Ejemplo n.º 1
0
def Get_svm_model(parameter, X, y):
    svm = SVM()
    loss_histroy = svm.Train(
        X, y, parameter[1], 1, parameter[0], 200, 1500, True)
    VisualizeLoss(loss_histroy)
    input("Enter any key to predict...")
    return svm
Ejemplo n.º 2
0
def AutoGetPara(X_train, y_train, X_val, y_val):
    learning_rate = [1e-8, 1e-7]  # 学习率
    regularization_strengths = [5e4, 1e5]  # 正则化强度
    best_parameter = None
    best_val = -1  # 最优评分值
    delta = 1  # SVM损失函数中的delta参数
    batch_num = 200  # 小批量训练
    num_iter = 1500  # 迭代次数

    for i in learning_rate:
        for j in regularization_strengths:
            svm = SVM()
            svm.Train(X_train, y_train, j, delta, i,
                      batch_num, num_iter, True)  # 得到了权重W
            y_pred = svm.Predict(X_val)  # 利用权重W得到评分值
            acc_val = np.mean(y_val == y_pred)
            if best_val < acc_val:
                best_val = acc_val
                best_parameter = (i, j)
    print('OK! Have been identified parameter! Best validation accuracy achieved during cross-validation: %f' % best_val)
    return best_parameter