def test_to_and_from_json_convert_integers(self):
        # training data
        d = {
            "col1": [1, 2, 3],
            "col2": ["a", "a", "c"],
            "col3": [1, 1, 3],
            "col4": ["a", "b", "c"],
        }
        df = pd.DataFrame(data=d)
        cat1 = PreprocessingCategorical(
            df.columns, PreprocessingCategorical.CONVERT_INTEGER)
        cat1.fit(df)

        cat2 = PreprocessingCategorical(
            df.columns, PreprocessingCategorical.CONVERT_INTEGER)
        cat2.from_json(cat1.to_json())
        df = cat2.transform(df)
        for col in ["col1", "col2", "col3", "col4"]:
            self.assertTrue(col in df.columns)
        self.assertEqual(df["col2"][0], 0)
        self.assertEqual(df["col2"][1], 0)
        self.assertEqual(df["col2"][2], 1)
        self.assertEqual(df["col4"][0], 0)
        self.assertEqual(df["col4"][1], 1)
        self.assertEqual(df["col4"][2], 2)
 def test_fit_transform_integers_with_new_values(self):
     # training data
     d_train = {
         "col1": [1, 2, 3],
         "col2": ["a", "a", "c"],
         "col3": [1, 1, 3],
         "col4": ["a", "b", "c"],
     }
     df_train = pd.DataFrame(data=d_train)
     categorical = PreprocessingCategorical(
         df_train.columns, PreprocessingCategorical.CONVERT_INTEGER)
     categorical.fit(df_train)
     # testing data
     d = {
         "col1": [1, 2, 3],
         "col2": ["a", "d", "f"],
         "col3": [1, 1, 3],
         "col4": ["e", "b", "z"],
     }
     df = pd.DataFrame(data=d)
     df = categorical.transform(df)
     for col in ["col1", "col2", "col3", "col4"]:
         self.assertTrue(col in df.columns)
     self.assertEqual(df["col2"][0], 0)
     self.assertEqual(df["col2"][1], 2)  # new values get higher indexes
     self.assertEqual(df["col2"][2], 3)  # new values get higher indexes
     self.assertEqual(df["col4"][0], 3)  # new values get higher indexes
     self.assertEqual(df["col4"][1], 1)
     self.assertEqual(df["col4"][2], 4)  # new values get higher indexes
    def test_fit_integers(self):
        # training data
        d = {
            "col1": [1, 2, 3],
            "col2": ["a", "a", "c"],
            "col3": [1, 1, 3],
            "col4": ["a", "b", "c"],
        }
        df = pd.DataFrame(data=d)
        categorical = PreprocessingCategorical(
            df.columns, PreprocessingCategorical.CONVERT_INTEGER)
        categorical.fit(df)

        self.assertTrue("col2" in categorical._convert_params)
        self.assertTrue("col4" in categorical._convert_params)
        self.assertTrue("a" in categorical._convert_params["col2"])
        self.assertTrue("c" in categorical._convert_params["col2"])
        self.assertTrue("b" not in categorical._convert_params["col2"])
        self.assertTrue("a" in categorical._convert_params["col4"])
        self.assertTrue("b" in categorical._convert_params["col4"])
        self.assertTrue("c" in categorical._convert_params["col4"])
Ejemplo n.º 4
0
    def fit_and_transform(self, X_train, y_train):
        logger.debug("Preprocessing.fit_and_transform")

        if y_train is not None:
            # target preprocessing
            # this must be used first, maybe we will drop some rows because of missing target values
            target_preprocessing = self._params.get("target_preprocessing")
            logger.debug(
                "target_preprocessing params: {}".format(target_preprocessing))

            X_train, y_train = ExcludeRowsMissingTarget.transform(
                X_train, y_train)

            if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing:
                logger.debug("Convert target to integer")
                self._categorical_y = LabelEncoder()
                self._categorical_y.fit(y_train)
                y_train = pd.Series(self._categorical_y.transform(y_train))

            if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing:
                logger.debug("Convert target to one-hot coding")
                self._categorical_y = LabelBinarizer()
                self._categorical_y.fit(pd.DataFrame({"target": y_train}),
                                        "target")
                y_train = self._categorical_y.transform(
                    pd.DataFrame({"target": y_train}), "target")

            if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing:
                logger.debug("Scale log and normal")

                self._scale_y = Scale(["target"],
                                      scale_method=Scale.SCALE_LOG_AND_NORMAL)
                y_train = pd.DataFrame({"target": y_train})
                self._scale_y.fit(y_train)
                y_train = self._scale_y.transform(y_train)
                y_train = y_train["target"]

            if Scale.SCALE_NORMAL in target_preprocessing:
                logger.debug("Scale normal")

                self._scale_y = Scale(["target"],
                                      scale_method=Scale.SCALE_NORMAL)
                y_train = pd.DataFrame({"target": y_train})
                self._scale_y.fit(y_train)
                y_train = self._scale_y.transform(y_train)
                y_train = y_train["target"]

