Ejemplo n.º 1
0
def test_conv7():
    x = Symbol("x")
    y = Symbol("y")
    assert sin(x/3) == sin(sympy.Symbol("x") / 3)
    assert cos(x/3) == cos(sympy.Symbol("x") / 3)
    assert tan(x/3) == tan(sympy.Symbol("x") / 3)
    assert cot(x/3) == cot(sympy.Symbol("x") / 3)
    assert csc(x/3) == csc(sympy.Symbol("x") / 3)
    assert sec(x/3) == sec(sympy.Symbol("x") / 3)
    assert asin(x/3) == asin(sympy.Symbol("x") / 3)
    assert acos(x/3) == acos(sympy.Symbol("x") / 3)
    assert atan(x/3) == atan(sympy.Symbol("x") / 3)
    assert acot(x/3) == acot(sympy.Symbol("x") / 3)
    assert acsc(x/3) == acsc(sympy.Symbol("x") / 3)
    assert asec(x/3) == asec(sympy.Symbol("x") / 3)

    assert sin(x/3)._sympy_() == sympy.sin(sympy.Symbol("x") / 3)
    assert sin(x/3)._sympy_() != sympy.cos(sympy.Symbol("x") / 3)
    assert cos(x/3)._sympy_() == sympy.cos(sympy.Symbol("x") / 3)
    assert tan(x/3)._sympy_() == sympy.tan(sympy.Symbol("x") / 3)
    assert cot(x/3)._sympy_() == sympy.cot(sympy.Symbol("x") / 3)
    assert csc(x/3)._sympy_() == sympy.csc(sympy.Symbol("x") / 3)
    assert sec(x/3)._sympy_() == sympy.sec(sympy.Symbol("x") / 3)
    assert asin(x/3)._sympy_() == sympy.asin(sympy.Symbol("x") / 3)
    assert acos(x/3)._sympy_() == sympy.acos(sympy.Symbol("x") / 3)
    assert atan(x/3)._sympy_() == sympy.atan(sympy.Symbol("x") / 3)
    assert acot(x/3)._sympy_() == sympy.acot(sympy.Symbol("x") / 3)
    assert acsc(x/3)._sympy_() == sympy.acsc(sympy.Symbol("x") / 3)
    assert asec(x/3)._sympy_() == sympy.asec(sympy.Symbol("x") / 3)
Ejemplo n.º 2
0
def test_conv7():
    x = Symbol("x")
    y = Symbol("y")
    assert sin(x / 3) == sin(sympy.Symbol("x") / 3)
    assert cos(x / 3) == cos(sympy.Symbol("x") / 3)
    assert tan(x / 3) == tan(sympy.Symbol("x") / 3)
    assert cot(x / 3) == cot(sympy.Symbol("x") / 3)
    assert csc(x / 3) == csc(sympy.Symbol("x") / 3)
    assert sec(x / 3) == sec(sympy.Symbol("x") / 3)
    assert asin(x / 3) == asin(sympy.Symbol("x") / 3)
    assert acos(x / 3) == acos(sympy.Symbol("x") / 3)
    assert atan(x / 3) == atan(sympy.Symbol("x") / 3)
    assert acot(x / 3) == acot(sympy.Symbol("x") / 3)
    assert acsc(x / 3) == acsc(sympy.Symbol("x") / 3)
    assert asec(x / 3) == asec(sympy.Symbol("x") / 3)

