Ejemplo n.º 1
0
def canonicalize(g, dummies, msym, *v):
    """
    canonicalize tensor formed by tensors

    Parameters
    ==========

    g : permutation representing the tensor

    dummies : list representing the dummy indices
      it can be a list of dummy indices of the same type
      or a list of lists of dummy indices, one list for each
      type of index;
      the dummy indices must come after the free indices,
      and put in order contravariant, covariant
      [d0, -d0, d1,-d1,...]
    msym :  symmetry of the metric(s)
        it can be an integer or a list;
        in the first case it is the symmetry of the dummy index metric;
        in the second case it is the list of the symmetries of the
        index metric for each type
    v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`

    base_i, gens_i : BSGS for tensors of this type.
        The BSGS should have minimal base under lexicographic ordering;
        if not, an attempt is made do get the minimal BSGS;
        in case of failure,
        canonicalize_naive is used, which is much slower.

    n_i :    number of tensors of type `i`.

    sym_i :  symmetry under exchange of component tensors of type `i`.

        Both for msym and sym_i the cases are
            * None  no symmetry
            * 0     commuting
            * 1     anticommuting

    Returns
    =======

    0 if the tensor is zero, else return the array form of
    the permutation representing the canonical form of the tensor.

    Algorithm
    =========

    First one uses canonical_free to get the minimum tensor under
    lexicographic order, using only the slot symmetries.
    If the component tensors have not minimal BSGS, it is attempted
    to find it; if the attempt fails canonicalize_naive
    is used instead.

    Compute the residual slot symmetry keeping fixed the free indices
    using tensor_gens(base, gens, list_free_indices, sym).

    Reduce the problem eliminating the free indices.

    Then use double_coset_can_rep and lift back the result reintroducing
    the free indices.

    Examples
    ========

    one type of index with commuting metric;

    `A_{a b}` and `B_{a b}` antisymmetric and commuting

    `T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`

    `ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices

    g = [1, 3, 0, 5, 4, 2, 6, 7]

    `T_c = 0`

    >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
    >>> from sympy.combinatorics import Permutation
    >>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
    >>> t0 = (base2a, gens2a, 1, 0)
    >>> t1 = (base2a, gens2a, 2, 0)
    >>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
    >>> canonicalize(g, range(6), 0, t0, t1)
    0

    same as above, but with `B_{a b}` anticommuting

    `T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`

    can = [0,2,1,4,3,5,7,6]

    >>> t1 = (base2a, gens2a, 2, 1)
    >>> canonicalize(g, range(6), 0, t0, t1)
    [0, 2, 1, 4, 3, 5, 7, 6]

    two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
    both with commuting metric

    `f^{a b c}` antisymmetric, commuting

    `A_{m a}` no symmetry, commuting

    `T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`

    ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]

    g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]

    The canonical tensor is
    `T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`

    can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]

    >>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
    >>> base1, gens1 = get_symmetric_group_sgs(1)
    >>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
    >>> t0 = (base_f, gens_f, 2, 0)
    >>> t1 = (base_A, gens_A, 4, 0)
    >>> dummies = [range(2, 10), range(10, 14)]
    >>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
    >>> canonicalize(g, dummies, [0, 0], t0, t1)
    [0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
    """
    from sympy.combinatorics.testutil import canonicalize_naive
    if not isinstance(msym, list):
        if not msym in [0, 1, None]:
            raise ValueError('msym must be 0, 1 or None')
        num_types = 1
    else:
        num_types = len(msym)
        if not all(msymx in [0, 1, None] for msymx in msym):
            raise ValueError('msym entries must be 0, 1 or None')
        if len(dummies) != num_types:
            raise ValueError(
                'dummies and msym must have the same number of elements')
    size = g.size
    num_tensors = 0
    v1 = []
    for i in range(len(v)):
        base_i, gens_i, n_i, sym_i = v[i]
        # check that the BSGS is minimal;
        # this property is used in double_coset_can_rep;
        # if it is not minimal use canonicalize_naive
        if not _is_minimal_bsgs(base_i, gens_i):
            mbsgs = get_minimal_bsgs(base_i, gens_i)
            if not mbsgs:
                can = canonicalize_naive(g, dummies, msym, *v)
                return can
            base_i, gens_i = mbsgs
        v1.append((base_i, gens_i, [[]] * n_i, sym_i))
        num_tensors += n_i

    if num_types == 1 and not isinstance(msym, list):
        dummies = [dummies]
        msym = [msym]
    flat_dummies = []
    for dumx in dummies:
        flat_dummies.extend(dumx)

    if flat_dummies and flat_dummies != list(
            range(flat_dummies[0], flat_dummies[-1] + 1)):
        raise ValueError('dummies is not valid')