        # columns preprocessing
        columns_preprocessing = self._params.get("columns_preprocessing")
        for column in columns_preprocessing:
            transforms = columns_preprocessing[column]
            # logger.debug("Preprocess column {} with: {}".format(column, transforms))

        # remove empty or constant columns
        cols_to_remove = list(
            filter(
                lambda k: "remove_column" in columns_preprocessing[k],
                columns_preprocessing,
            ))

        if X_train is not None:
            X_train.drop(cols_to_remove, axis=1, inplace=True)
        self._remove_columns = cols_to_remove

        for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]:
            cols_to_process = list(
                filter(
                    lambda k: missing_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            missing = PreprocessingMissingValues(cols_to_process,
                                                 missing_method)
            missing.fit(X_train)
            X_train = missing.transform(X_train)
            self._missing_values += [missing]

        for convert_method in [PreprocessingCategorical.CONVERT_INTEGER]:
            cols_to_process = list(
                filter(
                    lambda k: convert_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            convert = PreprocessingCategorical(cols_to_process, convert_method)
            convert.fit(X_train)
            X_train = convert.transform(X_train)
            self._categorical += [convert]

        # SCALE
        for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]:
            cols_to_process = list(
                filter(
                    lambda k: scale_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            if len(cols_to_process):
                scale = Scale(cols_to_process)
                scale.fit(X_train)
                X_train = scale.transform(X_train)
                self._scale += [scale]

        return X_train, y_train
Ejemplo n.º 5
0
    def run(self, train_data=None, validation_data=None):
        log.debug("PreprocessingStep.run")
        X_train, y_train = None, None
        if train_data is not None:
            if "X" in train_data:
                X_train = train_data.get("X").copy()
            if "y" in train_data:
                y_train = train_data.get("y").copy()
        X_validation, y_validation = None, None
        if validation_data is not None:
            if "X" in validation_data:
                X_validation = validation_data.get("X").copy()
            if "y" in validation_data:
                y_validation = validation_data.get("y").copy()

        if y_train is not None:
            # target preprocessing
            # this must be used first, maybe we will drop some rows because of missing target values
            target_preprocessing = self._params.get("target_preprocessing")
            log.debug(
                "target_preprocessing -> {}".format(target_preprocessing))

            # if PreprocessingMissingValues.NA_EXCLUDE in target_preprocessing:
            X_train, y_train = PreprocessingExcludeMissingValues.transform(
                X_train, y_train)
            if validation_data is not None:
                X_validation, y_validation = PreprocessingExcludeMissingValues.transform(
                    X_validation, y_validation)

            if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing:
                self._categorical_y = LabelEncoder()
                self._categorical_y.fit(y_train)
                y_train = pd.Series(self._categorical_y.transform(y_train))
                if y_validation is not None and self._categorical_y is not None:
                    y_validation = pd.Series(
                        self._categorical_y.transform(y_validation))

            if PreprocessingScale.SCALE_LOG_AND_NORMAL in target_preprocessing:
                log.error("not implemented SCALE_LOG_AND_NORMAL")
                raise Exception("not implemented SCALE_LOG_AND_NORMAL")

            if PreprocessingScale.SCALE_NORMAL in target_preprocessing:
                log.error("not implemented SCALE_NORMAL")
                raise Exception("not implemented SCALE_NORMAL")

        # columns preprocessing
        columns_preprocessing = self._params.get("columns_preprocessing")
        for column in columns_preprocessing:
            transforms = columns_preprocessing[column]
            log.debug("Preprocess column -> {}, {}".format(column, transforms))

