Ejemplo n.º 1
0
def send_model_to_worker(
    worker,
    built_model: sy.Plan,
):
    """Send the model to the worker and fit the model on the worker's training data.

    Args:
        worker: Remote location, where the model shall be trained.
        traced_model: Model which shall be trained.
        batch_size: Batch size of each training step.
        curr_round: Index of the current training round (for logging purposes).
        max_nr_batches: If > 0, training on worker will stop at min(max_nr_batches, nr_available_batches).
        lr: Learning rate of each training step.

    Returns:
        A tuple containing:
            * worker_id: Union[int, str], id of the worker.
            * improved model: torch.jit.ScriptModule, model after training at the worker.
            * loss: Loss on last training batch, torch.tensor.
    """
    built_model.id = "GlobalModel"

    model_send_start = time.time()
    # pdb.set_trace()
    built_model.send(worker)
    print("[trace] GlobalModelSend duration", worker.id,
          time.time() - model_send_start)

    return None
Ejemplo n.º 2
0
async def fit_model_on_worker(
    worker,
    built_model: sy.Plan,
    built_loss_fn: sy.Plan,
    encrypters,
    batch_size: int,
    curr_round: int,
    max_nr_batches: int,
    lr: float,
):
    """Send the model to the worker and fit the model on the worker's training data.

    Args:
        worker: Remote location, where the model shall be trained.
        traced_model: Model which shall be trained.
        batch_size: Batch size of each training step.
        curr_round: Index of the current training round (for logging purposes).
        max_nr_batches: If > 0, training on worker will stop at min(max_nr_batches, nr_available_batches).
        lr: Learning rate of each training step.

    Returns:
        A tuple containing:
            * worker_id: Union[int, str], id of the worker.
            * improved model: torch.jit.ScriptModule, model after training at the worker.
            * loss: Loss on last training batch, torch.tensor.
    """
    num_of_parameters = len(built_model.parameters())
    built_model.id = "GlobalModel_MNIST"
    built_loss_fn.id = "LossFunc"
    model_config = sy.ModelConfig(model=built_model,
                              loss_fn=built_loss_fn,
                              optimizer="SGD",
                              batch_size=batch_size,
                              optimizer_args={"lr": lr},
                              epochs=1,
                              max_nr_batches=max_nr_batches)
    # model_config_send_start = time.time()
    # pdb.set_trace()
    # model_config.send(worker)
    # model_config_send_end = time.time()
    # print("[trace] GlobalInformationSend duration", worker.id, model_config_send_end - model_config_send_start)

    return_ids = [0, 1]
    for i in range(num_of_parameters):
        return_ids.append("p" + str(i))

    fit_sagg_start = time.time()
    result_list = await worker.async_fit2_sagg_mc(model_config, dataset_key="mnist", encrypters=encrypters, return_ids=return_ids)
    fit_sagg_end = time.time()
    print("[trace] FitSagg", "duration", worker.id, fit_sagg_end - fit_sagg_start)

    loss = result_list[0]
    num_of_training_data = result_list[1]
    enc_params = result_list[2:]

    print("Iteration %s: %s loss: %s" % (curr_round, worker.id, loss))

    return worker.id, enc_params, loss, num_of_training_data
Ejemplo n.º 3
0
def test_plan_execution(client: sy.VirtualMachineClient) -> None:
    tensor_pointer1 = th.tensor([1, 2, 3]).send(client)
    tensor_pointer2 = th.tensor([4, 5, 6]).send(client)
    tensor_pointer3 = th.tensor([7, 8, 9]).send(client)

    result_tensor_pointer1 = th.tensor([0, 0, 0]).send(client)
    result_tensor_pointer2 = th.tensor([0, 0, 0]).send(client)

    result1_uid = result_tensor_pointer1.id_at_location
    result2_uid = result_tensor_pointer2.id_at_location

    a1 = RunClassMethodAction(
        path="torch.Tensor.add",
        _self=tensor_pointer1,
        args=[tensor_pointer2],
        kwargs={},
        id_at_location=result1_uid,
        address=Address(),
        msg_id=UID(),
    )

    a2 = RunClassMethodAction(
        path="torch.Tensor.add",
        _self=result_tensor_pointer1,
        args=[tensor_pointer3],
        kwargs={},
        id_at_location=result2_uid,
        address=Address(),
        msg_id=UID(),
    )

    plan = Plan([a1, a2])

    plan_pointer = plan.send(client)

    plan_pointer()

    expected_tensor1 = th.tensor([5, 7, 9])
    expected_tensor2 = th.tensor([12, 15, 18])

    assert all(expected_tensor1 == result_tensor_pointer1.get())
    assert all(expected_tensor2 == result_tensor_pointer2.get())
Ejemplo n.º 4
0
def test_plan_serialization(client: sy.VirtualMachineClient) -> None:

    # cumbersome way to get a pointer as input for our actions,
    # there is probably a better/shorter way
    t = th.tensor([1, 2, 3])
    tensor_pointer = t.send(client)

    # define actions
    a1 = GetObjectAction(id_at_location=UID(),
                         address=Address(),
                         reply_to=Address(),
                         msg_id=UID())
    a2 = RunFunctionOrConstructorAction(
        path="torch.Tensor.add",
        args=tuple(),
        kwargs={},
        id_at_location=UID(),
        address=Address(),
        msg_id=UID(),
    )

    a3 = RunClassMethodAction(
        path="torch.Tensor.add",
        _self=tensor_pointer,
        args=[],
        kwargs={},
        id_at_location=UID(),
        address=Address(),
        msg_id=UID(),
    )

    a4 = GarbageCollectObjectAction(id_at_location=UID(), address=Address())
    a5 = EnumAttributeAction(path="", id_at_location=UID(), address=Address())

    a6 = GetOrSetPropertyAction(
        path="",
        _self=tensor_pointer,
        id_at_location=UID(),
        address=Address(),
        args=[],
        kwargs={},
        action=PropertyActions.GET,
    )
    a7 = GetSetStaticAttributeAction(
        path="",
        id_at_location=UID(),
        address=Address(),
        action=StaticAttributeAction.GET,
    )
    a8 = SaveObjectAction(obj=StorableObject(id=UID(), data=t),
                          address=Address())

    # define plan
    plan = Plan([a1, a2, a3, a4, a5, a6, a7, a8])

    # serialize / deserialize
    blob = serialize(plan)
    plan_reconstructed = sy.deserialize(blob=blob)

    # test
    assert isinstance(plan_reconstructed, Plan)
    assert all(isinstance(a, Action) for a in plan_reconstructed.actions)
Ejemplo n.º 5
0
def test_plan_batched_execution(client: sy.VirtualMachineClient) -> None:
    # placeholders for our input
    input_tensor_pointer1 = th.tensor([0, 0]).send(client)
    input_tensor_pointer2 = th.tensor([0, 0]).send(client)

    # tensors in our model
    model_tensor_pointer1 = th.tensor([1, 2]).send(client)
    model_tensor_pointer2 = th.tensor([3, 4]).send(client)

    # placeholders for intermediate results
    result_tensor_pointer1 = th.tensor([0, 0]).send(client)
    result_tensor_pointer2 = th.tensor([0, 0]).send(client)
    result_tensor_pointer3 = th.tensor([0, 0]).send(client)

    # define plan
    a1 = RunClassMethodAction(
        path="torch.Tensor.mul",
        _self=input_tensor_pointer1,
        args=[model_tensor_pointer1],
        kwargs={},
        id_at_location=result_tensor_pointer1.id_at_location,
        address=Address(),
        msg_id=UID(),
    )

    a2 = RunClassMethodAction(
        path="torch.Tensor.add",
        _self=result_tensor_pointer1,
        args=[model_tensor_pointer2],
        kwargs={},
        id_at_location=result_tensor_pointer2.id_at_location,
        address=Address(),
        msg_id=UID(),
    )

    a3 = RunFunctionOrConstructorAction(
        path="torch.eq",
        args=[result_tensor_pointer2, input_tensor_pointer2],
        kwargs={},
        id_at_location=result_tensor_pointer3.id_at_location,
        address=Address(),
        msg_id=UID(),
    )

    plan = Plan([a1, a2, a3],
                inputs={
                    "x": input_tensor_pointer1,
                    "y": input_tensor_pointer2
                })
    plan_pointer = plan.send(client)

    # Test
    # x is random input, y is the expected model(x)
    x_batches = [(th.tensor([1, 1]) + i).send(client) for i in range(2)]
    y_batches = [((th.tensor([1, 1]) + i) * th.tensor([1, 2]) +
                  th.tensor([3, 4])).send(client) for i in range(2)]

    for x, y in zip(x_batches, y_batches):
        plan_pointer(x=x, y=y)

        # checks if (model(x) == y) == [True, True]
        assert all(result_tensor_pointer3.get(delete_obj=False))