Ejemplo n.º 1
0
def solveFeasible():
    # cone:
    K = {
        'f': 10,
        'l': 15,
        'q': [5, 10, 0, 1],
        's': [3, 4, 0, 0, 1],
        'ep': 10,
        'ed': 10,
        'p': [-0.25, 0.5, 0.75, -0.33]
    }
    m = getConeDims(K)
    data, p_star = genFeasible(K, n=m // 3, density=0.01)
    params = {'eps': 1e-3, 'normalize': True, 'scale': 5, 'cg_rate': 2}

    sol_i = superscs.solve(data, K, use_indirect=True, **params)
    xi = sol_i['x']
    yi = sol_i['y']
    print('p*  = ', p_star)
    print('pri error = ', (dot(data['c'], xi) - p_star) / p_star)
    print('dual error = ', (-dot(data['b'], yi) - p_star) / p_star)
    # direct:
    sol_d = superscs.solve(data, K, use_indirect=False, **params)
    xd = sol_d['x']
    yd = sol_d['y']
    print('p*  = ', p_star)
    print('pri error = ', (dot(data['c'], xd) - p_star) / p_star)
    print('dual error = ', (-dot(data['b'], yd) - p_star) / p_star)
Ejemplo n.º 2
0
    def test_problems_with_longs():
        new_cone = {'q': [], 'l': long(2)}
        sol = superscs.solve(data, new_cone, use_indirect=False)
        yield check_solution, sol['x'][0], 1
        sol = superscs.solve(data, new_cone, use_indirect=True)
        yield check_solution, sol['x'][0], 1

        new_cone = {'q': [long(2)], 'l': 0}
        sol = superscs.solve(data, new_cone, use_indirect=False)
        yield check_solution, sol['x'][0], 0.5
        sol = superscs.solve(data, new_cone, use_indirect=True)
        yield check_solution, sol['x'][0], 0.5
Ejemplo n.º 3
0
def test_problems():
    sol = superscs.solve(data, cone, use_indirect=False)
    yield check_solution, sol['x'][0], 1

    new_cone = {'q': [2], 'l': 0}
    sol = superscs.solve(data, new_cone, use_indirect=False)
    yield check_solution, sol['x'][0], 0.5

    sol = superscs.solve(data, cone, use_indirect=True)
    yield check_solution, sol['x'][0], 1

    sol = superscs.solve(data, new_cone, use_indirect=True)
    yield check_solution, sol['x'][0], 0.5
Ejemplo n.º 4
0
def solveUnbounded():
    K = {
        'f': 10,
        'l': 15,
        'q': [5, 10, 0, 1],
        's': [3, 4, 0, 0, 1],
        'ep': 10,
        'ed': 10,
        'p': [-0.25, 0.5, 0.75, -0.33]
    }
    m = getConeDims(K)
    data = genUnbounded(K, n=m // 3)
    params = {'eps': 1e-4, 'normalize': True, 'scale': 0.5, 'cg_rate': 2}
    sol_i = superscs.solve(data, K, use_indirect=True, **params)
    sol_d = superscs.solve(data, K, use_indirect=False, **params)
Ejemplo n.º 5
0
def test_failures():
    yield assert_raises, TypeError, superscs.solve
    yield assert_raises, ValueError, superscs.solve, data, {'q': [4], 'l': -2}
    yield check_keyword, ValueError, 'max_iters', -1
    # python 2.6 and before just cast float to int
    if platform.python_version_tuple() >= ('2', '7', '0'):
        yield check_keyword, TypeError, 'max_iters', 1.1

    yield check_failure, superscs.solve(data, {'q': [1], 'l': 0})
Ejemplo n.º 6
0
    def test_superscs_aa(self):    
	x_correct = np.array([0., 0., 1., 1.])   
	ij = np.array([[0, 1, 2, 3] ,[0, 1, 2, 3]])
	A = sparse.csc_matrix(([-1., -1., 1., 1.], ij), (4, 4))
	b = np.array([0., 0.,  1,  1])
	c = np.array([1., 1., -1, -1])
	cone = {'l': 4}
	data = {'A': A, 'b': b, 'c': c}
	tolerance = 1e-8
	sol = superscs.solve(\
		data, cone, do_super_scs = True, \
		direction = 150, \
		use_indirect = False, memory = 3, \
		verbose = 0, eps = tolerance)
	self.assertEquals('Solved',sol['info']['status'])
	self.assertEquals(1, sol['info']['statusVal'])
	self.assertTrue(sol['info']['resPri'] < tolerance)
	self.assertTrue(sol['info']['resDual'] < tolerance)
	self.assertTrue(npla.norm(x_correct - sol['x']) < 1e-12)
Ejemplo n.º 7
0
    def solve_via_data(self,
                       data,
                       warm_start,
                       verbose,
                       solver_opts,
                       solver_cache=None):
        """Returns the result of the call to SuperSCS.