        # remove empty or constant columns
        cols_to_remove = list(
            filter(
                lambda k: "remove_column" in columns_preprocessing[k],
                columns_preprocessing,
            ))

        if X_train is not None:
            X_train.drop(cols_to_remove, axis=1, inplace=True)
        if X_validation is not None:
            X_validation.drop(cols_to_remove, axis=1, inplace=True)
        self._remove_columns = cols_to_remove

        for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]:
            cols_to_process = list(
                filter(
                    lambda k: missing_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            missing = PreprocessingMissingValues(cols_to_process,
                                                 missing_method)
            missing.fit(X_train)
            X_train = missing.transform(X_train)
            if X_validation is not None:
                X_validation = missing.transform(X_validation)
            self._missing_values += [missing]

        for convert_method in [PreprocessingCategorical.CONVERT_INTEGER]:
            cols_to_process = list(
                filter(
                    lambda k: convert_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            convert = PreprocessingCategorical(cols_to_process, convert_method)
            convert.fit(X_train)
            X_train = convert.transform(X_train)
            if X_validation is not None:
                X_validation = convert.transform(X_validation)
            self._categorical += [convert]

        # SCALE
        for scale_method in [PreprocessingScale.SCALE_NORMAL]:
            cols_to_process = list(
                filter(
                    lambda k: scale_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            if len(cols_to_process):
                scale = PreprocessingScale(cols_to_process)
                scale.fit(X_train)
                X_train = scale.transform(X_train)
                if X_validation is not None:
                    X_validation = scale.transform(X_validation)
                self._scale += [scale]

        return {
            "X": X_train,
            "y": y_train
        }, {
            "X": X_validation,
            "y": y_validation
        }
Ejemplo n.º 6
0
    def fit_and_transform(self, X_train, y_train, sample_weight=None):
        logger.debug("Preprocessing.fit_and_transform")

        if y_train is not None:
            # target preprocessing
            # this must be used first, maybe we will drop some rows because of missing target values
            target_preprocessing = self._params.get("target_preprocessing")
            logger.debug(
                "target_preprocessing params: {}".format(target_preprocessing))

            X_train, y_train, sample_weight = ExcludeRowsMissingTarget.transform(
                X_train, y_train, sample_weight)

            if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing:
                logger.debug("Convert target to integer")
                self._categorical_y = LabelEncoder(try_to_fit_numeric=True)
                self._categorical_y.fit(y_train)
                y_train = pd.Series(self._categorical_y.transform(y_train))

            if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing:
                logger.debug("Convert target to one-hot coding")
                self._categorical_y = LabelBinarizer()
                self._categorical_y.fit(pd.DataFrame({"target": y_train}),
                                        "target")
                y_train = self._categorical_y.transform(
                    pd.DataFrame({"target": y_train}), "target")

            if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing:
                logger.debug("Scale log and normal")

                self._scale_y = Scale(["target"],
                                      scale_method=Scale.SCALE_LOG_AND_NORMAL)
                y_train = pd.DataFrame({"target": y_train})
                self._scale_y.fit(y_train)
                y_train = self._scale_y.transform(y_train)
                y_train = y_train["target"]

            if Scale.SCALE_NORMAL in target_preprocessing:
                logger.debug("Scale normal")

                self._scale_y = Scale(["target"],
                                      scale_method=Scale.SCALE_NORMAL)
                y_train = pd.DataFrame({"target": y_train})
                self._scale_y.fit(y_train)
                y_train = self._scale_y.transform(y_train)
                y_train = y_train["target"]

        # columns preprocessing
        columns_preprocessing = self._params.get("columns_preprocessing")
        for column in columns_preprocessing:
            transforms = columns_preprocessing[column]
            # logger.debug("Preprocess column {} with: {}".format(column, transforms))

        # remove empty or constant columns
        cols_to_remove = list(
            filter(
                lambda k: "remove_column" in columns_preprocessing[k],
                columns_preprocessing,
            ))

        if X_train is not None:
            X_train.drop(cols_to_remove, axis=1, inplace=True)
        self._remove_columns = cols_to_remove

        numeric_cols = []  # get numeric cols before text transformations
        # needed for golden features
        if X_train is not None and ("golden_features" in self._params
                                    or "kmeans_features" in self._params):
            numeric_cols = X_train.select_dtypes(
                include="number").columns.tolist()

        # there can be missing values in the text data,
        # but we don't want to handle it by fill missing methods
        # zeros will be imputed by text_transform method
        cols_to_process = list(
            filter(
                lambda k: "text_transform" in columns_preprocessing[k],
                columns_preprocessing,
            ))

        new_text_columns = []
        for col in cols_to_process:
            t = TextTransformer()
            t.fit(X_train, col)
            X_train = t.transform(X_train)
            self._text_transforms += [t]
            new_text_columns += t._new_columns
        # end of text transform

        for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]:
            cols_to_process = list(
                filter(
                    lambda k: missing_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            missing = PreprocessingMissingValues(cols_to_process,
                                                 missing_method)
            missing.fit(X_train)
            X_train = missing.transform(X_train)
            self._missing_values += [missing]

