Ejemplo n.º 1
0
def floating_inertia_matrix(robo, symo):
    """
    Compute Inertia Matrix for robots with floating or mobile base. This
    function computes the A11, A12 and A22 matrices when the inertia
    matrix A = [A11, A12; A12.transpose(), A22]
    """
    # init terms
    comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo)
    aje1 = ParamsInit.init_vec(robo)
    forces = ParamsInit.init_vec(robo, ext=1)
    moments = ParamsInit.init_vec(robo, ext=1)
    inertia_a12 = ParamsInit.init_vec(robo, num=6)
    inertia_a22 = sympy.zeros(robo.nl, robo.nl)
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    for j in reversed(xrange(0, robo.NL)):
        replace_composite_terms(
            symo, j, comp_inertia3, comp_ms, comp_mass
        )
        if j != 0:
            compute_composite_inertia(
                robo, symo, j, antRj, antPj,
                aje1, comp_inertia3, comp_ms, comp_mass
            )
    for j in xrange(1, robo.NL):
        compute_diagonal_elements(
            robo, symo, j, comp_inertia3, comp_ms,
            comp_mass, forces, moments, inertia_a22
        )
        ka = j
        while ka != 0:
            k = ka
            ka = robo.ant[ka]
            compute_triangle_elements(
                robo, symo, j, k, ka, antRj, antPj, aje1,
                forces, moments, inertia_a12, inertia_a22
            )
    symo.mat_replace(inertia_a22, 'A', forced=True, symmet=True)
    inertia_a11 = inertia_spatial(
        comp_inertia3[0], comp_ms[0], comp_mass[0]
    )
    inertia_a11 = symo.mat_replace(
        inertia_a11, 'Jcomp', 0, forced=True, symmet=True
    )
    # setup inertia_a12 in Matrix form
    a12mat = sympy.zeros(6, robo.NL)
    for j in xrange(1, robo.NL):
        a12mat[:, j] = inertia_a12[j]
    a12mat = a12mat[:, 1:]
    # setup the complete inertia matrix
    inertia = Matrix([
        inertia_a11.row_join(a12mat),
        a12mat.transpose().row_join(inertia_a22)
    ])
    return inertia
Ejemplo n.º 2
0
def inertia_matrix(robo):
    """Computes Inertia Matrix using composed link

    Parameters
    ==========
    robo : Robot
        Instance of robot description container

    Returns
    =======
    symo.sydi : dictionary
        Dictionary with the information of all the sybstitution
    """
    Jplus, MSplus, Mplus = ParamsInit.init_jplus(robo)
    AJE1 = ParamsInit.init_vec(robo)
    f = ParamsInit.init_vec(robo, ext=1)
    n = ParamsInit.init_vec(robo, ext=1)
    A = sympy.zeros(robo.NL, robo.NL)
    symo = symbolmgr.SymbolManager()
    symo.file_open(robo, 'inm')
    title = 'Inertia Matrix using composite links'
    symo.write_params_table(robo, title, inert=True, dynam=True)
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    for j in reversed(xrange(-1, robo.NL)):
        replace_Jplus(robo, symo, j, Jplus, MSplus, Mplus)
        if j != -1:
            compute_Jplus(robo, symo, j, antRj, antPj, Jplus, MSplus, Mplus,
                          AJE1)
    for j in xrange(1, robo.NL):
        compute_A_diagonal(robo, symo, j, Jplus, MSplus, Mplus, f, n, A)
        ka = j
        while ka != -1:
            k = ka
            ka = robo.ant[ka]
            compute_A_triangle(robo, symo, j, k, ka, antRj, antPj, f, n, A,
                               AJE1)
    symo.mat_replace(A, 'A', forced=True, symmet=True)