    # slot symmetry of the tensor
    size1, sbase, sgens = gens_products(*v1)
    if size != size1:
        raise ValueError('g has size %d, generators have size %d' %
                         (size, size1))
    free = [i for i in range(size - 2) if i not in flat_dummies]
    num_free = len(free)

    # g1 minimal tensor under slot symmetry
    g1 = canonical_free(sbase, sgens, g, num_free)
    if not flat_dummies:
        return g1
    # save the sign of g1
    sign = 0 if g1[-1] == size - 1 else 1

    # the free indices are kept fixed.
    # Determine free_i, the list of slots of tensors which are fixed
    # since they are occupied by free indices, which are fixed.
    start = 0
    for i in range(len(v)):
        free_i = []
        base_i, gens_i, n_i, sym_i = v[i]
        len_tens = gens_i[0].size - 2
        # for each component tensor get a list od fixed islots
        for j in range(n_i):
            # get the elements corresponding to the component tensor
            h = g1[start:(start + len_tens)]
            fr = []
            # get the positions of the fixed elements in h
            for k in free:
                if k in h:
                    fr.append(h.index(k))
            free_i.append(fr)
            start += len_tens
        v1[i] = (base_i, gens_i, free_i, sym_i)
    # BSGS of the tensor with fixed free indices
    # if tensor_gens fails in gens_product, use canonicalize_naive
    size, sbase, sgens = gens_products(*v1)

    # reduce the permutations getting rid of the free indices
    pos_free = [g1.index(x) for x in range(num_free)]
    size_red = size - num_free
    g1_red = [x - num_free for x in g1 if x in flat_dummies]
    if sign:
        g1_red.extend([size_red - 1, size_red - 2])
    else:
        g1_red.extend([size_red - 2, size_red - 1])
    map_slots = _get_map_slots(size, pos_free)
    sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
    sgens_red = [
        _af_new([map_slots[i] for i in y._array_form if i not in pos_free])
        for y in sgens
    ]
    dummies_red = [[x - num_free for x in y] for y in dummies]
    transv_red = get_transversals(sbase_red, sgens_red)
    g1_red = _af_new(g1_red)
    g2 = double_coset_can_rep(dummies_red, msym, sbase_red, sgens_red,
                              transv_red, g1_red)
    if g2 == 0:
        return 0
    # lift to the case with the free indices
    g3 = _lift_sgens(size, pos_free, free, g2)
    return g3
Ejemplo n.º 2
0
def test_riemann_products():
    baser, gensr = riemann_bsgs
    base1, gens1 = get_symmetric_group_sgs(1)
    base2, gens2 = get_symmetric_group_sgs(2)
    base2a, gens2a = get_symmetric_group_sgs(2, 1)

    # R^{a b d0}_d0 = 0
    g = Permutation([0, 1, 2, 3, 4, 5])
    can = canonicalize(g, list(range(2, 4)), 0, (baser, gensr, 1, 0))
    assert can == 0

    # R^{d0 b a}_d0 ; ord = [a,b,d0,-d0}; g = [2,1,0,3,4,5]
    # T_c = -R^{a d0 b}_d0;  can = [0,2,1,3,5,4]
    g = Permutation([2, 1, 0, 3, 4, 5])
    can = canonicalize(g, list(range(2, 4)), 0, (baser, gensr, 1, 0))
    assert can == [0, 2, 1, 3, 5, 4]

    # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2]
    # g = [4,7,1,3,2,0,5,6,8,9]
    # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2}
    # can = [0,2,4,6,1,3,5,7,9,8]
    g = Permutation([4, 7, 1, 3, 2, 0, 5, 6, 8, 9])
    can = canonicalize(g, list(range(2, 8)), 0, (baser, gensr, 2, 0))
    assert can == [0, 2, 4, 6, 1, 3, 5, 7, 9, 8]
    can1 = canonicalize_naive(g, list(range(2, 8)), 0, (baser, gensr, 2, 0))
    assert can == can1

    # A symmetric commuting
    # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5}
    # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15]
    # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6}

    g = Permutation([12, 10, 5, 2, 8, 0, 4, 6, 13, 1, 7, 3, 9, 11, 14, 15])
    can = canonicalize(g, list(range(14)), 0, ((baser, gensr, 2, 0)),
                       (base2, gens2, 3, 0))
    assert can == [0, 2, 4, 6, 1, 8, 10, 12, 3, 9, 5, 11, 7, 13, 15, 14]

    # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1}
    # ord = [a0,a1,a2,a3,a4,a5,d0,-d0,d1,-d1,d2,-d2]
    #         0  1  2  3 4  5  6   7  8   9  10  11
    # can = [0, 6, 2, 8, 1, 3, 7, 10, 4, 5, 9, 11, 12, 13]
    # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2}
    g = Permutation([10, 0, 2, 6, 8, 11, 1, 3, 4, 5, 7, 9, 12, 13])
    can = canonicalize(g, list(range(6, 12)), 0, (baser, gensr, 3, 0))
    assert can == [0, 6, 2, 8, 1, 3, 7, 10, 4, 5, 9, 11, 12, 13]
    #can1 = canonicalize_naive(g, list(range(6,12)), 0, (baser, gensr, 3, 0))
    #assert can == can1

    # A^n_{i, j} antisymmetric in i,j
    # A_m0^d0_a1 * A_m1^a0_d0; ord = [m0,m1,a0,a1,d0,-d0]
    # g = [0,4,3,1,2,5,6,7]
    # T_c = -A_{m a1}^d0 * A_m1^a0_d0
    # can = [0,3,4,1,2,5,7,6]
    base, gens = bsgs_direct_product(base1, gens1, base2a, gens2a)
    dummies = list(range(4, 6))
    g = Permutation([0, 4, 3, 1, 2, 5, 6, 7])
    can = canonicalize(g, dummies, 0, (base, gens, 2, 0))
    assert can == [0, 3, 4, 1, 2, 5, 7, 6]

    # A^n_{i, j} symmetric in i,j
    # A^m0_a0^d2 * A^n0_d2^d1 * A^n1_d1^d0 * A_{m0 d0}^a1
    # ordering: first the free indices; then first n, then d
    # ord=[n0,n1,a0,a1, m0,-m0,d0,-d0,d1,-d1,d2,-d2]
    #      0  1   2  3   4  5  6   7  8   9  10  11]
    # g = [4,2,10, 0,11,8, 1,9,6, 5,7,3, 12,13]
    # if the dummy indices m_i and d_i were separated,
    # one gets
    # T_c = A^{n0 d0 d1} * A^n1_d0^d2 * A^m0^a0_d1 * A_m0^a1_d2
    # can = [0, 6, 8, 1, 7, 10, 4, 2, 9, 5, 3, 11, 12, 13]
    # If they are not, so can is
    # T_c = A^{n0 m0 d0} A^n1_m0^d1 A^{d2 a0}_d0 A_d2^a1_d1
    # can = [0, 4, 6, 1, 5, 8, 10, 2, 7, 11, 3, 9, 12, 13]
    # case with single type of indices

    base, gens = bsgs_direct_product(base1, gens1, base2, gens2)
    dummies = list(range(4, 12))
    g = Permutation([4, 2, 10, 0, 11, 8, 1, 9, 6, 5, 7, 3, 12, 13])
    can = canonicalize(g, dummies, 0, (base, gens, 4, 0))
    assert can == [0, 4, 6, 1, 5, 8, 10, 2, 7, 11, 3, 9, 12, 13]
    # case with separated indices
    dummies = [list(range(4, 6)), list(range(6, 12))]
    sym = [0, 0]
    can = canonicalize(g, dummies, sym, (base, gens, 4, 0))
    assert can == [0, 6, 8, 1, 7, 10, 4, 2, 9, 5, 3, 11, 12, 13]
    # case with separated indices with the second type of index
    # with antisymmetric metric: there is a sign change
    sym = [0, 1]
    can = canonicalize(g, dummies, sym, (base, gens, 4, 0))
    assert can == [0, 6, 8, 1, 7, 10, 4, 2, 9, 5, 3, 11, 13, 12]
Ejemplo n.º 3
0
def test_canonicalize1():
    base1, gens1 = get_symmetric_group_sgs(1)
    base1a, gens1a = get_symmetric_group_sgs(1, 1)
    base2, gens2 = get_symmetric_group_sgs(2)
    base3, gens3 = get_symmetric_group_sgs(3)
    base2a, gens2a = get_symmetric_group_sgs(2, 1)
    base3a, gens3a = get_symmetric_group_sgs(3, 1)

    # A_d0*A^d0; ord = [d0,-d0]; g = [1,0,2,3]
    # T_c = A^d0*A_d0; can = [0,1,2,3]
    g = Permutation([1, 0, 2, 3])
    can = canonicalize(g, [0, 1], 0, (base1, gens1, 2, 0))
    assert can == list(range(4))

    # A commuting
    # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0; ord=[d0,-d0,d1,-d1,d2,-d2]
    # g = [1,3,5,4,2,0,6,7]
    # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2; can = list(range(8))
    g = Permutation([1, 3, 5, 4, 2, 0, 6, 7])
    can = canonicalize(g, list(range(6)), 0, (base1, gens1, 6, 0))
    assert can == list(range(8))