    assert sin(x / 3)._sympy_() == sympy.sin(sympy.Symbol("x") / 3)
    assert sin(x / 3)._sympy_() != sympy.cos(sympy.Symbol("x") / 3)
    assert cos(x / 3)._sympy_() == sympy.cos(sympy.Symbol("x") / 3)
    assert tan(x / 3)._sympy_() == sympy.tan(sympy.Symbol("x") / 3)
    assert cot(x / 3)._sympy_() == sympy.cot(sympy.Symbol("x") / 3)
    assert csc(x / 3)._sympy_() == sympy.csc(sympy.Symbol("x") / 3)
    assert sec(x / 3)._sympy_() == sympy.sec(sympy.Symbol("x") / 3)
    assert asin(x / 3)._sympy_() == sympy.asin(sympy.Symbol("x") / 3)
    assert acos(x / 3)._sympy_() == sympy.acos(sympy.Symbol("x") / 3)
    assert atan(x / 3)._sympy_() == sympy.atan(sympy.Symbol("x") / 3)
    assert acot(x / 3)._sympy_() == sympy.acot(sympy.Symbol("x") / 3)
    assert acsc(x / 3)._sympy_() == sympy.acsc(sympy.Symbol("x") / 3)
    assert asec(x / 3)._sympy_() == sympy.asec(sympy.Symbol("x") / 3)
Ejemplo n.º 3
0
def acos(expr):
    """Arccosine"""
    if type(expr) == GC:
        return GC(se.acos(expr.expr), {
            s: -d / se.sqrt(1 - expr.expr**2)
            for s, d in expr.gradients.items()
        })
    return se.acos(expr)
Ejemplo n.º 4
0
def diffable_slerp(q1, q2, t):
    """
    !takes a long time to compile!
    :param q1: 4x1 Matrix
    :type q1: Matrix
    :param q2: 4x1 Matrix
    :type q2: Matrix
    :param t: float, 0-1
    :type t:  Union[float, Symbol]
    :return: 4x1 Matrix; Return spherical linear interpolation between two quaternions.
    :rtype: Matrix
    """
    cos_half_theta = dot(q1, q2)

    if0 = -cos_half_theta
    q2 = diffable_if_greater_zero(if0, -q2, q2)
    cos_half_theta = diffable_if_greater_zero(if0, -cos_half_theta, cos_half_theta)

    if1 = diffable_abs(cos_half_theta) - 1.0

    # enforce acos(x) with -1 < x < 1
    cos_half_theta = diffable_min_fast(1, cos_half_theta)
    cos_half_theta = diffable_max_fast(-1, cos_half_theta)

    half_theta = acos(cos_half_theta)

    sin_half_theta = sqrt(1.0 - cos_half_theta * cos_half_theta)
    # prevent /0
    sin_half_theta = diffable_if_eq_zero(sin_half_theta, 1, sin_half_theta)
    if2 = 0.001 - diffable_abs(sin_half_theta)

