Ejemplo n.º 1
0
def plotstatsimg(cbf,
                 ref_vol,
                 plot_params=None,
                 order=('z', 'x', 'y'),
                 estimate_brightness=False,
                 label=None,
                 compress='auto'):
    """
    plot zsts
    """
    plot_params = {} if plot_params is None else plot_params

    image_nii = _3d_in_file(cbf)
    data = image_nii.get_fdata()
    from nilearn.image import threshold_img
    bbox_nii = threshold_img(nb.load(cbf), 1)

    cuts = cuts_from_bbox(bbox_nii, cuts=7)

    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(data, plot_params)

    # Plot each cut axis
    for i, mode in enumerate(list(order)):
        plot_params['display_mode'] = mode
        plot_params['cut_coords'] = cuts[mode]
        plot_params['draw_cross'] = False
        plot_params['symmetric_cbar'] = False
        plot_params['threshold'] = 0.05
        plot_params['vmax'] = 90
        plot_params['colorbar'] = False
        plot_params['cmap'] = 'gray'
        if i == 0:
            plot_params['title'] = label
            plot_params['colorbar'] = False
        else:
            plot_params['title'] = None

        # Generate nilearn figure
        from nilearn.plotting import plot_stat_map
        display = plot_stat_map(stat_map_img=cbf,
                                bg_img=ref_vol,
                                **plot_params)
        svg = extract_svg(display, compress=compress)
        display.close()
        from lxml import etree
        from .. import NIWORKFLOWS_LOG
        # Find and replace the figure_1 id.
        try:
            xml_data = etree.fromstring(svg)
        except etree.XMLSyntaxError as e:
            NIWORKFLOWS_LOG.info(e)
            return

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 2
0
def plot_segs(image_nii,
              seg_niis,
              out_file,
              bbox_nii=None,
              masked=False,
              colors=None,
              compress='auto',
              **plot_params):
    """ plot segmentation as contours over the image (e.g. anatomical).
    seg_niis should be a list of files. mask_nii helps determine the cut
    coordinates. plot_params will be passed on to nilearn plot_* functions. If
    seg_niis is a list of size one, it behaves as if it was plotting the mask.
    """
    plot_params = {} if plot_params is None else plot_params

    image_nii = _3d_in_file(image_nii)
    data = image_nii.get_data()

    plot_params = robust_set_limits(data, plot_params)

    bbox_nii = nb.load(image_nii if bbox_nii is None else bbox_nii)
    if masked:
        bbox_nii = nlimage.threshold_img(bbox_nii, 1e-3)

    cuts = cuts_from_bbox(bbox_nii, cuts=7)
    plot_params['colors'] = colors or plot_params.get('colors', None)
    out_files = []
    for d in plot_params.pop('dimensions', ('z', 'x', 'y')):
        plot_params['display_mode'] = d
        plot_params['cut_coords'] = cuts[d]
        svg = _plot_anat_with_contours(image_nii,
                                       segs=seg_niis,
                                       compress=compress,
                                       **plot_params)

        # Find and replace the figure_1 id.
        try:
            xml_data = etree.fromstring(svg)
        except etree.XMLSyntaxError as e:
            NIWORKFLOWS_LOG.info(e)
            return
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', 'segmentation-%s-%s' % (d, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 3
0
def plot_acpc(acpc_registered_img,
              div_id,
              plot_params=None,
              order=('z', 'x', 'y'),
              cuts=None,
              estimate_brightness=False,
              label=None,
              compress='auto'):
    """
    Plot the results of an AC-PC transformation.
    """
    plot_params = plot_params or {}

    # Do the low-b image first
    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(
            acpc_registered_img.get_fdata(dtype='float32').reshape(-1),
            plot_params)

    # Plot each cut axis for low-b
    for i, mode in enumerate(list(order)):
        plot_params['display_mode'] = mode
        plot_params['cut_coords'] = [-20.0, 0.0, 20.0]
        if i == 0:
            plot_params['title'] = label
        else:
            plot_params['title'] = None

