Ejemplo n.º 1
0
def smith_step(A, t, var):
    # erste Spalte (Index: j), die nicht komplett 0 ist
    # j soll größer als Schrittzähler sein
    nr, nc = A.shape

    row_op_list = []

    cols = st.col_split(A)

    # erste nicht verschwindende Spalte finden
    for j, c in enumerate(cols):
        if j < t:
            continue
        if not c == c*0:
            break
    # Eintrag mit Index t soll ungleich 0 sein, ggf. Zeilen tauschen
    if c[t] == 0:
        i, elt = first_nonzero_element(c)
        ro = row_swap(nr, t, i)
        c = ro*c

        row_op_list.append(ro)

    col = c.expand()
    while True:
        new_col, L0 = smith_column_step(col, t, var)
        if L0 == sp.eye(nr):
            # nothing has changed
            break
        row_op_list.append(L0)
        col = new_col

    # jetzt teilt col[t] alle Einträge in col
    # Probe in der nächsten Schleife

    col.simplify()
    col = col.expand()
    for i,a in enumerate(col):
        if i == t:
            continue
        if not sp.simplify(sp.gcd(a, col[t]) - col[t]) == 0:
            IPS()
            raise ValueError, "col[t] should divide all entries in col"
        quotient = sp.simplify(a/col[t])
        if a == 0:
            continue

        # eliminiere a
        ro = row_op(nr, i, t, -1, quotient)
        row_op_list.append(ro)


    return row_op_list
Ejemplo n.º 2
0
    def test_simple_pendulum_with_actuated_mountpoint(self):

        np = 1
        nq = 2
        n = np + nq
        pp = st.symb_vector("p1:{0}".format(np+1))
        qq = st.symb_vector("q1:{0}".format(nq+1))

        p1, q1, q2 = ttheta = st.row_stack(pp, qq)
        pdot1, qdot1, qdot2 = tthetad = st.time_deriv(ttheta, ttheta)
        mud = st.time_deriv(ttheta, ttheta, order=2)
        params = sp.symbols('l3, l4, s3, s4, J3, J4, m1, m2, m3, m4, g')
        l3, l4, s3, s4, J3, J4, m1, m2, m3, m4, g = params

        tau1, tau2 = ttau= st.symb_vector("tau1, tau2")

        ## Geometry

        ex = sp.Matrix([1,0])
        ey = sp.Matrix([0,1])

        # Koordinaten der Schwerpunkte und Gelenke
        S1 = ex*q1
        S2 = ex*q1 + ey*q2
        G3 = S2 # Gelenk

        # Schwerpunkt des Pendels #zeigt nach oben
        S3 = G3 + mt.Rz(p1)*ey*s3

        # Zeitableitungen der Schwerpunktskoordinaten
        Sd1, Sd2, Sd3 = st.col_split(st.time_deriv(st.col_stack(S1, S2, S3), ttheta)) ##

        # Energy
        T_rot = ( J3*pdot1**2 )/2
        T_trans = ( m1*Sd1.T*Sd1  +  m2*Sd2.T*Sd2 + m3*Sd3.T*Sd3 )/2
        T = T_rot + T_trans[0]
        V = m1*g*S1[1] + m2*g*S2[1] + m3*g*S3[1]

        external_forces = [0, tau1, tau2]
        assert not any(external_forces[:np])
        mod = mt.generate_symbolic_model(T, V, ttheta, external_forces)
        mod.calc_coll_part_lin_state_eq(simplify=True)

        #pdot1, qdot1, qdot2 = mod.ttd

        ff_ref = sp.Matrix([[pdot1], [qdot1], [qdot2], [g*m3*s3*sin(p1)/(J3 + m3*s3**2)], [0], [0]])
        gg_ref_part = sp.Matrix([m3*s3*cos(p1)/(J3 + m3*s3**2), m3*s3*sin(p1)/(J3 + m3*s3**2)]).T

        self.assertEqual(mod.ff, ff_ref)
        self.assertEqual(mod.gg[-3, :], gg_ref_part)
Ejemplo n.º 3
0
    def test_four_bar_constraints(self):