    ratio_a = sin((1.0 - t) * half_theta) / sin_half_theta
    ratio_b = sin(t * half_theta) / sin_half_theta
    return diffable_if_greater_eq_zero(if1, se.Matrix(q1),
                                       diffable_if_greater_zero(if2, 0.5 * q1 + 0.5 * q2, ratio_a * q1 + ratio_b * q2))
Ejemplo n.º 5
0
def axis_angle_from_matrix(rotation_matrix):
    """
    :param rotation_matrix: 4x4 or 3x3 Matrix
    :type rotation_matrix: Matrix
    :return: 3x1 Matrix, angle
    :rtype: (Matrix, Union[float, Symbol])
    """
    rm = rotation_matrix
    angle = (trace(rm[:3, :3]) - 1) / 2
    angle = se.Min(angle, 1)
    angle = se.Max(angle, -1)
    angle = se.acos(angle)
    x = (rm[2, 1] - rm[1, 2])
    y = (rm[0, 2] - rm[2, 0])
    z = (rm[1, 0] - rm[0, 1])
    n = se.sqrt(x * x + y * y + z * z)
    m = if_eq_zero(n, 1, n)
    axis = se.Matrix([
        if_eq_zero(n, 0, x / m),
        if_eq_zero(n, 0, y / m),
        if_eq_zero(n, 1, z / m)
    ])
    sign = diffable_sign(angle)
    axis *= sign
    angle = sign * angle
    return axis, angle
Ejemplo n.º 6
0
def test_symengine(arr, sig3):
    """Test symengine."""
    try:
        import symengine as sge
        x, y, z = sge.var("x y z")
        fn = sge.acos(x) / y + sge.exp(-z)
        func = numbafy(fn, (x, y, z), compiler="vectorize", signatures=sig3)
        result = func(arr, arr, arr)
        check = np.arccos(arr) / arr + np.exp(-arr)
        assert np.allclose(result, check) == True
    except ImportError:
        pass
Ejemplo n.º 7
0
def test_symengine(arr, sig3):
    """Test symengine."""
    try:
        import symengine as sge
        x, y, z = sge.var("x y z")
        fn = sge.acos(x)/y + sge.exp(-z)
        func = numbafy(fn, (x, y, z), compiler="vectorize", signatures=sig3)
        result = func(arr, arr, arr)
        check = np.arccos(arr)/arr + np.exp(-arr)
        assert np.allclose(result, check) == True
    except ImportError:
        pass
Ejemplo n.º 8
0
def rotation_distance(a_R_b, a_R_c):
    """
    :param a_R_b: 4x4 or 3x3 Matrix
    :type a_R_b: Matrix
    :param a_R_c: 4x4 or 3x3 Matrix
    :type a_R_c: Matrix
    :return: angle of axis angle representation of b_R_c
    :rtype: Union[float, Symbol]
    """
    difference = a_R_b.T * a_R_c
    angle = (trace(difference[:3, :3]) - 1) / 2
    angle = se.Min(angle, 1)
    angle = se.Max(angle, -1)
    return se.acos(angle)
Ejemplo n.º 9
0
def test_conv7b():
    x = sympy.Symbol("x")
    y = sympy.Symbol("y")
    assert sympify(sympy.sin(x / 3)) == sin(Symbol("x") / 3)
    assert sympify(sympy.sin(x / 3)) != cos(Symbol("x") / 3)
    assert sympify(sympy.cos(x / 3)) == cos(Symbol("x") / 3)
    assert sympify(sympy.tan(x / 3)) == tan(Symbol("x") / 3)
    assert sympify(sympy.cot(x / 3)) == cot(Symbol("x") / 3)
    assert sympify(sympy.csc(x / 3)) == csc(Symbol("x") / 3)
    assert sympify(sympy.sec(x / 3)) == sec(Symbol("x") / 3)
    assert sympify(sympy.asin(x / 3)) == asin(Symbol("x") / 3)
    assert sympify(sympy.acos(x / 3)) == acos(Symbol("x") / 3)
    assert sympify(sympy.atan(x / 3)) == atan(Symbol("x") / 3)
    assert sympify(sympy.acot(x / 3)) == acot(Symbol("x") / 3)
    assert sympify(sympy.acsc(x / 3)) == acsc(Symbol("x") / 3)
    assert sympify(sympy.asec(x / 3)) == asec(Symbol("x") / 3)
Ejemplo n.º 10
0
def test_conv7b():
    x = sympy.Symbol("x")
    y = sympy.Symbol("y")
    assert sympify(sympy.sin(x/3)) == sin(Symbol("x") / 3)
    assert sympify(sympy.sin(x/3)) != cos(Symbol("x") / 3)
    assert sympify(sympy.cos(x/3)) == cos(Symbol("x") / 3)
    assert sympify(sympy.tan(x/3)) == tan(Symbol("x") / 3)
    assert sympify(sympy.cot(x/3)) == cot(Symbol("x") / 3)
    assert sympify(sympy.csc(x/3)) == csc(Symbol("x") / 3)
    assert sympify(sympy.sec(x/3)) == sec(Symbol("x") / 3)
    assert sympify(sympy.asin(x/3)) == asin(Symbol("x") / 3)
    assert sympify(sympy.acos(x/3)) == acos(Symbol("x") / 3)
    assert sympify(sympy.atan(x/3)) == atan(Symbol("x") / 3)
    assert sympify(sympy.acot(x/3)) == acot(Symbol("x") / 3)
    assert sympify(sympy.acsc(x/3)) == acsc(Symbol("x") / 3)
    assert sympify(sympy.asec(x/3)) == asec(Symbol("x") / 3)
Ejemplo n.º 11
0
def axis_angle_from_quaternion(x, y, z, w):
    """
    :type x: Union[float, Symbol]
    :type y: Union[float, Symbol]
    :type z: Union[float, Symbol]
    :type w: Union[float, Symbol]
    :return: 4x1 Matrix
    :rtype: Matrix
    """
    # TODO buggy, angle goes from 0 - 2*pi instead of -pi - +pi
    w2 = sp.sqrt(1 - w**2)
    angle = (2 * sp.acos(w))
    x = x / w2
    y = y / w2
    z = z / w2
    return sp.Matrix([x, y, z]), angle
Ejemplo n.º 12
0
def rotation_distance(rotation_matrix1, rotation_matrix2):
    """
    :param rotation_matrix1: 4x4 or 3x3 Matrix
    :type rotation_matrix1: Matrix
    :param rotation_matrix2: 4x4 or 3x3 Matrix
    :type rotation_matrix2: Matrix
    :return: angle from the axis/angle representation of rotation_matrix1 * rotation_matrix2.T
    :rtype: Union[float, Symbol]
    """
    # TODO test me
    difference = rotation_matrix1 * rotation_matrix2.T
    # return -(((trace(difference) - 1)/2)-1)
    v = (trace(difference[:3, :3]) - 1) / 2
    # v = Max(-1, v)
    # v = Min(1, v)
    return sp.acos(v)
Ejemplo n.º 13
0
def axis_angle_from_quaternion(x, y, z, w):
    """
    :type x: Union[float, Symbol]
    :type y: Union[float, Symbol]
    :type z: Union[float, Symbol]
    :type w: Union[float, Symbol]
    :return: 4x1 Matrix
    :rtype: Matrix
    """
    l = norm([x, y, z, w])
    x, y, z, w = x / l, y / l, z / l, w / l
    w2 = se.sqrt(1 - w**2)
    angle = (2 * se.acos(se.Min(se.Max(-1, w), 1)))
    m = if_eq_zero(w2, 1, w2)  # avoid /0
    x = if_eq_zero(w2, 0, x / m)
    y = if_eq_zero(w2, 0, y / m)
    z = if_eq_zero(w2, 1, z / m)
    return se.Matrix([x, y, z]), angle
Ejemplo n.º 14
0
def axis_angle_from_matrix(rotation_matrix):
    """
    :param rotation_matrix: 4x4 or 3x3 Matrix
    :type rotation_matrix: Matrix
    :return: 3x1 Matrix, angle
    :rtype: (Matrix, Union[float, Symbol])
    """
    # TODO nan if angle 0
    # TODO use 'if' to make angle always positive?
    rm = rotation_matrix
    angle = (trace(rm[:3, :3]) - 1) / 2
    angle = sp.acos(angle)
    x = (rm[2, 1] - rm[1, 2])
    y = (rm[0, 2] - rm[2, 0])
    z = (rm[1, 0] - rm[0, 1])
    n = sp.sqrt(x * x + y * y + z * z)