        # golden features
        golden_columns = []
        if "golden_features" in self._params:
            results_path = self._params["golden_features"]["results_path"]
            ml_task = self._params["golden_features"]["ml_task"]
            self._golden_features = GoldenFeaturesTransformer(
                results_path, ml_task)
            self._golden_features.fit(X_train[numeric_cols], y_train)
            X_train = self._golden_features.transform(X_train)
            golden_columns = self._golden_features._new_columns

        kmeans_columns = []
        if "kmeans_features" in self._params:
            results_path = self._params["kmeans_features"]["results_path"]
            self._kmeans = KMeansTransformer(results_path, self._model_name,
                                             self._k_fold)
            self._kmeans.fit(X_train[numeric_cols], y_train)
            X_train = self._kmeans.transform(X_train)
            kmeans_columns = self._kmeans._new_features

        for convert_method in [
                PreprocessingCategorical.CONVERT_INTEGER,
                PreprocessingCategorical.CONVERT_ONE_HOT,
                PreprocessingCategorical.CONVERT_LOO,
        ]:
            cols_to_process = list(
                filter(
                    lambda k: convert_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            convert = PreprocessingCategorical(cols_to_process, convert_method)
            convert.fit(X_train, y_train)
            X_train = convert.transform(X_train)
            self._categorical += [convert]

        # datetime transform
        cols_to_process = list(
            filter(
                lambda k: "datetime_transform" in columns_preprocessing[k],
                columns_preprocessing,
            ))

        new_datetime_columns = []
        for col in cols_to_process:

            t = DateTimeTransformer()
            t.fit(X_train, col)
            X_train = t.transform(X_train)
            self._datetime_transforms += [t]
            new_datetime_columns += t._new_columns

        # SCALE
        for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]:
            cols_to_process = list(
                filter(
                    lambda k: scale_method in columns_preprocessing[k],
                    columns_preprocessing,
                ))
            if (len(cols_to_process) and len(new_datetime_columns)
                    and scale_method == Scale.SCALE_NORMAL):
                cols_to_process += new_datetime_columns
            if (len(cols_to_process) and len(new_text_columns)
                    and scale_method == Scale.SCALE_NORMAL):
                cols_to_process += new_text_columns

            if (len(cols_to_process) and len(golden_columns)
                    and scale_method == Scale.SCALE_NORMAL):
                cols_to_process += golden_columns

            if (len(cols_to_process) and len(kmeans_columns)
                    and scale_method == Scale.SCALE_NORMAL):
                cols_to_process += kmeans_columns

            if len(cols_to_process):
                scale = Scale(cols_to_process)
                scale.fit(X_train)
                X_train = scale.transform(X_train)
                self._scale += [scale]

        if self._add_random_feature:
            # -1, 1, with 0 mean
            X_train["random_feature"] = np.random.rand(
                X_train.shape[0]) * 2.0 - 1.0

        if self._drop_features:
            available_cols = X_train.columns.tolist()
            drop_cols = [c for c in self._drop_features if c in available_cols]
            if len(drop_cols) == X_train.shape[1]:
                raise AutoMLException(
                    "All features are droppped! Your data looks like random data."
                )
            if drop_cols:
                X_train.drop(drop_cols, axis=1, inplace=True)
            self._drop_features = drop_cols

        if X_train is not None:
            # there can be catagorical columns (in CatBoost) which cant be clipped
            numeric_cols = X_train.select_dtypes(
                include="number").columns.tolist()
            X_train[numeric_cols] = X_train[numeric_cols].clip(
                lower=np.finfo(np.float32).min + 1000,
                upper=np.finfo(np.float32).max - 1000,
            )

        return X_train, y_train, sample_weight
Ejemplo n.º 7
0
    def fit_and_transform(self, X_train, y_train):
        logger.debug("Preprocessing.fit_and_transform")

        if y_train is not None:
            # target preprocessing
            # this must be used first, maybe we will drop some rows because of missing target values
            target_preprocessing = self._params.get("target_preprocessing")
            logger.debug("target_preprocessing params: {}".format(target_preprocessing))