        # 2 passive Gelenke
        np = 2
        nq = 1
        p1, p2 = pp = st.symb_vector("p1:{0}".format(np + 1))
        q1, = qq = st.symb_vector("q1:{0}".format(nq + 1))

        ttheta = st.row_stack(pp, qq)
        pdot1, pdot2, qdot1 = tthetad = st.time_deriv(ttheta, ttheta)
        tthetadd = st.time_deriv(ttheta, ttheta, order=2)
        st.make_global(ttheta, tthetad, tthetadd)

        params = sp.symbols(
            's1, s2, s3, m1, m2, m3, J1, J2, J3, l1, l2, l3, kappa1, kappa2, g'
        )
        s1, s2, s3, m1, m2, m3, J1, J2, J3, l1, l2, l3, kappa1, kappa2, g = params
        st.make_global(params)

        parameter_values = dict(s1=1 / 2,
                                s2=1 / 2,
                                s3=1 / 2,
                                m1=1,
                                m2=1,
                                m3=3,
                                J1=1 / 12,
                                J2=1 / 12,
                                J3=1 / 12,
                                l1=1,
                                l2=1.5,
                                l3=1.5,
                                kappa1=3 / 2,
                                kappa2=14.715,
                                g=9.81).items()

        # ttau = sp.symbols('tau')
        tau1, tau2 = st.symb_vector("tau1, tau2")

        # unit vectors
        ex = sp.Matrix([1, 0])

        # Basis 1 and 2
        # B1 = sp.Matrix([0, 0])
        B2 = sp.Matrix([2 * l1, 0])

        # Koordinaten der Schwerpunkte und Gelenke
        S1 = Rz(q1) * ex * s1
        G1 = Rz(q1) * ex * l1
        S2 = G1 + Rz(q1 + p1) * ex * s2
        G2 = G1 + Rz(q1 + p1) * ex * l2

        # one link manioulator
        G2b = B2 + Rz(p2) * ex * l3
        S3 = B2 + Rz(p2) * ex * s3

        # timederivatives of centers of masses
        Sd1, Sd2, Sd3 = st.col_split(
            st.time_deriv(st.col_stack(S1, S2, S3), ttheta))

        # kinetic energy

        T_rot = (J1 * qdot1**2 + J2 * (qdot1 + pdot1)**2 + J3 * (pdot2)**2) / 2
        T_trans = (m1 * Sd1.T * Sd1 + m2 * Sd2.T * Sd2 + m3 * Sd3.T * Sd3) / 2

        T = T_rot + T_trans[0]

        # potential energy
        V = m1 * g * S1[1] + m2 * g * S2[1] + m3 * g * S3[1]

        # # Kinetische Energie mit Platzhaltersymbolen einführen (jetzt nicht):
        #
        # M1, M2, M3 = MM = st.symb_vector('M1:4')
        # MM_subs = [(J1 + m1*s1 ** 2 + m2*l1 ** 2, M1), (J2 + m2*s2 ** 2, M2), (m2*l1*s2, M3)]
        # # MM_rplm = st.rev_tuple(MM_subs)  # Umkehrung der inneren Tupel -> [(M1, J1+... ), ...]

        external_forces = [0, 0, tau1]

        mod = mt.generate_symbolic_model(T,
                                         V,
                                         ttheta,
                                         external_forces,
                                         constraints=[G2 - G2b])

        self.assertEqual(mod.llmd.shape, (2, 1))
        self.assertEqual(mod.constraints.shape, (2, 1))

        dae = mod.calc_dae_eq(parameter_values=parameter_values)

        nc = len(mod.llmd)
        self.assertEqual(dae.eqns[-nc:, :], mod.constraints)

        # qdot1 = 0
        ttheta_1, ttheta_d_1 = dae.calc_consistent_conf_vel(q1=npy.pi / 4,
                                                            _disp=False)

        eres_c = npy.array([-0.2285526, 1.58379902, 0.78539816])
        eres_v = npy.array([0, 0, 0])

        self.assertTrue(npy.allclose(ttheta_1, eres_c))
        self.assertTrue(npy.allclose(ttheta_d_1, eres_v))