    J_base = inertia_spatial(Jplus[-1], MSplus[-1], Mplus[-1])
    symo.mat_replace(J_base, 'JP', 0, forced=True, symmet=True)
    symo.file_close()
    return symo
Ejemplo n.º 3
0
def inertia_matrix(robo):
    """Computes Inertia Matrix using composed link

    Parameters
    ==========
    robo : Robot
        Instance of robot description container

    Returns
    =======
    symo.sydi : dictionary
        Dictionary with the information of all the sybstitution
    """
    Jplus, MSplus, Mplus = ParamsInit.init_jplus(robo)
    AJE1 = ParamsInit.init_vec(robo)
    f = ParamsInit.init_vec(robo, ext=1)
    n = ParamsInit.init_vec(robo, ext=1)
    A = sympy.zeros(robo.NL, robo.NL)
    symo = symbolmgr.SymbolManager()
    symo.file_open(robo, 'inm')
    title = 'Inertia Matrix using composite links'
    symo.write_params_table(robo, title, inert=True, dynam=True)
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    for j in reversed(xrange(-1, robo.NL)):
        replace_Jplus(robo, symo, j, Jplus, MSplus, Mplus)
        if j != - 1:
            compute_Jplus(robo, symo, j, antRj, antPj,
                          Jplus, MSplus, Mplus, AJE1)
    for j in xrange(1, robo.NL):
        compute_A_diagonal(robo, symo, j, Jplus, MSplus, Mplus, f, n, A)
        ka = j
        while ka != - 1:
            k = ka
            ka = robo.ant[ka]
            compute_A_triangle(robo, symo, j, k, ka,
                               antRj, antPj, f, n, A, AJE1)
    symo.mat_replace(A, 'A', forced=True, symmet=True)
    J_base = inertia_spatial(Jplus[-1], MSplus[-1], Mplus[-1])
    symo.mat_replace(J_base, 'JP', 0, forced=True, symmet=True)
    symo.file_close()
    return symo
Ejemplo n.º 4
0
def fixed_inertia_matrix(robo, symo):
    """
    Compute Inertia Matrix for robots with fixed base. This function
    computes just the A22 matrix when the inertia matrix
    A = [A11, A12; A12.transpose(), A22].
    """
    # init terms
    comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo)
    aje1 = ParamsInit.init_vec(robo)
    forces = ParamsInit.init_vec(robo, ext=1)
    moments = ParamsInit.init_vec(robo, ext=1)
    inertia_a12 = ParamsInit.init_vec(robo, num=6)
    inertia_a22 = sympy.zeros(robo.nl, robo.nl)
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    for j in reversed(xrange(1, robo.NL)):
        replace_composite_terms(
            symo, j, comp_inertia3, comp_ms, comp_mass
        )
        if j != 1:
            compute_composite_inertia(
                robo, symo, j, antRj, antPj,
                aje1, comp_inertia3, comp_ms, comp_mass
            )
    for j in xrange(1, robo.NL):
        compute_diagonal_elements(
            robo, symo, j, comp_inertia3, comp_ms,
            comp_mass, forces, moments, inertia_a22
        )
        ka = j
        while ka != 1:
            k = ka
            ka = robo.ant[ka]
            compute_triangle_elements(
                robo, symo, j, k, ka, antRj, antPj, aje1,
                forces, moments, inertia_a12, inertia_a22
            )
    symo.mat_replace(inertia_a22, 'A', forced=True, symmet=True)
    return inertia_a22
Ejemplo n.º 5
0
def flexible_inverse_dynmodel(robo, symo):
    """
    Compute the Inverse Dynamic Model using Newton-Euler algorithm for
    robots with flexible joints (fixed and floating base).