    # A anticommuting
    # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0; ord=[d0,-d0,d1,-d1,d2,-d2]
    # g = [1,3,5,4,2,0,6,7]
    # T_c 0;  can = 0
    g = Permutation([1, 3, 5, 4, 2, 0, 6, 7])
    can = canonicalize(g, list(range(6)), 0, (base1, gens1, 6, 1))
    assert can == 0
    can1 = canonicalize_naive(g, list(range(6)), 0, (base1, gens1, 6, 1))
    assert can1 == 0

    # A commuting symmetric
    # A^{d0 b}*A^a_d1*A^d1_d0; ord=[a,b,d0,-d0,d1,-d1]
    # g = [2,1,0,5,4,3,6,7]
    # T_c = A^{a d0}*A^{b d1}*A_{d0 d1}; can = [0,2,1,4,3,5,6,7]
    g = Permutation([2, 1, 0, 5, 4, 3, 6, 7])
    can = canonicalize(g, list(range(2, 6)), 0, (base2, gens2, 3, 0))
    assert can == [0, 2, 1, 4, 3, 5, 6, 7]

    # A, B commuting symmetric
    # A^{d0 b}*A^d1_d0*B^a_d1; ord=[a,b,d0,-d0,d1,-d1]
    # g = [2,1,4,3,0,5,6,7]
    # T_c = A^{b d0}*A_d0^d1*B^a_d1; can = [1,2,3,4,0,5,6,7]
    g = Permutation([2, 1, 4, 3, 0, 5, 6, 7])
    can = canonicalize(g, list(range(2, 6)), 0, (base2, gens2, 2, 0),
                       (base2, gens2, 1, 0))
    assert can == [1, 2, 3, 4, 0, 5, 6, 7]

    # A commuting symmetric
    # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1]
    # g = [4,2,1,0,5,3,6,7]
    # T_c = A^{a d0 d1}*A^{b}_{d0 d1}; can = [0,2,4,1,3,5,6,7]
    g = Permutation([4, 2, 1, 0, 5, 3, 6, 7])
    can = canonicalize(g, list(range(2, 6)), 0, (base3, gens3, 2, 0))
    assert can == [0, 2, 4, 1, 3, 5, 6, 7]

    # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0
    # ord = [a0,a1,a2,a3,d0,-d0,d1,-d1,d2,-d2,d3,-d3]
    #        0   1  2  3  4  5  6   7  8   9  10  11
    # g = [10,4,8, 0,7,9, 6,11,1, 2,3,5, 12,13]
    # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3}
    # can = [0,4,6, 1,5,8, 2,3,10, 7,9,11, 12,13]
    g = Permutation([10, 4, 8, 0, 7, 9, 6, 11, 1, 2, 3, 5, 12, 13])
    can = canonicalize(g, list(range(4, 12)), 0, (base3, gens3, 4, 0))
    assert can == [0, 4, 6, 1, 5, 8, 2, 3, 10, 7, 9, 11, 12, 13]

    # A commuting symmetric, B antisymmetric
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # ord = [d0,-d0,d1,-d1,d2,-d2,d3,-d3]
    # g = [0,2,4,5,7,3,1,6,8,9]
    # in this esxample and in the next three,
    # renaming dummy indices and using symmetry of A,
    # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
    # can = 0
    g = Permutation([0, 2, 4, 5, 7, 3, 1, 6, 8, 9])
    can = canonicalize(g, list(range(8)), 0, (base3, gens3, 2, 0),
                       (base2a, gens2a, 1, 0))
    assert can == 0
    # A anticommuting symmetric, B anticommuting
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
    # can = [0,2,4, 1,3,6, 5,7, 8,9]
    can = canonicalize(g, list(range(8)), 0, (base3, gens3, 2, 1),
                       (base2a, gens2a, 1, 0))
    assert can == [0, 2, 4, 1, 3, 6, 5, 7, 8, 9]
    # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
    # can = [0,2,4, 1,3,6, 5,7, 9,8]
    can = canonicalize(g, list(range(8)), 1, (base3, gens3, 2, 1),
                       (base2a, gens2a, 1, 0))
    assert can == [0, 2, 4, 1, 3, 6, 5, 7, 9, 8]

    # A anticommuting symmetric, B anticommuting anticommuting,
    # no metric symmetry
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
    # can = [0,2,4, 1,3,7, 5,6, 8,9]
    can = canonicalize(g, list(range(8)), None, (base3, gens3, 2, 1),
                       (base2a, gens2a, 1, 0))
    assert can == [0, 2, 4, 1, 3, 7, 5, 6, 8, 9]

    # Gamma anticommuting
    # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha}
    # ord = [alpha, rho, mu,-mu,nu,-nu]
    # g = [3,5,1,4,2,0,6,7]
    # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu}
    # can = [2,4,1,0,3,5,7,6]]
    g = Permutation([3, 5, 1, 4, 2, 0, 6, 7])
    t0 = (base2a, gens2a, 1, None)
    t1 = (base1, gens1, 1, None)
    t2 = (base3a, gens3a, 1, None)
    can = canonicalize(g, list(range(2, 6)), 0, t0, t1, t2)
    assert can == [2, 4, 1, 0, 3, 5, 7, 6]

    # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha}
    # ord = [alpha, beta, gamma, -rho, mu,-mu,nu,-nu]
    #         0      1      2     3    4   5   6  7
    # g = [5,7,2,1,3,6,4,0,8,9]
    # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu}    # can = [4,6,1,2,3,0,5,7,8,9]
    t0 = (base2a, gens2a, 2, None)
    g = Permutation([5, 7, 2, 1, 3, 6, 4, 0, 8, 9])
    can = canonicalize(g, list(range(4, 8)), 0, t0, t1, t2)
    assert can == [4, 6, 1, 2, 3, 0, 5, 7, 8, 9]

    # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry
    # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b}
    # ord = [mu,-mu,nu,-nu,a,-a,b,-b,c,-c,d,-d, e, -e]
    #         0  1  2   3  4  5 6  7 8  9 10 11 12 13
    # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15]
    # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e}
    # can = [4,6,8,       5,10,12,   0,7,     1,11,       2,9,    3,13, 15,14]
    g = Permutation([8, 11, 5, 9, 13, 7, 1, 10, 3, 4, 2, 12, 0, 6, 14, 15])
    base_f, gens_f = bsgs_direct_product(base1, gens1, base2a, gens2a)
    base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
    t0 = (base_f, gens_f, 2, 0)
    t1 = (base_A, gens_A, 4, 0)
    can = canonicalize(g, [list(range(4)), list(range(4, 14))], [0, 0], t0, t1)
    assert can == [4, 6, 8, 5, 10, 12, 0, 7, 1, 11, 2, 9, 3, 13, 15, 14]
Ejemplo n.º 4
0
def canonicalize(g, dummies, msym, *v):
    """
    canonicalize tensor formed by tensors

    Parameters
    ==========

    g : permutation representing the tensor

    dummies : list representing the dummy indices
      it can be a list of dummy indices of the same type
      or a list of lists of dummy indices, one list for each
      type of index;
      the dummy indices must come after the free indices,
      and put in order contravariant, covariant
      [d0, -d0, d1,-d1,...]
    msym :  symmetry of the metric(s)
        it can be an integer or a list;
        in the first case it is the symmetry of the dummy index metric;
        in the second case it is the list of the symmetries of the
        index metric for each type
    v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`

    base_i, gens_i : BSGS for tensors of this type.
        The BSGS should have minimal base under lexicographic ordering;
        if not, an attempt is made do get the minimal BSGS;
        in case of failure,
        canonicalize_naive is used, which is much slower.

    n_i :    number of tensors of type `i`.

    sym_i :  symmetry under exchange of component tensors of type `i`.

        Both for msym and sym_i the cases are
            * None  no symmetry
            * 0     commuting
            * 1     anticommuting

    Returns
    =======

    0 if the tensor is zero, else return the array form of
    the permutation representing the canonical form of the tensor.

    Algorithm
    =========

    First one uses canonical_free to get the minimum tensor under
    lexicographic order, using only the slot symmetries.
    If the component tensors have not minimal BSGS, it is attempted
    to find it; if the attempt fails canonicalize_naive
    is used instead.

    Compute the residual slot symmetry keeping fixed the free indices
    using tensor_gens(base, gens, list_free_indices, sym).

    Reduce the problem eliminating the free indices.

    Then use double_coset_can_rep and lift back the result reintroducing
    the free indices.

    Examples
    ========

    one type of index with commuting metric;

    `A_{a b}` and `B_{a b}` antisymmetric and commuting

    `T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`

    `ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices

    g = [1,3,0,5,4,2,6,7]

    `T_c = 0`

    >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
    >>> from sympy.combinatorics import Permutation
    >>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
    >>> t0 = (base2a, gens2a, 1, 0)
    >>> t1 = (base2a, gens2a, 2, 0)
    >>> g = Permutation([1,3,0,5,4,2,6,7])
    >>> canonicalize(g, range(6), 0, t0, t1)
    0

    same as above, but with `B_{a b}` anticommuting

    `T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`

    can = [0,2,1,4,3,5,7,6]

    >>> t1 = (base2a, gens2a, 2, 1)
    >>> canonicalize(g, range(6), 0, t0, t1)
    [0, 2, 1, 4, 3, 5, 7, 6]

    two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
    both with commuting metric

    `f^{a b c}` antisymmetric, commuting

    `A_{m a}` no symmetry, commuting

    `T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`

    ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]

    g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]

    The canonical tensor is
    `T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`

    can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]