        Parameters
        ----------
        data : dict
            Data generated via an apply call.
        warm_start : Bool
            Whether to warm_start SuperSCS.
        verbose : Bool
            Control the verbosity.
        solver_opts : dict
            SuperSCS-specific options.

        Returns
        -------
        The result returned by a call to superscs.solve().
        """
        import superscs
        args = {"A": data[s.A], "b": data[s.B], "c": data[s.C]}
        if warm_start and solver_cache is not None and \
           self.name in solver_cache:
            args["x"] = solver_cache[self.name()]["x"]
            args["y"] = solver_cache[self.name()]["y"]
            args["s"] = solver_cache[self.name()]["s"]
        cones = dims_to_solver_dict(data[ConicSolver.DIMS])
        # settings
        user_opts = list(solver_opts.keys())
        for k in list(SuperSCS.DEFAULT_SETTINGS.keys()):
            if k not in user_opts:
                solver_opts[k] = SuperSCS.DEFAULT_SETTINGS[k]
        results = superscs.solve(args, cones, verbose=verbose, **solver_opts)
        if solver_cache is not None:
            solver_cache[self.name()] = results
        return results
Ejemplo n.º 8
0
    def solve(self, objective, constraints, cached_data,
              warm_start, verbose, solver_opts):
        """Returns the result of the call to the solver.

        Parameters
        ----------
        objective : LinOp
            The canonicalized objective.
        constraints : list
            The list of canonicalized cosntraints.
        cached_data : dict
            A map of solver name to cached problem data.
        warm_start : bool
            Should the previous solver result be used to warm_start?
        verbose : bool
            Should the solver print output?
        solver_opts : dict
            Additional arguments for the solver.

        Returns
        -------
        tuple
            (status, optimal value, primal, equality dual, inequality dual)
        """
        import superscs
        data = self.get_problem_data(objective,
                                     constraints,
                                     cached_data)
        # Set the options to be VERBOSE plus any user-specific options.
        solver_opts["verbose"] = verbose
        scs_args = {"c": data[s.C], "A": data[s.A], "b": data[s.B]}
        # If warm_starting, add old primal and dual variables.
        solver_cache = cached_data[self.name()]
        if warm_start and solver_cache.prev_result is not None:
            scs_args["x"] = solver_cache.prev_result["x"]
            scs_args["y"] = solver_cache.prev_result["y"]
            scs_args["s"] = solver_cache.prev_result["s"]

        results_dict = superscs.solve(scs_args, data[s.DIMS], **solver_opts)
        return self.format_results(results_dict, data, cached_data)
Ejemplo n.º 9
0
    def solve(self, objective, constraints, cached_data, warm_start, verbose,
              solver_opts):
        """Returns the result of the call to the solver.

        Parameters
        ----------
        objective : LinOp
            The canonicalized objective.
        constraints : list
            The list of canonicalized cosntraints.
        cached_data : dict
            A map of solver name to cached problem data.
        warm_start : bool
            Should the previous solver result be used to warm_start?
        verbose : bool
            Should the solver print output?
        solver_opts : dict
            Additional arguments for the solver.

        Returns
        -------
        tuple
            (status, optimal value, primal, equality dual, inequality dual)
        """
        import superscs
        data = self.get_problem_data(objective, constraints, cached_data)
        # Set the options to be VERBOSE plus any user-specific options.
        solver_opts["verbose"] = verbose
        scs_args = {"c": data[s.C], "A": data[s.A], "b": data[s.B]}
        # If warm_starting, add old primal and dual variables.
        solver_cache = cached_data[self.name()]
        if warm_start and solver_cache.prev_result is not None:
            scs_args["x"] = solver_cache.prev_result["x"]
            scs_args["y"] = solver_cache.prev_result["y"]
            scs_args["s"] = solver_cache.prev_result["s"]

        results_dict = superscs.solve(scs_args, data[s.DIMS], **solver_opts)
        return self.format_results(results_dict, data, cached_data)
Ejemplo n.º 10
0
Archivo: main.py Proyecto: paob/scs
import numpy as np
from scipy import sparse
ij = np.array([[0, 1, 2, 3], [0, 1, 2, 3]])
A = sparse.csc_matrix(([-1., -1., 1., 1.], ij), (4, 4))
b = np.array([0., 0., 1, 1])
c = np.array([1., 1., -1, -1])
cone = {'l': 4}

print c
print b
print A
print cone
data = {'A': A, 'b': b, 'c': c}

sol = superscs.solve(data, cone, use_indirect=False)
print sol

sol = superscs.solve(data, cone, use_indirect=True)
print sol

sol = superscs.solve(data,
                     cone,
                     max_iters=500,
                     eps=1e-6,
                     normalize=False,
                     use_indirect=False)
print sol

sol = superscs.solve(data, cone, max_iters=500, eps=1e-6, use_indirect=True)
print sol