        # Generate nilearn figure
        display = plot_anat(acpc_registered_img, **plot_params)
        for coord, axis in display.axes.items():
            axis.ax.axvline(0, lw=1)
            axis.ax.axhline(0, lw=1)
        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        xml_data = etree.fromstring(svg)
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', '%s-%s-%s' % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 4
0
def plot_segs(image_nii, seg_niis, out_file, bbox_nii=None, masked=False,
              colors=None, compress='auto', **plot_params):
    """ plot segmentation as contours over the image (e.g. anatomical).
    seg_niis should be a list of files. mask_nii helps determine the cut
    coordinates. plot_params will be passed on to nilearn plot_* functions. If
    seg_niis is a list of size one, it behaves as if it was plotting the mask.
    """
    plot_params = {} if plot_params is None else plot_params

    image_nii = _3d_in_file(image_nii)
    data = image_nii.get_data()

    plot_params = robust_set_limits(data, plot_params)

    bbox_nii = nb.load(image_nii if bbox_nii is None else bbox_nii)
    if masked:
        bbox_nii = nlimage.threshold_img(bbox_nii, 1e-3)

    cuts = cuts_from_bbox(bbox_nii, cuts=7)
    plot_params['colors'] = colors or plot_params.get('colors', None)
    out_files = []
    for d in plot_params.pop('dimensions', ('z', 'x', 'y')):
        plot_params['display_mode'] = d
        plot_params['cut_coords'] = cuts[d]
        svg = _plot_anat_with_contours(image_nii, segs=seg_niis, compress=compress,
                                       **plot_params)

        # Find and replace the figure_1 id.
        try:
            xml_data = etree.fromstring(svg)
        except etree.XMLSyntaxError as e:
            NIWORKFLOWS_LOG.info(e)
            return
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', 'segmentation-%s-%s' % (d, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 5
0
def plot_denoise(lowb_nii,
                 highb_nii,
                 div_id,
                 plot_params=None,
                 highb_plot_params=None,
                 order=('z', 'x', 'y'),
                 cuts=None,
                 estimate_brightness=False,
                 label=None,
                 lowb_contour=None,
                 highb_contour=None,
                 compress='auto',
                 overlay=None,
                 overlay_params=None):
    """
    Plot the foreground and background views.
    Default order is: axial, coronal, sagittal

    Updated version from sdcflows
    """
    plot_params = plot_params or {}
    highb_plot_params = highb_plot_params or {}

    # Use default MNI cuts if none defined
    if cuts is None:
        raise NotImplementedError

    # Do the low-b image first
    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(
            lowb_nii.get_fdata(dtype='float32').reshape(-1), plot_params)
    # Plot each cut axis for low-b
    for i, mode in enumerate(list(order)):
        plot_params['display_mode'] = mode
        plot_params['cut_coords'] = cuts[mode]
        if i == 0:
            plot_params['title'] = label + ": low-b"
        else:
            plot_params['title'] = None

        # Generate nilearn figure
        display = plot_anat(lowb_nii, **plot_params)
        if lowb_contour is not None:
            display.add_contours(lowb_contour, linewidths=1)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        xml_data = etree.fromstring(svg)
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', '%s-%s-%s' % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    # Plot each cut axis for high-b
    if estimate_brightness:
        highb_plot_params = robust_set_limits(
            highb_nii.get_fdata(dtype='float32').reshape(-1),
            highb_plot_params)
    for i, mode in enumerate(list(order)):
        highb_plot_params['display_mode'] = mode
        highb_plot_params['cut_coords'] = cuts[mode]
        if i == 0:
            highb_plot_params['title'] = label + ': high-b'
        else:
            highb_plot_params['title'] = None

        # Generate nilearn figure
        display = plot_anat(highb_nii, **highb_plot_params)
        if highb_contour is not None:
            display.add_contours(highb_contour, linewidths=1)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        xml_data = etree.fromstring(svg)
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', '%s-%s-%s' % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 6
0
def plot_registration(anat_nii,
                      div_id,
                      plot_params=None,
                      order=('z', 'x', 'y'),
                      cuts=None,
                      estimate_brightness=False,
                      label=None,
                      contour=None,
                      compress='auto'):
    """
    Plots the foreground and background views
    Default order is: axial, coronal, sagittal
    """
    plot_params = {} if plot_params is None else plot_params