    >>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
    >>> base1, gens1 = get_symmetric_group_sgs(1)
    >>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
    >>> t0 = (base_f, gens_f, 2, 0)
    >>> t1 = (base_A, gens_A, 4, 0)
    >>> dummies = [range(2, 10), range(10, 14)]
    >>> g = Permutation([0,7,3,1,9,5,11,6,10,4,13,2,12,8,14,15])
    >>> canonicalize(g, dummies, [0, 0], t0, t1)
    [0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
    """
    from sympy.combinatorics.testutil import canonicalize_naive
    if not isinstance(msym, list):
        if not msym in [0, 1, None]:
            raise ValueError('msym must be 0, 1 or None')
        num_types = 1
    else:
        num_types = len(msym)
        if not all(msymx in [0, 1, None] for msymx in msym):
            raise ValueError('msym entries must be 0, 1 or None')
        if len(dummies) != num_types:
            raise ValueError(
                'dummies and msym must have the same number of elements')
    size = g.size
    num_tensors = 0
    v1 = []
    for i in range(len(v)):
        base_i, gens_i, n_i, sym_i = v[i]
        # check that the BSGS is minimal;
        # this property is used in double_coset_can_rep;
        # if it is not minimal use canonicalize_naive
        if not _is_minimal_bsgs(base_i, gens_i):
            mbsgs = get_minimal_bsgs(base_i, gens_i)
            if not mbsgs:
                can = canonicalize_naive(g, dummies, msym, *v)
                return can
            base_i, gens_i = mbsgs
        v1.append((base_i, gens_i, [[]] * n_i, sym_i))
        num_tensors += n_i

    if num_types == 1 and not isinstance(msym, list):
        dummies = [dummies]
        msym = [msym]
    flat_dummies = []
    for dumx in dummies:
        flat_dummies.extend(dumx)

    if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
        raise ValueError('dummies is not valid')

    # slot symmetry of the tensor
    size1, sbase, sgens = gens_products(*v1)
    if size != size1:
        raise ValueError(
            'g has size %d, generators have size %d' % (size, size1))
    free = [i for i in range(size - 2) if i not in flat_dummies]
    num_free = len(free)

    # g1 minimal tensor under slot symmetry
    g1 = canonical_free(sbase, sgens, g, num_free)
    if not flat_dummies:
        return g1
    # save the sign of g1
    sign = 0 if g1[-1] == size - 1 else 1

    # the free indices are kept fixed.
    # Determine free_i, the list of slots of tensors which are fixed
    # since they are occupied by free indices, which are fixed.
    start = 0
    for i in range(len(v)):
        free_i = []
        base_i, gens_i, n_i, sym_i = v[i]
        len_tens = gens_i[0].size - 2
        # for each component tensor get a list od fixed islots
        for j in range(n_i):
            # get the elements corresponding to the component tensor
            h = g1[start:(start + len_tens)]
            fr = []
            # get the positions of the fixed elements in h
            for k in free:
                if k in h:
                    fr.append(h.index(k))
            free_i.append(fr)
            start += len_tens
        v1[i] = (base_i, gens_i, free_i, sym_i)
    # BSGS of the tensor with fixed free indices
    # if tensor_gens fails in gens_product, use canonicalize_naive
    size, sbase, sgens = gens_products(*v1)

    # reduce the permutations getting rid of the free indices
    pos_dummies = [g1.index(x) for x in flat_dummies]
    pos_free = [g1.index(x) for x in range(num_free)]
    size_red = size - num_free
    g1_red = [x - num_free for x in g1 if x in flat_dummies]
    if sign:
        g1_red.extend([size_red - 1, size_red - 2])
    else:
        g1_red.extend([size_red - 2, size_red - 1])
    map_slots = _get_map_slots(size, pos_free)
    sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
    sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
    dummies_red = [[x - num_free for x in y] for y in dummies]
    transv_red = get_transversals(sbase_red, sgens_red)
    g1_red = _af_new(g1_red)
    g2 = double_coset_can_rep(
        dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
    if g2 == 0:
        return 0
    # lift to the case with the free indices
    g3 = _lift_sgens(size, pos_free, free, g2)
    return g3
Ejemplo n.º 5
0
def test_riemann_products():
    baser, gensr = riemann_bsgs
    base1, gens1 = get_symmetric_group_sgs(1)
    base2, gens2 = get_symmetric_group_sgs(2)
    base2a, gens2a = get_symmetric_group_sgs(2, 1)

    # R^{a b d0}_d0 = 0
    g = Permutation([0,1,2,3,4,5])
    can = canonicalize(g, list(range(2,4)), 0, (baser, gensr, 1, 0))
    assert can == 0

    # R^{d0 b a}_d0 ; ord = [a,b,d0,-d0}; g = [2,1,0,3,4,5]
    # T_c = -R^{a d0 b}_d0;  can = [0,2,1,3,5,4]
    g = Permutation([2,1,0,3,4,5])
    can = canonicalize(g, list(range(2, 4)), 0, (baser, gensr, 1, 0))
    assert can == [0,2,1,3,5,4]

    # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2]
    # g = [4,7,1,3,2,0,5,6,8,9]
    # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2}
    # can = [0,2,4,6,1,3,5,7,9,8]
    g = Permutation([4,7,1,3,2,0,5,6,8,9])
    can = canonicalize(g, list(range(2,8)), 0, (baser, gensr, 2, 0))
    assert can == [0,2,4,6,1,3,5,7,9,8]
    can1 = canonicalize_naive(g, list(range(2,8)), 0, (baser, gensr, 2, 0))
    assert can == can1

    # A symmetric commuting
    # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5}
    # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15]
    # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6}

    g = Permutation([12,10,5,2,8,0,4,6,13,1,7,3,9,11,14,15])
    can = canonicalize(g, list(range(14)), 0, ((baser,gensr,2,0)), (base2,gens2,3,0))
    assert can == [0, 2, 4, 6, 1, 8, 10, 12, 3, 9, 5, 11, 7, 13, 15, 14]

    # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1}
    # ord = [a0,a1,a2,a3,a4,a5,d0,-d0,d1,-d1,d2,-d2]
    #         0  1  2  3 4  5  6   7  8   9  10  11
    # can = [0, 6, 2, 8, 1, 3, 7, 10, 4, 5, 9, 11, 12, 13]
    # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2}
    g = Permutation([10,0,2,6,8,11,1,3,4,5,7,9,12,13])
    can = canonicalize(g, list(range(6,12)), 0, (baser, gensr, 3, 0))
    assert can == [0, 6, 2, 8, 1, 3, 7, 10, 4, 5, 9, 11, 12, 13]
    #can1 = canonicalize_naive(g, list(range(6,12)), 0, (baser, gensr, 3, 0))
    #assert can == can1

    # A^n_{i, j} antisymmetric in i,j
    # A_m0^d0_a1 * A_m1^a0_d0; ord = [m0,m1,a0,a1,d0,-d0]
    # g = [0,4,3,1,2,5,6,7]
    # T_c = -A_{m a1}^d0 * A_m1^a0_d0
    # can = [0,3,4,1,2,5,7,6]
    base, gens = bsgs_direct_product(base1, gens1, base2a, gens2a)
    dummies = list(range(4, 6))
    g = Permutation([0,4,3,1,2,5,6,7])
    can = canonicalize(g, dummies, 0, (base, gens, 2, 0))
    assert can == [0, 3, 4, 1, 2, 5, 7, 6]


    # A^n_{i, j} symmetric in i,j
    # A^m0_a0^d2 * A^n0_d2^d1 * A^n1_d1^d0 * A_{m0 d0}^a1
    # ordering: first the free indices; then first n, then d
    # ord=[n0,n1,a0,a1, m0,-m0,d0,-d0,d1,-d1,d2,-d2]
    #      0  1   2  3   4  5  6   7  8   9  10  11]
    # g = [4,2,10, 0,11,8, 1,9,6, 5,7,3, 12,13]
    # if the dummy indices m_i and d_i were separated,
    # one gets
    # T_c = A^{n0 d0 d1} * A^n1_d0^d2 * A^m0^a0_d1 * A_m0^a1_d2
    # can = [0, 6, 8, 1, 7, 10, 4, 2, 9, 5, 3, 11, 12, 13]
    # If they are not, so can is
    # T_c = A^{n0 m0 d0} A^n1_m0^d1 A^{d2 a0}_d0 A_d2^a1_d1
    # can = [0, 4, 6, 1, 5, 8, 10, 2, 7, 11, 3, 9, 12, 13]
    # case with single type of indices

    base, gens = bsgs_direct_product(base1, gens1, base2, gens2)
    dummies = list(range(4, 12))
    g = Permutation([4,2,10, 0,11,8, 1,9,6, 5,7,3, 12,13])
    can = canonicalize(g, dummies, 0, (base, gens, 4, 0))
    assert can == [0, 4, 6, 1, 5, 8, 10, 2, 7, 11, 3, 9, 12, 13]
    # case with separated indices
    dummies = [list(range(4, 6)), list(range(6,12))]
    sym = [0, 0]
    can = canonicalize(g, dummies, sym, (base, gens, 4, 0))
    assert can == [0, 6, 8, 1, 7, 10, 4, 2, 9, 5, 3, 11, 12, 13]
    # case with separated indices with the second type of index
    # with antisymmetric metric: there is a sign change
    sym = [0, 1]
    can = canonicalize(g, dummies, sym, (base, gens, 4, 0))
    assert can == [0, 6, 8, 1, 7, 10, 4, 2, 9, 5, 3, 11, 13, 12]
Ejemplo n.º 6
0
def test_canonicalize1():
    base1, gens1 = get_symmetric_group_sgs(1)
    base1a, gens1a = get_symmetric_group_sgs(1, 1)
    base2, gens2 = get_symmetric_group_sgs(2)
    base3, gens3 = get_symmetric_group_sgs(3)
    base2a, gens2a = get_symmetric_group_sgs(2, 1)
    base3a, gens3a = get_symmetric_group_sgs(3, 1)

