.º 5
0
def test_create_like_project(tmpdir):
    tmpdir = Path(tmpdir)

    projects = sa.search_projects(PROJECT_NAME, return_metadata=True)
    for project in projects:
        sa.delete_project(project)

    sa.create_project(PROJECT_NAME, "tt", "Vector")
    sa.create_annotation_class(
        PROJECT_NAME, "rrr", "#FFAAFF",
        [{
            "name": "tall",
            "is_multiselect": 0,
            "attributes": [{
                "name": "yes"
            }, {
                "name": "no"
            }]
        }, {
            "name": "age",
            "is_multiselect": 0,
            "attributes": [{
                "name": "young"
            }, {
                "name": "old"
            }]
        }])

    old_settings = sa.get_project_settings(PROJECT_NAME)
    for setting in old_settings:
        if "attribute" in setting and setting["attribute"] == "Brightness":
            brightness_value = setting["value"]
    sa.set_project_settings(PROJECT_NAME, [{
        "attribute": "Brightness",
        "value": brightness_value + 10
    }])
    sa.set_project_workflow(PROJECT_NAME, [{
        "step":
        1,
        "className":
        "rrr",
        "tool":
        3,
        "attribute": [{
            "attribute": {
                "name": "young",
                "attribute_group": {
                    "name": "age"
                }
            }
        }, {
            "attribute": {
                "name": "yes",
                "attribute_group": {
                    "name": "tall"
                }
            }
        }]
    }])
    users = sa.search_team_contributors()
    sa.share_project(PROJECT_NAME, users[1], "QA")

    projects = sa.search_projects(PROJECT_NAME2, return_metadata=True)
    for project in projects:
        sa.delete_project(project)

    new_project = sa.clone_project(PROJECT_NAME2,
                                   PROJECT_NAME,
                                   copy_contributors=True)
    assert new_project["description"] == "tt"
    assert new_project["type"] == "Vector"
    time.sleep(1)

    ann_classes = sa.search_annotation_classes(PROJECT_NAME2)
    assert len(ann_classes) == 1
    assert ann_classes[0]["name"] == "rrr"
    assert ann_classes[0]["color"] == "#FFAAFF"

    new_settings = sa.get_project_settings(PROJECT_NAME2)
    for setting in new_settings:
        if "attribute" in setting and setting["attribute"] == "Brightness":
            new_brightness_value = setting["value"]

    assert new_brightness_value == brightness_value + 10

    new_workflow = sa.get_project_workflow(PROJECT_NAME2)
    assert len(new_workflow) == 1
    assert new_workflow[0]["className"] == "rrr"
    assert new_workflow[0]["tool"] == 3
    assert len(new_workflow[0]["attribute"]) == 2
    assert new_workflow[0]["attribute"][0]["attribute"]["name"] == "young"
    assert new_workflow[0]["attribute"][0]["attribute"]["attribute_group"][
        "name"] == "age"
    assert new_workflow[0]["attribute"][1]["attribute"]["name"] == "yes"
    assert new_workflow[0]["attribute"][1]["attribute"]["attribute_group"][
        "name"] == "tall"

    new_project = sa.get_project_metadata(new_project["name"],
                                          include_contributors=True)
    assert len(new_project["contributors"]) == 1
    assert new_project["contributors"][0]["user_id"] == users[1]
    assert new_project["contributors"][0]["user_role"] == "QA"
Ejemplo n.º 6
0
def test_basic_project(project_type, name, description, from_folder, tmpdir):
    tmpdir = Path(tmpdir)

    projects_found = sa.search_projects(name, return_metadata=True)
    for pr in projects_found:
        sa.delete_project(pr)

    projects_found = sa.search_projects(name, return_metadata=True)
    assert len(projects_found) == 0

    project = sa.create_project(name, description, project_type)
    assert project["name"] == name
    assert project["description"] == description
    assert project["type"] == sa.project_type_str_to_int(project_type)

    projects_found = sa.search_projects(name)
    assert len(projects_found) == 1
    assert projects_found[0] == name

    sa.upload_images_from_folder_to_project(project,
                                            from_folder,
                                            annotation_status="InProgress")

    count_in_folder = len(list(from_folder.glob("*.jpg"))) + len(
        list(from_folder.glob("*.png")))
    count_in_folder -= len(list(from_folder.glob("*___fuse.png")))
    if project_type == "Pixel":
        count_in_folder -= len(list(from_folder.glob("*___save.png")))
    images = sa.search_images(project)
    assert count_in_folder == len(images)

    sa.create_annotation_classes_from_classes_json(
        project, from_folder / "classes" / "classes.json")
    classes_in_file = json.load(open(from_folder / "classes" / "classes.json"))
    classes_in_project = sa.search_annotation_classes(project,
                                                      return_metadata=True)
    json.dump(classes_in_project, open(Path(tmpdir) / "tmp_c.json", 'w'))
    assert len(classes_in_file) == len(classes_in_project)
    for cl_f in classes_in_file:
        found = False
        for cl_c in classes_in_project:
            if cl_f["name"] == cl_c["name"]:
                found = True
                break
        assert found

    sa.upload_annotations_from_folder_to_project(project, from_folder)

    export = sa.prepare_export(project)

    sa.download_export(project, export, tmpdir)
    for image in from_folder.glob("*.[jpg|png]"):
        found = False
        for image_in_project in tmpdir.glob("*.jpg"):
            if image.name == image_in_project.name:
                found = True
                break
        assert found, image

    for json_in_folder in from_folder.glob("*.json"):
        found = False
        for json_in_project in tmpdir.glob("*.json"):
            if json_in_folder.name == json_in_project.name:
                found = True
                break
        assert found, json_in_folder
    if project_type == "Pixel":
        for mask_in_folder in from_folder.glob("*___save.png"):
            found = False
            for mask_in_project in tmpdir.glob("*___save.png"):
                if mask_in_folder.name == mask_in_project.name:
                    found = True
                    break
            assert found, mask_in_folder