            X_train, y_train = ExcludeRowsMissingTarget.transform(X_train, y_train)

            if PreprocessingCategorical.CONVERT_INTEGER in target_preprocessing:
                logger.debug("Convert target to integer")
                self._categorical_y = LabelEncoder()
                self._categorical_y.fit(y_train)
                y_train = pd.Series(self._categorical_y.transform(y_train))

            if PreprocessingCategorical.CONVERT_ONE_HOT in target_preprocessing:
                logger.debug("Convert target to one-hot coding")
                self._categorical_y = LabelBinarizer()
                self._categorical_y.fit(pd.DataFrame({"target": y_train}), "target")
                y_train = self._categorical_y.transform(
                    pd.DataFrame({"target": y_train}), "target"
                )

            if Scale.SCALE_LOG_AND_NORMAL in target_preprocessing:
                logger.debug("Scale log and normal")

                self._scale_y = Scale(
                    ["target"], scale_method=Scale.SCALE_LOG_AND_NORMAL
                )
                y_train = pd.DataFrame({"target": y_train})
                self._scale_y.fit(y_train)
                y_train = self._scale_y.transform(y_train)
                y_train = y_train["target"]

            if Scale.SCALE_NORMAL in target_preprocessing:
                logger.debug("Scale normal")

                self._scale_y = Scale(["target"], scale_method=Scale.SCALE_NORMAL)
                y_train = pd.DataFrame({"target": y_train})
                self._scale_y.fit(y_train)
                y_train = self._scale_y.transform(y_train)
                y_train = y_train["target"]

        # columns preprocessing
        columns_preprocessing = self._params.get("columns_preprocessing")
        for column in columns_preprocessing:
            transforms = columns_preprocessing[column]
            # logger.debug("Preprocess column {} with: {}".format(column, transforms))

        # remove empty or constant columns
        cols_to_remove = list(
            filter(
                lambda k: "remove_column" in columns_preprocessing[k],
                columns_preprocessing,
            )
        )

        if X_train is not None:
            X_train.drop(cols_to_remove, axis=1, inplace=True)
        self._remove_columns = cols_to_remove

        # there can be missing values in the text data,
        # but we don't want to handle it by fill missing methods
        # zeros will be imputed by text_transform method
        cols_to_process = list(
            filter(
                lambda k: "text_transform" in columns_preprocessing[k],
                columns_preprocessing,
            )
        )

        new_text_columns = []
        for col in cols_to_process:
            t = TextTransformer()
            t.fit(X_train, col)
            X_train = t.transform(X_train)
            self._text_transforms += [t]
            new_text_columns += t._new_columns
        # end of text transform

        for missing_method in [PreprocessingMissingValues.FILL_NA_MEDIAN]:
            cols_to_process = list(
                filter(
                    lambda k: missing_method in columns_preprocessing[k],
                    columns_preprocessing,
                )
            )
            missing = PreprocessingMissingValues(cols_to_process, missing_method)
            missing.fit(X_train)
            X_train = missing.transform(X_train)
            self._missing_values += [missing]

        for convert_method in [
            PreprocessingCategorical.CONVERT_INTEGER,
            PreprocessingCategorical.CONVERT_ONE_HOT,
        ]:
            cols_to_process = list(
                filter(
                    lambda k: convert_method in columns_preprocessing[k],
                    columns_preprocessing,
                )
            )
            convert = PreprocessingCategorical(cols_to_process, convert_method)
            convert.fit(X_train)
            X_train = convert.transform(X_train)
            self._categorical += [convert]

        # datetime transform
        cols_to_process = list(
            filter(
                lambda k: "datetime_transform" in columns_preprocessing[k],
                columns_preprocessing,
            )
        )

        new_datetime_columns = []
        for col in cols_to_process:

            t = DateTimeTransformer()
            t.fit(X_train, col)
            X_train = t.transform(X_train)
            self._datetime_transforms += [t]
            new_datetime_columns += t._new_columns

        # SCALE
        for scale_method in [Scale.SCALE_NORMAL, Scale.SCALE_LOG_AND_NORMAL]:
            cols_to_process = list(
                filter(
                    lambda k: scale_method in columns_preprocessing[k],
                    columns_preprocessing,
                )
            )
            if (
                len(cols_to_process)
                and len(new_datetime_columns)
                and scale_method == Scale.SCALE_NORMAL
            ):
                cols_to_process += new_datetime_columns
            if (
                len(cols_to_process)
                and len(new_text_columns)
                and scale_method == Scale.SCALE_NORMAL
            ):
                cols_to_process += new_text_columns

            if len(cols_to_process):
                scale = Scale(cols_to_process)
                scale.fit(X_train)
                X_train = scale.transform(X_train)
                self._scale += [scale]

        return X_train, y_train