    axis = sp.Matrix([x / n, y / n, z / n])
    return axis, angle
Ejemplo n.º 15
0
def axisanglecompose(axis_angle, axis_angle2):
    a = axisanglemagnitude(axis_angle)
    ah = axisanglenormalize(axis_angle)

    b = axisanglemagnitude(axis_angle2)
    bh = axisanglenormalize(axis_angle2)

    sina = sin(a / 2)
    asina = [ah[0] * sina, ah[1] * sina, ah[2] * sina]

    sinb = sin(b / 2)
    bsinb = [bh[0] * sinb, bh[1] * sinb, bh[2] * sinb]

    c = 2 * acos(cos(a / 2)*cos(b / 2) - dot3d(asina, bsinb))
    d = axisanglenormalize(cos(a / 2) * sp.Matrix(bsinb) + cos(b / 2) * sp.Matrix(asina) + cross3d(asina, bsinb))
    return sp.Matrix([
            c * d[0],
            c * d[1],
            c * d[2]
        ])
Ejemplo n.º 16
0
def diffable_axis_angle_from_matrix_stable(rotation_matrix):
    """
    :param rotation_matrix: 4x4 or 3x3 Matrix
    :type rotation_matrix: Matrix
    :return: 3x1 Matrix, angle
    :rtype: (Matrix, Union[float, Symbol])
    """
    # TODO buggy when angle == pi
    rm = rotation_matrix
    angle = (trace(rm[:3, :3]) - 1) / 2
    angle = diffable_min_fast(angle, 1)
    angle = diffable_max_fast(angle, -1)
    angle = se.acos(angle)
    x = (rm[2, 1] - rm[1, 2])
    y = (rm[0, 2] - rm[2, 0])
    z = (rm[1, 0] - rm[0, 1])
    n = se.sqrt(x * x + y * y + z * z)
    m = diffable_if_eq_zero(n, 1, n)
    axis = se.Matrix([diffable_if_eq_zero(n, 0, x / m),
                      diffable_if_eq_zero(n, 0, y / m),
                      diffable_if_eq_zero(n, 1, z / m)])
    return axis, angle