Ejemplo n.º 1
0
    def test(self):
        theta2d = eigen.Vector2d.Random() * 10
        theta = theta2d[0]

        self.assertAlmostEqual(
            (sva.RotX(theta) -
             eigen.AngleAxisd(-theta, eigen.Vector3d.UnitX()).matrix()).norm(),
            0,
            delta=TOL)
        self.assertAlmostEqual(
            (sva.RotY(theta) -
             eigen.AngleAxisd(-theta, eigen.Vector3d.UnitY()).matrix()).norm(),
            0,
            delta=TOL)
        self.assertAlmostEqual(
            (sva.RotZ(theta) -
             eigen.AngleAxisd(-theta, eigen.Vector3d.UnitZ()).matrix()).norm(),
            0,
            delta=TOL)
Ejemplo n.º 2
0
    def test(self):
        res = eigen.Vector3d()

        res = sva.rotationError(eigen.Matrix3d.Identity(), sva.RotX(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(np.pi / 2, 0, 0)).norm(),
                               0,
                               delta=TOL)

        res = sva.rotationError(eigen.Matrix3d.Identity(), sva.RotY(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(0, np.pi / 2, 0)).norm(),
                               0,
                               delta=TOL)

        res = sva.rotationError(eigen.Matrix3d.Identity(), sva.RotZ(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(0, 0, np.pi / 2)).norm(),
                               0,
                               delta=TOL)

        res = sva.rotationError(sva.RotZ(np.pi / 4), sva.RotZ(np.pi / 2))
        self.assertAlmostEqual((res - eigen.Vector3d(0, 0, np.pi / 4)).norm(),
                               0,
                               delta=TOL)
Ejemplo n.º 3
0
    def test(self):
        mb1, mbc1Init = arms.makeZXZArm()
        rbdyn.forwardKinematics(mb1, mbc1Init)
        rbdyn.forwardVelocity(mb1, mbc1Init)

        mb2, mbc2Init = arms.makeZXZArm(False)
        if not LEGACY:
            mb2InitPos = mbc1Init.bodyPosW[-1].translation()
        else:
            mb2InitPos = list(mbc1Init.bodyPosW)[-1].translation()
        mb2InitOri = eigen.Quaterniond(sva.RotY(math.pi / 2))
        if not LEGACY:
            mbc2Init.q[0] = [
                mb2InitOri.w(),
                mb2InitOri.x(),
                mb2InitOri.y(),
                mb2InitOri.z(),
                mb2InitPos.x(),
                mb2InitPos.y() + 1,
                mb2InitPos.z()
            ]
            mbc2Init.q[0] = [
                mb2InitOri.w(),
                mb2InitOri.x(),
                mb2InitOri.y(),
                mb2InitOri.z(),
                mb2InitPos.x(),
                mb2InitPos.y() + 1,
                mb2InitPos.z()
            ]
        rbdyn.forwardKinematics(mb2, mbc2Init)
        rbdyn.forwardVelocity(mb2, mbc2Init)

        if not LEGACY:
            X_0_b1 = sva.PTransformd(mbc1Init.bodyPosW[-1])
            X_0_b2 = sva.PTransformd(mbc2Init.bodyPosW[-1])
        else:
            X_0_b1 = sva.PTransformd(list(mbc1Init.bodyPosW)[-1])
            X_0_b2 = sva.PTransformd(list(mbc2Init.bodyPosW)[-1])
        X_b1_b2 = X_0_b2 * X_0_b1.inv()

        if not LEGACY:
            mbs = rbdyn.MultiBodyVector([mb1, mb2])
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbs = [mb1, mb2]
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]

        # Test ContactAccConstr constraint and PositionTask on the second robot
        solver = tasks.qp.QPSolver()

        points = [
            eigen.Vector3d(0.1, 0, 0.1),
            eigen.Vector3d(0.1, 0, -0.1),
            eigen.Vector3d(-0.1, 0, -0.1),
            eigen.Vector3d(-0.1, 0, 0.1),
        ]

        biPoints = [
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
            eigen.Vector3d.Zero(),
        ]

        nrGen = 4
        biFrames = [
            sva.RotX(math.pi / 4),
            sva.RotX(3 * math.pi / 4),
            sva.RotX(math.pi / 4) * sva.RotY(math.pi / 2),
            sva.RotX(3 * math.pi / 4) * sva.RotY(math.pi / 2),
        ]

        # The fixed robot can pull the other
        contVecFail = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b0", points,
                                       sva.RotX(-math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        # The fixed robot can push the other
        contVec = [
            tasks.qp.UnilateralContact(0, 1, "b3", "b0", points,
                                       sva.RotX(math.pi / 2), X_b1_b2, nrGen,
                                       0.7)
        ]