    Parameters:
        robo: Robot - instance of robot description container
        symo: symbolmgr.SymbolManager - instance of symbol manager
    """
    # antecedent angular velocity, projected into jth frame
    # j^omega_i
    wi = ParamsInit.init_vec(robo)
    # j^omega_j
    w = ParamsInit.init_w(robo)
    # j^a_j -- joint axis in screw form
    jaj = ParamsInit.init_vec(robo, 6)
    # Twist transform list of Matrices 6x6
    grandJ = ParamsInit.init_mat(robo, 6)
    jTant = ParamsInit.init_mat(robo, 6)
    gamma = ParamsInit.init_vec(robo, 6)
    beta = ParamsInit.init_vec(robo, 6)
    zeta = ParamsInit.init_vec(robo, 6)
    h_inv = ParamsInit.init_scalar(robo)
    jah = ParamsInit.init_vec(robo, 6)   # Jj*aj*Hinv_j
    tau = ParamsInit.init_scalar(robo)
    star_inertia = ParamsInit.init_mat(robo, 6)
    star_beta = ParamsInit.init_vec(robo, 6)
    comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo)
    qddot = ParamsInit.init_scalar(robo)
    grandVp = ParamsInit.init_vec(robo, 6)
    react_wrench = ParamsInit.init_vec(robo, 6)
    torque = ParamsInit.init_scalar(robo)
    # flag variables
    use_composite = True
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    # first forward recursion
    for j in xrange(1, robo.NL):
        # compute spatial inertia matrix for use in backward recursion
        grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
        # set jaj vector
        if robo.sigma[j] == 0:
            jaj[j] = Matrix([0, 0, 0, 0, 0, 1])
        elif robo.sigma[j] == 1:
            jaj[j] = Matrix([0, 0, 1, 0, 0, 0])
        # compute j^omega_j and j^omega_i
        compute_omega(robo, symo, j, antRj, w, wi)
        # compute j^S_i : screw transformation matrix
        compute_screw_transform(robo, symo, j, antRj, antPj, jTant)
        # compute j^gamma_j : gyroscopic acceleration (6x1)
        compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma)
        # compute j^beta_j : external+coriolis+centrifugal wrench (6x1)
        compute_beta(robo, symo, j, w, beta)
        if not robo.eta[j]:
            # when rigid
            # compute j^zeta_j : relative acceleration (6x1)
            compute_zeta(robo, symo, j, gamma, jaj, zeta)
    # decide first link
    first_link = 0 if robo.is_floating else 1
    # first backward recursion - initialisation step
    for j in reversed(xrange(first_link, robo.NL)):
        if j == first_link and robo.is_floating:
            # compute spatial inertia matrix for base
            grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
            # compute 0^beta_0
            compute_beta(robo, symo, j, w, beta)
        replace_star_terms(
            symo, grandJ, beta, j, star_inertia, star_beta
        )
    # second backward recursion - compute star terms
    for j in reversed(xrange(first_link, robo.NL)):
        replace_star_terms(
            symo, star_inertia, star_beta, j,
            star_inertia, star_beta
        )
        if j == first_link:
            continue
        # set composite flag to false when flexible
        if robo.eta[j]: use_composite = False
        if use_composite:
            # use composite
            compute_composite_inertia(
                robo, symo, j, antRj, antPj,
                comp_inertia3, comp_ms, comp_mass, star_inertia
            )
            compute_composite_beta(
                robo, symo, j, jTant, zeta, star_inertia, star_beta
            )
        else:
            # use star
            if robo.eta[j]:
                compute_tau(
                    robo, symo, j, jaj, star_beta, tau, flex=True
                )
            compute_star_terms(
                robo, symo, j, jaj, jTant, gamma, tau,
                h_inv, jah, star_inertia, star_beta, flex=True
            )
    # compute base acceleration : this returns the correct value for
    # fixed base and floating base robots
    compute_base_accel(
        robo, symo, star_inertia, star_beta, grandVp
    )
    # second forward recursion
    for j in xrange(1, robo.NL):
        if robo.eta[j]:
            # when flexible
            # compute qddot_j : joint acceleration
            compute_joint_accel(
                robo, symo, j, jaj, jTant, h_inv, jah, gamma,
                tau, grandVp, star_beta, star_inertia, qddot
            )
            # compute j^zeta_j : relative acceleration (6x1)
            compute_zeta(robo, symo, j, gamma, jaj, zeta, qddot)
        # compute j^Vdot_j : link acceleration
        compute_link_accel(robo, symo, j, jTant, zeta, grandVp)
        # compute j^F_j : reaction wrench
        compute_reaction_wrench(
            robo, symo, j, grandVp,
            star_inertia, star_beta, react_wrench
        )
        if not robo.eta[j]:
            # when rigid compute torque
            compute_torque(robo, symo, j, jaj, react_wrench, torque)
Ejemplo n.º 6
0
def composite_inverse_dynmodel(robo, symo):
    """
    Compute the Inverse Dynamic Model using Composite link Newton-Euler
    algorithm for tree structure robots with fixed and floating base.