        # in that situation there is no force
        acc_1, llmd_1 = dae.calc_consistent_accel_lmd((ttheta_1, ttheta_d_1))
        # these values seem reasonable but have yet not been checked analytically
        self.assertTrue(
            npy.allclose(acc_1, [13.63475466, -1.54473017, -8.75145644]))
        self.assertTrue(npy.allclose(llmd_1, [-0.99339947, 0.58291489]))

        # qdot1 ≠ 0
        ttheta_2, ttheta_d_2 = dae.calc_consistent_conf_vel(q1=npy.pi / 8 * 7,
                                                            qdot1=3,
                                                            _disp=False)

        eres_c = npy.array([-0.85754267, 0.89969149, 0.875]) * npy.pi
        eres_v = npy.array([-3.42862311, 2.39360715, 3.])

        self.assertTrue(npy.allclose(ttheta_2, eres_c))
        self.assertTrue(npy.allclose(ttheta_d_2, eres_v))

        yy_1, yyd_1 = dae.calc_consistent_init_vals(q1=12.7, qdot1=100)

        dae.generate_eqns_funcs()
        res = dae.model_func(0, yy_1, yyd_1)

        self.assertEqual(res.shape, (dae.ntt * 2 + dae.nll, ))
        self.assertTrue(npy.allclose(res, 0))
Ejemplo n.º 4
0
ex = sp.Matrix([1,0])
ey = sp.Matrix([0,1])

# Koordinaten der Schwerpunkte und Gelenke
S0 = ex*q1 # Schwerpunkt Wagen
G0 = S0 # Gelenk zwischen Wagen und Pendel 1
G1 = G0 + mt.Rz(p1)*ey*l1 # Gelenk zwischen Pendel 1 und 2
G2 = G1 + mt.Rz(p1+p2)*ey*l2 # Gelenk zwischen Pendel 2 und 3
# Schwerpunkte der Pendel (Pendel zeigen für kleine Winkel nach oben; Pendelwinkel relativ)
S1 = G0 + mt.Rz(p1)*ey*s1
S2 = G1 + mt.Rz(p1+p2)*ey*s2
S3 = G2 + mt.Rz(p1+p2+p3)*ey*s3

# Zeitableitungen der Schwerpunktskoordinaten
Sd0, Sd1, Sd2, Sd3 = st.col_split(st.time_deriv(st.col_stack(S0, S1, S2, S3), ttheta))

# Energie
T_rot = (J1*pdot1**2)/2 + (J2*(pdot1 + pdot2)**2)/2 + (J3*(pdot1 + pdot2 + pdot3)**2)/2
T_trans = (m0*Sd0.T*Sd0 + m1*Sd1.T*Sd1 + m2*Sd2.T*Sd2 + m3*Sd3.T*Sd3)/2

T = T_rot + T_trans[0]

V = m1*g*S1[1] + m2*g*S2[1] + m3*g*S3[1]

mod = mt.generate_symbolic_model(T, V, ttheta, [0, 0, 0, tau1])

# Zustandsraummodell, partiell linearisiert
mod.calc_coll_part_lin_state_eq(simplify=True)
x_dot = mod.ff + mod.gg*qddot1
Ejemplo n.º 5
0
def solve(problem_spec):
    # problem_spec is dummy
    t = sp.Symbol('t')  # time variable
    np = 2
    nq = 2
    ns = 2
    n = np + nq + ns

    p1, p2 = pp = st.symb_vector("p1:{0}".format(np + 1))
    q1, q2 = qq = st.symb_vector("q1:{0}".format(nq + 1))
    s1, s2 = ss = st.symb_vector("s1:{0}".format(ns + 1))

    ttheta = st.row_stack(qq[0], pp[0], ss[0], qq[1], pp[1], ss[1])
    qdot1, pdot1, sdot1, qdot2, pdot2, sdot2 = tthetad = st.time_deriv(ttheta, ttheta)
    tthetadd = st.time_deriv(ttheta, ttheta, order=2)

    ttheta_all = st.concat_rows(ttheta, tthetad, tthetadd)

    c1, c2, c3, c4, c5, c6, m1, m2, m3, m4, m5, m6, J1, J2, J3, J4, J5, J6, l1, l2, l3, l4, l5, l6, d, g = params = sp.symbols(
        'c1, c2, c3, c4, c5, c6, m1, m2, m3, m4, m5, m6, J1, J2, J3, J4, J5, J6, l1, l2, l3, l4, l5, l6, d, g')

    tau1, tau2, tau3, tau4, tau5, tau6 = ttau = st.symb_vector("tau1, tau2, tau3, tau4, tau5, tau6 ")