    # Use default MNI cuts if none defined
    if cuts is None:
        raise NotImplementedError  # TODO

    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(anat_nii.get_data().reshape(-1),
                                        plot_params)

    # FreeSurfer ribbon.mgz
    ribbon = contour is not None and np.array_equal(
        np.unique(contour.get_data()), [0, 2, 3, 41, 42])

    if ribbon:
        contour_data = contour.get_data() % 39
        white = nlimage.new_img_like(contour, contour_data == 2)
        pial = nlimage.new_img_like(contour, contour_data >= 2)

    # dual mask
    dual_mask = contour is not None and np.array_equal(
        np.unique(contour.get_data().astype(np.uint8)), [0, 1, 2])

    if dual_mask:
        contour_data = contour.get_data()
        outer_mask = nlimage.new_img_like(contour, contour_data == 1)
        inner_mask = nlimage.new_img_like(contour, contour_data == 2)
        all_mask = nlimage.new_img_like(contour, contour_data > 0)

    # Plot each cut axis
    for i, mode in enumerate(list(order)):
        plot_params['display_mode'] = mode
        plot_params['cut_coords'] = cuts[mode]
        if i == 0:
            plot_params['title'] = label
        else:
            plot_params['title'] = None

        # Generate nilearn figure
        display = plot_anat(anat_nii, **plot_params)
        if ribbon:
            kwargs = {'levels': [0.5], 'linewidths': 0.5}
            display.add_contours(white, colors='b', **kwargs)
            display.add_contours(pial, colors='r', **kwargs)
        elif dual_mask:
            kwargs = {'levels': [0.5], 'linewidths': 0.75}
            display.add_contours(inner_mask, colors='b', **kwargs)
            display.add_contours(outer_mask, colors='r', **kwargs)
            display.add_contours(all_mask, colors='c', **kwargs)
        elif contour is not None:
            display.add_contours(contour,
                                 colors='b',
                                 levels=[0.5],
                                 linewidths=0.5)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        try:
            xml_data = etree.fromstring(svg)
        except etree.XMLSyntaxError as e:
            NIWORKFLOWS_LOG.info(e)
            return
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', '%s-%s-%s' % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 7
0
def plot_registration(anat_nii,
                      div_id,
                      plot_params=None,
                      order=('z', 'x', 'y'),
                      cuts=None,
                      estimate_brightness=False,
                      label=None,
                      contour=None,
                      compress='auto'):
    """
    Plot the foreground and background views.

    Default order is: axial, coronal, sagittal
    """
    from uuid import uuid4

    from lxml import etree
    from nilearn.plotting import plot_anat
    from svgutils.transform import SVGFigure
    from niworkflows.viz.utils import robust_set_limits, extract_svg, SVGNS

    plot_params = plot_params or {}

    # Use default MNI cuts if none defined
    if cuts is None:
        raise NotImplementedError  # TODO

    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(anat_nii.get_data().reshape(-1),
                                        plot_params)

    # Plot each cut axis
    for i, mode in enumerate(list(order)):
        plot_params['display_mode'] = mode
        plot_params['cut_coords'] = cuts[mode]
        if i == 0:
            plot_params['title'] = label
        else:
            plot_params['title'] = None

        # Generate nilearn figure
        display = plot_anat(anat_nii, **plot_params)
        if contour is not None:
            display.add_contours(contour,
                                 colors='g',
                                 levels=[0.5],
                                 linewidths=0.5)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        xml_data = etree.fromstring(svg)
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', '%s-%s-%s' % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 8
0
def fromfile(fname):
    fig = SVGFigure()
    svg_file = etree.parse(fname)
    fig.root = svg_file.getroot()
    return fig
Ejemplo n.º 9
0
def plot_registration(
    anat_nii,
    div_id,
    plot_params=None,
    order=("z", "x", "y"),
    cuts=None,
    estimate_brightness=False,
    label=None,
    contour=None,
    compress="auto",
    overlay=None,
    overlay_params=None,
):
    """
    Plot the foreground and background views.