    Parameters:
        robo: Robot - instance of robot description container
        symo: symbolmgr.SymbolManager - instance of symbol manager
    """
    # antecedent angular velocity, projected into jth frame
    # j^omega_i
    wi = ParamsInit.init_vec(robo)
    # j^omega_j
    w = ParamsInit.init_w(robo)
    # j^a_j -- joint axis in screw form
    jaj = ParamsInit.init_vec(robo, 6)
    # Twist transform list of Matrices 6x6
    grandJ = ParamsInit.init_mat(robo, 6)
    jTant = ParamsInit.init_mat(robo, 6)
    gamma = ParamsInit.init_vec(robo, 6)
    beta = ParamsInit.init_vec(robo, 6)
    zeta = ParamsInit.init_vec(robo, 6)
    composite_inertia = ParamsInit.init_mat(robo, 6)
    composite_beta = ParamsInit.init_vec(robo, 6)
    comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo)
    grandVp = ParamsInit.init_vec(robo, 6)
    react_wrench = ParamsInit.init_vec(robo, 6)
    torque = ParamsInit.init_scalar(robo)
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    # first forward recursion
    for j in xrange(1, robo.NL):
        # compute spatial inertia matrix for use in backward recursion
        grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
        # set jaj vector
        if robo.sigma[j] == 0:
            jaj[j] = Matrix([0, 0, 0, 0, 0, 1])
        elif robo.sigma[j] == 1:
            jaj[j] = Matrix([0, 0, 1, 0, 0, 0])
        # compute j^omega_j and j^omega_i
        compute_omega(robo, symo, j, antRj, w, wi)
        # compute j^S_i : screw transformation matrix
        compute_screw_transform(robo, symo, j, antRj, antPj, jTant)
    # first forward recursion (still)
    for j in xrange(1, robo.NL):
        # compute j^gamma_j : gyroscopic acceleration (6x1)
        compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma)
        # compute j^beta_j : external+coriolis+centrifugal wrench (6x1)
        compute_beta(robo, symo, j, w, beta)
        # compute j^zeta_j : relative acceleration (6x1)
        compute_zeta(robo, symo, j, gamma, jaj, zeta)
    # first backward recursion - initialisation step
    for j in reversed(xrange(0, robo.NL)):
        if j == 0:
            # compute spatial inertia matrix for base
            grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
            # compute 0^beta_0
            compute_beta(robo, symo, j, w, beta)
        replace_composite_terms(
            symo, grandJ, beta, j, composite_inertia, composite_beta
        )
    # second backward recursion - compute composite term
    for j in reversed(xrange(0, robo.NL)):
        replace_composite_terms(
            symo, composite_inertia, composite_beta, j,
            composite_inertia, composite_beta, replace=True
        )
        if j == 0:
            continue
        compute_composite_inertia(
            robo, symo, j, antRj, antPj,
            comp_inertia3, comp_ms, comp_mass, composite_inertia
        )
        compute_composite_beta(
            robo, symo, j, jTant, zeta, composite_inertia, composite_beta
        )
    # compute base acceleration : this returns the correct value for
    # fixed base and floating base robots
    compute_base_accel_composite(
        robo, symo, composite_inertia, composite_beta, grandVp
    )
    # second forward recursion
    for j in xrange(1, robo.NL):
        # compute j^Vdot_j : link acceleration
        compute_link_accel(robo, symo, j, jTant, zeta, grandVp)
        # compute j^F_j : reaction wrench
        compute_reaction_wrench(
            robo, symo, j, grandVp,
            composite_inertia, composite_beta, react_wrench
        )
    # second forward recursion still - to make the output pretty
    for j in xrange(1, robo.NL):
        # compute torque
        compute_torque(robo, symo, j, jaj, react_wrench, torque)
Ejemplo n.º 7
0
def flexible_inverse_dynmodel(robo, symo):
    """
    Compute the Inverse Dynamic Model using Newton-Euler algorithm for
    robots with flexible joints (fixed and floating base).