    # unit vectors

    ex = sp.Matrix([1, 0])
    ey = sp.Matrix([0, 1])

    # coordinates of centers of mass and joints
    # left
    G0 = 0 * ex  ##:

    C1 = G0 + Rz(q1) * ex * c1  ##:

    G1 = G0 + Rz(q1) * ex * l1  ##:

    C2 = G1 + Rz(q1 + p1) * ex * c2  ##:

    G2 = G1 + Rz(q1 + p1) * ex * l2  ##:

    C3 = G2 + Rz(q1 + p1 + s1) * ex * c3  ##:

    G3 = G2 + Rz(q1 + p1 + s1) * ex * l3  ##:

    # right
    G6 = d * ex  ##:

    C6 = G6 + Rz(q2) * ex * c6  ##:

    G5 = G6 + Rz(q2) * ex * l6  ##:

    C5 = G5 + Rz(q2 + p2) * ex * c5  ##:

    G4 = G5 + Rz(q2 + p2) * ex * l5  ##:

    C4 = G4 + Rz(q2 + p2 + s2) * ex * c4  ##:

    G3b = G4 + Rz(q2 + p2 + s2) * ex * l4  ##:

    # time derivatives of centers of mass
    Sd1, Sd2, Sd3, Sd4, Sd5, Sd6 = st.col_split(st.time_deriv(st.col_stack(C1, C2, C3, C4, C5, C6), ttheta))

    # Kinetic Energy (note that angles are relative)

    T_rot = (J1 * qdot1 ** 2) / 2 + (J2 * (qdot1 + pdot1) ** 2) / 2 + (J3 * (qdot1 + pdot1 + sdot1) ** 2) / 2 + \
            (J4 * (qdot2 + pdot2 + sdot2) ** 2) / 2 + (J5 * (qdot2 + pdot2) ** 2) / 2 + (J6 * qdot2 ** 2) / 2
    T_trans = (
                      m1 * Sd1.T * Sd1 + m2 * Sd2.T * Sd2 + m3 * Sd3.T * Sd3 + m4 * Sd4.T * Sd4 + m5 * Sd5.T * Sd5 + m6 * Sd6.T * Sd6) / 2

    T = T_rot + T_trans[0]

    # Potential Energy
    V = m1 * g * C1[1] + m2 * g * C2[1] + m3 * g * C3[1] + m4 * g * C4[1] + m5 * g * C5[1] + m6 * g * C6[1]
    parameter_values = list(dict(c1=0.4 / 2, c2=0.42 / 2, c3=0.55 / 2, c4=0.55 / 2, c5=0.42 / 2, c6=0.4 / 2,
                                 m1=6.0, m2=12.0, m3=39.6, m4=39.6, m5=12.0, m6=6.0,
                                 J1=(6 * 0.4 ** 2) / 12, J2=(12 * 0.42 ** 2) / 12, J3=(39.6 * 0.55 ** 2) / 12,
                                 J4=(39.6 * 0.55 ** 2) / 12, J5=(12 * 0.42 ** 2) / 12, J6=(6 * 0.4 ** 2) / 12,
                                 l1=0.4, l2=0.42, l3=0.55, l4=0.55, l5=0.42, l6=0.4, d=0.26, g=9.81).items())

    external_forces = [tau1, tau2, tau3, tau4, tau5, tau6]

    dir_of_this_file = os.path.dirname(os.path.abspath(sys.modules.get(__name__).__file__))
    fpath = os.path.join(dir_of_this_file, "7L-dae-2020-07-15.pcl")

    if not os.path.isfile(fpath):
        # if model is not present it could be regenerated
        # however this might take long (approx. 20min)
        mod = mt.generate_symbolic_model(T, V, ttheta, external_forces, constraints=[G3 - G3b], simplify=False)
        mod.calc_state_eq(simplify=False)

        mod.f_sympy = mod.f.subs(parameter_values)
        mod.G_sympy = mod.g.subs(parameter_values)
        with open(fpath, "wb") as pfile:
            pickle.dump(mod, pfile)
    else:
        with open(fpath, "rb") as pfile:
            mod = pickle.load(pfile)