        # The fixed robot has non coplanar force apply on the other
        contVecBi = [
            tasks.qp.BilateralContact(tasks.qp.ContactId(0, 1, "b3", "b0"),
                                      biPoints, biFrames, X_b1_b2, nrGen, 1)
        ]

        if not LEGACY:
            posture1Task = tasks.qp.PostureTask(mbs, 0, mbc1Init.q, 2, 1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, mbc2Init.q, 2, 1)
        else:
            posture1Task = tasks.qp.PostureTask(mbs, 0, rbdList(mbc1Init.q), 2,
                                                1)
            posture2Task = tasks.qp.PostureTask(mbs, 1, rbdList(mbc2Init.q), 2,
                                                1)

        contCstrSpeed = tasks.qp.ContactSpeedConstr(0.001)

        Inf = float("inf")
        torqueMin1 = [[], [-Inf], [-Inf], [-Inf]]
        torqueMax1 = [[], [Inf], [Inf], [Inf]]
        torqueMin2 = [[0, 0, 0, 0, 0, 0], [-Inf], [-Inf], [-Inf]]
        torqueMax2 = [[0, 0, 0, 0, 0, 0], [Inf], [Inf], [Inf]]
        motion1 = tasks.qp.MotionConstr(
            mbs, 0, tasks.TorqueBound(torqueMin1, torqueMax1))
        motion2 = tasks.qp.MotionConstr(
            mbs, 1, tasks.TorqueBound(torqueMin2, torqueMax2))
        plCstr = tasks.qp.PositiveLambda()

        motion1.addToSolver(solver)
        motion2.addToSolver(solver)
        plCstr.addToSolver(solver)

        contCstrSpeed.addToSolver(solver)
        solver.addTask(posture1Task)
        solver.addTask(posture2Task)

        # Check the impossible motion
        solver.nrVars(mbs, contVecFail, [])
        solver.updateConstrSize()
        self.assertEqual(solver.nrVars(), 3 + 9 + 4 * nrGen)
        self.assertFalse(solver.solve(mbs, mbcs))

        # Check the unilateral motion
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

            # Force in the world frame must be the same
            f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
            f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
            self.assertAlmostEqual((f1 + f2).norm(), 0, delta=1e-5)

        # Check the bilateral motion
        if not LEGACY:
            mbcs = rbdyn.MultiBodyConfigVector([mbc1Init, mbc2Init])
        else:
            mbcs = [
                rbdyn.MultiBodyConfig(mbc1Init),
                rbdyn.MultiBodyConfig(mbc2Init)
            ]
        solver.nrVars(mbs, contVec, [])
        solver.updateConstrSize()
        self.assertEqual(solver.nrVars(), 3 + 9 + 4 * nrGen)
        for i in range(1000):
            if not LEGACY:
                self.assertTrue(solver.solve(mbs, mbcs))
            else:
                self.assertTrue(solver.solveNoMbcUpdate(mbs, mbcs))
                solver.updateMbc(mbcs[0], 0)
                solver.updateMbc(mbcs[1], 1)
            for i in range(2):
                rbdyn.eulerIntegration(mbs[i], mbcs[i], 0.001)
                rbdyn.forwardKinematics(mbs[i], mbcs[i])
                rbdyn.forwardVelocity(mbs[i], mbcs[i])

            # Check that the link hold
            if not LEGACY:
                X_0_b1_post = mbcs[0].bodyPosW[-1]
                X_0_b2_post = mbcs[1].bodyPosW[-1]
            else:
                X_0_b1_post = list(mbcs[0].bodyPosW)[-1]
                X_0_b2_post = list(mbcs[1].bodyPosW)[-1]
            X_b1_b2_post = X_0_b2 * X_0_b1.inv()
            self.assertAlmostEqual(
                (X_b1_b2.matrix() - X_b1_b2_post.matrix()).norm(),
                0,
                delta=1e-5)

            # Force in the world frame must be the same
            f1 = contVec[0].force(solver.lambdaVec(0), contVec[0].r1Cone)
            f2 = contVec[0].force(solver.lambdaVec(0), contVec[0].r2Cone)
            self.assertAlmostEqual((f1 + f2).norm(), 0, delta=1e-5)

        plCstr.removeFromSolver(solver)
        motion2.removeFromSolver(solver)
        motion1.removeFromSolver(solver)
        contCstrSpeed.removeFromSolver(solver)

        solver.removeTask(posture1Task)
        solver.removeTask(posture2Task)
Ejemplo n.º 4
0
    import eigen as e
    import sva

    from robots import TutorialTree

    mbg, mb, mbc = TutorialTree()

    q = map(list, mbc.q)
    q[1] = [np.pi / 2.]
    q[2] = [-np.pi / 4.]
    q[3] = [-np.pi / 2.]
    q[4] = [0.5]
    mbc.q = q
    rbd.forwardKinematics(mb, mbc)

    X_s = sva.PTransformd(sva.RotY(-np.pi / 2.), e.Vector3d(0.1, 0., 0.))
    mbv = MultiBodyViz(mbg,
                       mb,
                       endEffectorDict={'b4': (X_s, 0.1, (0., 1., 0.))})

    # test MultiBodyViz
    from tvtk.tools import ivtk
    viewer = ivtk.viewer()
    viewer.size = (640, 480)
    mbv.addActors(viewer.scene)
    mbv.display(mb, mbc)

    # test axis
    from axis import Axis
    a1 = Axis(text='test', length=0.2)
    a1.addActors(viewer.scene)