    Parameters:
        robo: Robot - instance of robot description container
        symo: symbolmgr.SymbolManager - instance of symbol manager
    """
    # antecedent angular velocity, projected into jth frame
    # j^omega_i
    wi = ParamsInit.init_vec(robo)
    # j^omega_j
    w = ParamsInit.init_w(robo)
    # j^a_j -- joint axis in screw form
    jaj = ParamsInit.init_vec(robo, 6)
    # Twist transform list of Matrices 6x6
    grandJ = ParamsInit.init_mat(robo, 6)
    jTant = ParamsInit.init_mat(robo, 6)
    gamma = ParamsInit.init_vec(robo, 6)
    beta = ParamsInit.init_vec(robo, 6)
    zeta = ParamsInit.init_vec(robo, 6)
    h_inv = ParamsInit.init_scalar(robo)
    jah = ParamsInit.init_vec(robo, 6)  # Jj*aj*Hinv_j
    tau = ParamsInit.init_scalar(robo)
    star_inertia = ParamsInit.init_mat(robo, 6)
    star_beta = ParamsInit.init_vec(robo, 6)
    comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo)
    qddot = ParamsInit.init_scalar(robo)
    grandVp = ParamsInit.init_vec(robo, 6)
    react_wrench = ParamsInit.init_vec(robo, 6)
    torque = ParamsInit.init_scalar(robo)
    # flag variables
    use_composite = True
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    # first forward recursion
    for j in xrange(1, robo.NL):
        # compute spatial inertia matrix for use in backward recursion
        grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
        # set jaj vector
        if robo.sigma[j] == 0:
            jaj[j] = Matrix([0, 0, 0, 0, 0, 1])
        elif robo.sigma[j] == 1:
            jaj[j] = Matrix([0, 0, 1, 0, 0, 0])
        # compute j^omega_j and j^omega_i
        compute_omega(robo, symo, j, antRj, w, wi)
        # compute j^S_i : screw transformation matrix
        compute_screw_transform(robo, symo, j, antRj, antPj, jTant)
        # compute j^gamma_j : gyroscopic acceleration (6x1)
        compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma)
        # compute j^beta_j : external+coriolis+centrifugal wrench (6x1)
        compute_beta(robo, symo, j, w, beta)
        if not robo.eta[j]:
            # when rigid
            # compute j^zeta_j : relative acceleration (6x1)
            compute_zeta(robo, symo, j, gamma, jaj, zeta)
    # decide first link
    first_link = 0 if robo.is_floating else 1
    # first backward recursion - initialisation step
    for j in reversed(xrange(first_link, robo.NL)):
        if j == first_link and robo.is_floating:
            # compute spatial inertia matrix for base
            grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
            # compute 0^beta_0
            compute_beta(robo, symo, j, w, beta)
        replace_star_terms(symo, grandJ, beta, j, star_inertia, star_beta)
    # second backward recursion - compute star terms
    for j in reversed(xrange(first_link, robo.NL)):
        replace_star_terms(symo, star_inertia, star_beta, j, star_inertia,
                           star_beta)
        if j == first_link:
            continue
        # set composite flag to false when flexible
        if robo.eta[j]: use_composite = False
        if use_composite:
            # use composite
            compute_composite_inertia(robo, symo, j, antRj, antPj,
                                      comp_inertia3, comp_ms, comp_mass,
                                      star_inertia)
            compute_composite_beta(robo, symo, j, jTant, zeta, star_inertia,
                                   star_beta)
        else:
            # use star
            if robo.eta[j]:
                compute_tau(robo, symo, j, jaj, star_beta, tau, flex=True)
            compute_star_terms(robo,
                               symo,
                               j,
                               jaj,
                               jTant,
                               gamma,
                               tau,
                               h_inv,
                               jah,
                               star_inertia,
                               star_beta,
                               flex=True)
    # compute base acceleration : this returns the correct value for
    # fixed base and floating base robots
    compute_base_accel(robo, symo, star_inertia, star_beta, grandVp)
    # second forward recursion
    for j in xrange(1, robo.NL):
        if robo.eta[j]:
            # when flexible
            # compute qddot_j : joint acceleration
            compute_joint_accel(robo, symo, j, jaj, jTant, h_inv, jah, gamma,
                                tau, grandVp, star_beta, star_inertia, qddot)
            # compute j^zeta_j : relative acceleration (6x1)
            compute_zeta(robo, symo, j, gamma, jaj, zeta, qddot)
        # compute j^Vdot_j : link acceleration
        compute_link_accel(robo, symo, j, jTant, zeta, grandVp)
        # compute j^F_j : reaction wrench
        compute_reaction_wrench(robo, symo, j, grandVp, star_inertia,
                                star_beta, react_wrench)
        if not robo.eta[j]:
            # when rigid compute torque
            compute_torque(robo, symo, j, jaj, react_wrench, torque)
Ejemplo n.º 8
0
def composite_inverse_dynmodel(robo, symo):
    """
    Compute the Inverse Dynamic Model using Composite link Newton-Euler
    algorithm for tree structure robots with fixed and floating base.