    # calculate DAE equations from symbolic model
    dae = mod.calc_dae_eq(parameter_values)

    dae.generate_eqns_funcs()

    torso1_unit = Rz(q1 + p1 + s1) * ex
    torso2_unit = Rz(q2 + p2 + s2) * ex

    neck_length = 0.12
    head_radius = 0.1

    body_width = 15
    neck_width = 15

    H1 = G3 + neck_length * torso1_unit
    H1r = G3 + (neck_length - head_radius) * torso1_unit
    H2 = G3b + neck_length * torso2_unit
    H2r = G3b + (neck_length - head_radius) * torso2_unit

    vis = vt.Visualiser(ttheta, xlim=(-1.5, 1.5), ylim=(-.2, 2))

    # get default colors and set them explicitly
    # this prevents color changes in onion skin plot
    default_colors = plt.get_cmap("tab10")
    guy1_color = default_colors(0)
    guy1_joint_color = "darkblue"
    guy2_color = default_colors(1)
    guy2_joint_color = "red"
    guy1_head_fc = guy1_color  # facecolor
    guy1_head_ec = guy1_head_fc  # edgecolor
    guy2_head_fc = guy2_color  # facecolor
    guy2_head_ec = guy2_head_fc  # edgecolor

    # guy 1 body
    vis.add_linkage(st.col_stack(G0, G1, G2, G3).subs(parameter_values),
                    color=guy1_color,
                    solid_capstyle='round',
                    lw=body_width,
                    ms=body_width,
                    mfc=guy1_joint_color)
    # guy 1 neck
    # vis.add_linkage(st.col_stack(G3, H1r).subs(parameter_values), color=head_color, solid_capstyle='round', lw=neck_width)
    # guy 1 head
    vis.add_disk(st.col_stack(H1, H1r).subs(parameter_values), fc=guy1_head_fc, ec=guy1_head_ec, plot_radius=False,
                 fill=True)

    # guy 2 body
    vis.add_linkage(st.col_stack(G6, G5, G4, G3b).subs(parameter_values),
                    color=guy2_color,
                    solid_capstyle='round',
                    lw=body_width,
                    ms=body_width,
                    mfc=guy2_joint_color)
    # guy 2 neck
    # vis.add_linkage(st.col_stack(G3b, H2r).subs(parameter_values), color=head_color, solid_capstyle='round', lw=neck_width)
    # guy 2 head
    vis.add_disk(st.col_stack(H2, H2r).subs(parameter_values), fc=guy2_head_fc, ec=guy2_head_ec, plot_radius=False,
                 fill=True)

    eq_stat = mod.eqns.subz0(tthetadd).subz0(tthetad).subs(parameter_values)

    # vector for tau and lambda together

    ttau_symbols = sp.Matrix(mod.uu)  ##:T

    mmu = st.row_stack(ttau_symbols, mod.llmd)  ##:T

    # linear system of equations (and convert to function w.r.t. ttheta)

    K0_expr = eq_stat.subz0(mmu)  ##:i
    K1_expr = eq_stat.jacobian(mmu)  ##:i

    K0_func = st.expr_to_func(ttheta, K0_expr)
    K1_func = st.expr_to_func(ttheta, K1_expr, keep_shape=True)

    def get_mu_stat_for_theta(ttheta_arg, rho=10):
        # weighting matrix for mu

        K0 = K0_func(*ttheta_arg)
        K1 = K1_func(*ttheta_arg)

        return solve_qlp(K0, K1, rho)

    def solve_qlp(K0, K1, rho):
        R_mu = npy.diag([1, 1, 1, rho, rho, rho, .1, .1])
        n1, n2 = K1.shape

        # construct the equation system for least squares with linear constraints
        M1 = npy.column_stack((R_mu, K1.T))
        M2 = npy.column_stack((K1, npy.zeros((n1, n1))))
        M_coeff = npy.row_stack((M1, M2))