    Default order is: axial, coronal, sagittal
    """
    from uuid import uuid4

    from lxml import etree
    import matplotlib.pyplot as plt
    from nilearn.plotting import plot_anat
    from svgutils.transform import SVGFigure
    from niworkflows.viz.utils import robust_set_limits, extract_svg, SVGNS

    plot_params = plot_params or {}

    # Use default MNI cuts if none defined
    if cuts is None:
        raise NotImplementedError  # TODO

    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(
            anat_nii.get_fdata(dtype="float32").reshape(-1), plot_params)

    # Plot each cut axis
    for i, mode in enumerate(list(order)):
        plot_params["display_mode"] = mode
        plot_params["cut_coords"] = cuts[mode]
        if i == 0:
            plot_params["title"] = label
        else:
            plot_params["title"] = None

        # Generate nilearn figure
        display = plot_anat(anat_nii, **plot_params)
        if overlay is not None:
            _overlay_params = {
                "vmin": overlay.get_fdata(dtype="float32").min(),
                "vmax": overlay.get_fdata(dtype="float32").max(),
                "cmap": plt.cm.gray,
                "interpolation": "nearest",
            }
            _overlay_params.update(overlay_params)
            display.add_overlay(overlay, **_overlay_params)
        if contour is not None:
            display.add_contours(contour,
                                 colors="g",
                                 levels=[0.5],
                                 linewidths=0.5)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        xml_data = etree.fromstring(svg)
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set("id", "%s-%s-%s" % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files
Ejemplo n.º 10
0
def plot_registration(anat_nii, div_id, plot_params=None,
                      order=('z', 'x', 'y'), cuts=None,
                      estimate_brightness=False, label=None, contour=None,
                      compress='auto'):
    """
    Plots the foreground and background views
    Default order is: axial, coronal, sagittal
    """
    plot_params = {} if plot_params is None else plot_params

    # Use default MNI cuts if none defined
    if cuts is None:
        raise NotImplementedError  # TODO

    out_files = []
    if estimate_brightness:
        plot_params = robust_set_limits(anat_nii.get_data().reshape(-1),
                                        plot_params)

    # FreeSurfer ribbon.mgz
    ribbon = contour is not None and np.array_equal(
        np.unique(contour.get_data()), [0, 2, 3, 41, 42])

    if ribbon:
        contour_data = contour.get_data() % 39
        white = nlimage.new_img_like(contour, contour_data == 2)
        pial = nlimage.new_img_like(contour, contour_data >= 2)

    # Plot each cut axis
    for i, mode in enumerate(list(order)):
        plot_params['display_mode'] = mode
        plot_params['cut_coords'] = cuts[mode]
        if i == 0:
            plot_params['title'] = label
        else:
            plot_params['title'] = None

        # Generate nilearn figure
        display = plot_anat(anat_nii, **plot_params)
        if ribbon:
            kwargs = {'levels': [0.5], 'linewidths': 0.5}
            display.add_contours(white, colors='b', **kwargs)
            display.add_contours(pial, colors='r', **kwargs)
        elif contour is not None:
            display.add_contours(contour, colors='b', levels=[0.5],
                                 linewidths=0.5)

        svg = extract_svg(display, compress=compress)
        display.close()

        # Find and replace the figure_1 id.
        try:
            xml_data = etree.fromstring(svg)
        except etree.XMLSyntaxError as e:
            NIWORKFLOWS_LOG.info(e)
            return
        find_text = etree.ETXPath("//{%s}g[@id='figure_1']" % SVGNS)
        find_text(xml_data)[0].set('id', '%s-%s-%s' % (div_id, mode, uuid4()))

        svg_fig = SVGFigure()
        svg_fig.root = xml_data
        out_files.append(svg_fig)

    return out_files