    Parameters:
        robo: Robot - instance of robot description container
        symo: symbolmgr.SymbolManager - instance of symbol manager
    """
    # antecedent angular velocity, projected into jth frame
    # j^omega_i
    wi = ParamsInit.init_vec(robo)
    # j^omega_j
    w = ParamsInit.init_w(robo)
    # j^a_j -- joint axis in screw form
    jaj = ParamsInit.init_vec(robo, 6)
    # Twist transform list of Matrices 6x6
    grandJ = ParamsInit.init_mat(robo, 6)
    jTant = ParamsInit.init_mat(robo, 6)
    gamma = ParamsInit.init_vec(robo, 6)
    beta = ParamsInit.init_vec(robo, 6)
    zeta = ParamsInit.init_vec(robo, 6)
    composite_inertia = ParamsInit.init_mat(robo, 6)
    composite_beta = ParamsInit.init_vec(robo, 6)
    comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo)
    grandVp = ParamsInit.init_vec(robo, 6)
    react_wrench = ParamsInit.init_vec(robo, 6)
    torque = ParamsInit.init_scalar(robo)
    # init transformation
    antRj, antPj = compute_rot_trans(robo, symo)
    # first forward recursion
    for j in xrange(1, robo.NL):
        # compute spatial inertia matrix for use in backward recursion
        grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
        # set jaj vector
        if robo.sigma[j] == 0:
            jaj[j] = Matrix([0, 0, 0, 0, 0, 1])
        elif robo.sigma[j] == 1:
            jaj[j] = Matrix([0, 0, 1, 0, 0, 0])
        # compute j^omega_j and j^omega_i
        compute_omega(robo, symo, j, antRj, w, wi)
        # compute j^S_i : screw transformation matrix
        compute_screw_transform(robo, symo, j, antRj, antPj, jTant)
    # first forward recursion (still)
    for j in xrange(1, robo.NL):
        # compute j^gamma_j : gyroscopic acceleration (6x1)
        compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma)
        # compute j^beta_j : external+coriolis+centrifugal wrench (6x1)
        compute_beta(robo, symo, j, w, beta)
        # compute j^zeta_j : relative acceleration (6x1)
        compute_zeta(robo, symo, j, gamma, jaj, zeta)
    # first backward recursion - initialisation step
    for j in reversed(xrange(0, robo.NL)):
        if j == 0:
            # compute spatial inertia matrix for base
            grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j])
            # compute 0^beta_0
            compute_beta(robo, symo, j, w, beta)
        replace_composite_terms(symo, grandJ, beta, j, composite_inertia,
                                composite_beta)
    # second backward recursion - compute composite term
    for j in reversed(xrange(0, robo.NL)):
        replace_composite_terms(symo,
                                composite_inertia,
                                composite_beta,
                                j,
                                composite_inertia,
                                composite_beta,
                                replace=True)
        if j == 0:
            continue
        compute_composite_inertia(robo, symo, j, antRj, antPj, comp_inertia3,
                                  comp_ms, comp_mass, composite_inertia)
        compute_composite_beta(robo, symo, j, jTant, zeta, composite_inertia,
                               composite_beta)
    # compute base acceleration : this returns the correct value for
    # fixed base and floating base robots
    compute_base_accel_composite(robo, symo, composite_inertia, composite_beta,
                                 grandVp)
    # second forward recursion
    for j in xrange(1, robo.NL):
        # compute j^Vdot_j : link acceleration
        compute_link_accel(robo, symo, j, jTant, zeta, grandVp)
        # compute j^F_j : reaction wrench
        compute_reaction_wrench(robo, symo, j, grandVp, composite_inertia,
                                composite_beta, react_wrench)
    # second forward recursion still - to make the output pretty
    for j in xrange(1, robo.NL):
        # compute torque
        compute_torque(robo, symo, j, jaj, react_wrench, torque)