        M_rhs = npy.concatenate((npy.zeros(n2), -K0))

        mmu_stat = npy.linalg.solve(M_coeff, M_rhs)[:n2]
        return mmu_stat

    ttheta_start = npy.r_[0.9, 1.5, -1.9, 2.1, -2.175799453493845, 1.7471971159642905]

    mmu_start = get_mu_stat_for_theta(ttheta_start)

    connection_point_func = st.expr_to_func(ttheta, G3.subs(parameter_values))

    cs_ttau = mpc.casidify(mod.uu, mod.uu)[0]
    cs_llmd = mpc.casidify(mod.llmd, mod.llmd)[0]

    controls_sp = mmu
    controls_cs = cs.vertcat(cs_ttau, cs_llmd)
    coords_cs, _ = mpc.casidify(ttheta, ttheta)

    # parameters: 0: value of y_connection, 1: x_connection_last,
    # 2: y_connection_last, 3: delta_r_max, 4: rho (penalty factor for 2nd persons torques),
    # 5:11: ttheta_old[6], 11:17: ttheta:old2
    #
    P = SX.sym('P', 5 + 12)
    rho = P[10]

    # weightning of inputs
    R = mpc.SX_diag_matrix((1, 1, 1, rho, rho, rho, 0.1, 0.1))

    #  Construction of Constraints

    g1 = []  # constraints vector (system dynamics)
    g2 = []  # inequality-constraints

    closed_chain_constraint, _ = mpc.casidify(mod.dae.constraints, ttheta, cs_vars=coords_cs)
    connection_position, _ = mpc.casidify(list(G3.subs(parameter_values)), ttheta, cs_vars=coords_cs)  ##:i
    connection_y_value, _ = mpc.casidify([G3[1].subs(parameter_values)], ttheta, cs_vars=coords_cs)  ##:i

    stationary_eqns, _, _ = mpc.casidify(eq_stat, ttheta, controls_sp, cs_vars=(coords_cs, controls_cs))  ##:i

    g1.extend(mpc.unpack(stationary_eqns))
    g1.extend(mpc.unpack(closed_chain_constraint))

    # force the connecting joint to a given hight (which will be provided later)
    g1.append(connection_y_value - P[0])

    ng1 = len(g1)

    # squared distance from the last reference should be smaller than P[3] (delta_r_max):
    # this will be a restriction between -inf and 0
    r = connection_position - P[1:3]
    g2.append(r.T @ r - P[3])

    # change of angles should be smaller than a given bound (P[5:11] are the old coords)
    coords_old = P[5:11]
    coords_old2 = P[11:17]
    pseudo_vel = (coords_cs - coords_old) / 1
    pseudo_acc = (coords_cs - 2 * coords_old + coords_old2) / 1

    g2.extend(mpc.unpack(pseudo_vel))
    g2.extend(mpc.unpack(pseudo_acc))

    g_all = mpc.seq_to_SX_matrix(g1 + g2)

    ### Construction of objective Function

    obj = controls_cs.T @ R @ controls_cs + 1e5 * pseudo_acc.T @ pseudo_acc + 0.3e6 * pseudo_vel.T @ pseudo_vel

    OPT_variables = cs.vertcat(coords_cs, controls_cs)

    # for debugging
    g_all_cs_func = cs.Function("g_all_cs_func", (OPT_variables, P), (g_all,))

    nlp_prob = dict(f=obj, x=OPT_variables, g=g_all, p=P)

    ipopt_settings = dict(max_iter=5000, print_level=0,
                          acceptable_tol=1e-8, acceptable_obj_change_tol=1e-6)
    opts = dict(print_time=False, ipopt=ipopt_settings)

    xx_guess = npy.r_[ttheta_start, mmu_start]

    # note: g1 contains the equality constraints (system dynamics) (lower bound = upper bound)

    delta_phi = .05
    d_delta_phi = .02
    eps = 1e-9
    lbg = npy.r_[[-eps] * ng1 + [-inf] + [-delta_phi] * n, [-d_delta_phi] * n]
    ubg = npy.r_[[eps] * ng1 + [0] + [delta_phi] * n, [d_delta_phi] * n]

    # ubx = [inf]*OPT_variables.shape[0]##:

    # lower and upper bounds for decision variables:
    # lbx = [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf]*N1 + [tau1_min, tau4_min, -inf, -inf]*N
    # ubx = [inf, inf, inf, inf, inf, inf, inf, inf]*N1 + [tau1_max, tau4_max, inf, inf]*N

    rho = 3
    P_init = npy.r_[connection_point_func(*ttheta_start)[1],
                    connection_point_func(*ttheta_start), 0.01, rho, ttheta_start, ttheta_start]

    args = dict(lbx=-inf, ubx=inf, lbg=lbg, ubg=ubg,  # unconstrained optimization
                p=P_init,  # initial and final state
                x0=xx_guess  # initial guess
                )

    solver = cs.nlpsol("solver", "ipopt", nlp_prob, opts)
    sol = solver(**args)

    global_vars = ipydex.Container(old_sol=xx_guess, old_sol2=xx_guess)

    def get_optimal_equilibrium(y_value, rho=3):

        ttheta_old = global_vars.old_sol[:n]
        ttheta_old2 = global_vars.old_sol2[:n]
        opt_prob_params = npy.r_[y_value, connection_point_func(*ttheta_old),
                                 0.01, rho, ttheta_old, ttheta_old2]

        args.update(dict(p=opt_prob_params, x0=global_vars.old_sol))
        sol = solver(**args)

        stats = solver.stats()
        if not stats['success']:
            raise ValueError(stats["return_status"])

        XX = sol["x"].full().squeeze()

        # save the last two results
        global_vars.old_sol2 = global_vars.old_sol
        global_vars.old_sol = XX

        return XX

    y_start = connection_point_func(*ttheta_start)[1]
    N = 100

    y_end = 1.36
    y_func = st.expr_to_func(t, st.condition_poly(t, (0, y_start, 0, 0), (1, y_end, 0, 0)))

    def get_qs_trajectory(rho):
        pseudo_time = npy.linspace(0, 1, N)
        yy_connection = y_func(pseudo_time)

        # reset the initial guess
        global_vars.old_sol = xx_guess
        global_vars.old_sol2 = xx_guess
        XX_list = []
        for i, y_value in enumerate(yy_connection):
            # print(i, y_value)
            XX_list.append(get_optimal_equilibrium(y_value, rho=rho))

        XX = npy.array(XX_list)
        return XX

    rho = 30
    XX = get_qs_trajectory(rho=rho)

    def smooth_time_scaling(Tend, N, phase_fraction=.5):
        """
        :param Tend:
        :param N:
        :param phase_fraction:   fraction of Tend for smooth initial and end phase
        """

        T0 = 0
        T1 = Tend * phase_fraction

        y0 = 0
        y1 = 1

        # for initial phase
        poly1 = st.condition_poly(t, (T0, y0, 0, 0), (T1, y1, 0, 0))

        # for end phase
        poly2 = poly1.subs(t, Tend - t)

        # there should be a phase in the middle with constant slope
        deriv_transition = st.piece_wise((y0, t < T0), (poly1, t < T1), (y1, t < Tend - T1),
                                         (poly2, t < Tend), (y0, True))

        scaling = sp.integrate(deriv_transition, (t, T0, Tend))

        time_transition = sp.integrate(deriv_transition * N / scaling, t)

        # deriv_transition_func = st.expr_to_func(t, full_transition)
        time_transition_func = st.expr_to_func(t, time_transition)
        deriv_func = st.expr_to_func(t, deriv_transition * N / scaling)
        deriv_func2 = st.expr_to_func(t, deriv_transition.diff(t) * N / scaling)

        C = ipydex.Container(fetch_locals=True)

        return C

    N = XX.shape[0]
    Tend = 4
    res = smooth_time_scaling(Tend, N)

    def get_derivatives(XX, time_scaling, res=100):
        """
        :param XX:             Nxm array
        :param time_scaling:   container for time scaling
        :param res:            time resolution of the returned arrays
        """

        N = XX.shape[0]
        Tend = time_scaling.Tend
        assert npy.isclose(time_scaling.time_transition_func([0, Tend])[-1], N)

        tt = npy.linspace(time_scaling.T0, time_scaling.Tend, res)
        NN = npy.arange(N)

        # high_resolution version of index arry
        NN2 = npy.linspace(0, N, res, endpoint=False)

        # time-scaled verion of index-array
        NN3 = time_scaling.time_transition_func(tt)
        NN3d = time_scaling.deriv_func(tt)
        NN3dd = time_scaling.deriv_func2(tt)

        XX_num, XXd_num, XXdd_num = [], [], []

        # iterate over every column
        for col in XX.T:
            spl = splrep(NN, col)

            # function value and derivatives
            XX_num.append(splev(NN3, spl))
            XXd_num.append(splev(NN3, spl, der=1))
            XXdd_num.append(splev(NN3, spl, der=2))

        XX_num = npy.array(XX_num).T
        XXd_num = npy.array(XXd_num).T
        XXdd_num = npy.array(XXdd_num).T

        NN3d_bc = npy.broadcast_to(NN3d, XX_num.T.shape).T
        NN3dd_bc = npy.broadcast_to(NN3dd, XX_num.T.shape).T

        XXd_n = XXd_num * NN3d_bc

        # apply chain rule
        XXdd_n = XXdd_num * NN3d_bc ** 2 + XXd_num * NN3dd_bc

        C = ipydex.Container(fetch_locals=True)
        return C

    C = XX_derivs = get_derivatives(XX[:, :], time_scaling=res)

    expr = mod.eqns.subz0(mod.uu, mod.llmd).subs(parameter_values)
    dynterm_func = st.expr_to_func(ttheta_all, expr)

    def get_torques(dyn_term_func, XX_derivs, static1=False, static2=False):

        ttheta_num_all = npy.c_[XX_derivs.XX_num[:, :n], XX_derivs.XXd_n[:, :n], XX_derivs.XXdd_n[:, :n]]  ##:S

        if static1:
            # set velocities to 0
            ttheta_num_all[:, n:2 * n] = 0

        if static2:
            # set accelerations to 0
            ttheta_num_all[:, 2 * n:] = 0

        res = dynterm_func(*ttheta_num_all.T)
        return res

    lhs_static = get_torques(dynterm_func, XX_derivs, static1=True, static2=True)  ##:i
    lhs_dynamic = get_torques(dynterm_func, XX_derivs, static2=False)  ##:i

    mmu_stat_list = []
    for L_k_stat, L_k_dyn, ttheta_k in zip(lhs_static, lhs_dynamic, XX_derivs.XX_num[:, :n]):
        K1_k = K1_func(*ttheta_k)
        mmu_stat_k = solve_qlp(L_k_stat, K1_k, rho)
        mmu_stat_list.append(mmu_stat_k)

    mmu_stat_all = npy.array(mmu_stat_list)

    solution_data = SolutionData()
    solution_data.tt = XX_derivs.tt
    solution_data.xx = XX_derivs.XX_num
    solution_data.mmu = mmu_stat_all
    solution_data.vis = vis

    save_plot(problem_spec, solution_data)

    return solution_data
Ejemplo n.º 6
0
tau1 = sp.Symbol("tau1")

#Einheitsvektoren

ex = sp.Matrix([1, 0])
ey = sp.Matrix([0, 1])

# Koordinaten der Schwerpunkte und Gelenke
S0 = ex * q1  # Schwerpunkt Wagen
G0 = S0  # Gelenk zwischen Wagen und Pendel 1
# Schwerpunkte des Pendels (Pendel zeigt für kleine Winkel nach oben)
S1 = G0 + mt.Rz(p1) * ey * s1

# Zeitableitungen der Schwerpunktskoordinaten
Sd0, Sd1 = st.col_split(st.time_deriv(st.col_stack(S0, S1), ttheta))

# Energie
T_rot = 0
T_trans = (m0 * Sd0.T * Sd0 + m1 * Sd1.T * Sd1) / 2

T = T_rot + T_trans[0]

V = m1 * g * S1[1]

mod = mt.generate_symbolic_model(T, V, ttheta, [0, tau1])

# Zustandsraummodell
mod.calc_state_eq(simplify=True)
x_dot = mod.f + mod.g * tau1