    # A_d0*A^d0; ord = [d0,-d0]; g = [1,0,2,3]
    # T_c = A^d0*A_d0; can = [0,1,2,3]
    g = Permutation([1,0,2,3])
    can = canonicalize(g, [0, 1], 0, (base1, gens1, 2, 0))
    assert can == list(range(4))

    # A commuting
    # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0; ord=[d0,-d0,d1,-d1,d2,-d2]
    # g = [1,3,5,4,2,0,6,7]
    # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2; can = list(range(8))
    g = Permutation([1,3,5,4,2,0,6,7])
    can = canonicalize(g, list(range(6)), 0, (base1, gens1, 6, 0))
    assert can == list(range(8))

    # A anticommuting
    # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0; ord=[d0,-d0,d1,-d1,d2,-d2]
    # g = [1,3,5,4,2,0,6,7]
    # T_c 0;  can = 0
    g = Permutation([1,3,5,4,2,0,6,7])
    can = canonicalize(g, list(range(6)), 0, (base1, gens1, 6, 1))
    assert can == 0
    can1 = canonicalize_naive(g, list(range(6)), 0, (base1, gens1, 6, 1))
    assert can1 == 0

    # A commuting symmetric
    # A^{d0 b}*A^a_d1*A^d1_d0; ord=[a,b,d0,-d0,d1,-d1]
    # g = [2,1,0,5,4,3,6,7]
    # T_c = A^{a d0}*A^{b d1}*A_{d0 d1}; can = [0,2,1,4,3,5,6,7]
    g = Permutation([2,1,0,5,4,3,6,7])
    can = canonicalize(g, list(range(2,6)), 0, (base2, gens2, 3, 0))
    assert can == [0,2,1,4,3,5,6,7]

    # A, B commuting symmetric
    # A^{d0 b}*A^d1_d0*B^a_d1; ord=[a,b,d0,-d0,d1,-d1]
    # g = [2,1,4,3,0,5,6,7]
    # T_c = A^{b d0}*A_d0^d1*B^a_d1; can = [1,2,3,4,0,5,6,7]
    g = Permutation([2,1,4,3,0,5,6,7])
    can = canonicalize(g, list(range(2,6)), 0, (base2,gens2,2,0), (base2,gens2,1,0))
    assert can == [1,2,3,4,0,5,6,7]

    # A commuting symmetric
    # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1]
    # g = [4,2,1,0,5,3,6,7]
    # T_c = A^{a d0 d1}*A^{b}_{d0 d1}; can = [0,2,4,1,3,5,6,7]
    g = Permutation([4,2,1,0,5,3,6,7])
    can = canonicalize(g, list(range(2,6)), 0, (base3, gens3, 2, 0))
    assert can == [0,2,4,1,3,5,6,7]


    # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0
    # ord = [a0,a1,a2,a3,d0,-d0,d1,-d1,d2,-d2,d3,-d3]
    #        0   1  2  3  4  5  6   7  8   9  10  11
    # g = [10,4,8, 0,7,9, 6,11,1, 2,3,5, 12,13]
    # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3}
    # can = [0,4,6, 1,5,8, 2,3,10, 7,9,11, 12,13]
    g = Permutation([10,4,8, 0,7,9, 6,11,1, 2,3,5, 12,13])
    can = canonicalize(g, list(range(4,12)), 0, (base3, gens3, 4, 0))
    assert can == [0,4,6, 1,5,8, 2,3,10, 7,9,11, 12,13]

    # A commuting symmetric, B antisymmetric
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # ord = [d0,-d0,d1,-d1,d2,-d2,d3,-d3]
    # g = [0,2,4,5,7,3,1,6,8,9]
    # in this esxample and in the next three,
    # renaming dummy indices and using symmetry of A,
    # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
    # can = 0
    g = Permutation([0,2,4,5,7,3,1,6,8,9])
    can = canonicalize(g, list(range(8)), 0, (base3, gens3,2,0), (base2a,gens2a,1,0))
    assert can == 0
    # A anticommuting symmetric, B anticommuting
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
    # can = [0,2,4, 1,3,6, 5,7, 8,9]
    can = canonicalize(g, list(range(8)), 0, (base3, gens3,2,1), (base2a,gens2a,1,0))
    assert can == [0,2,4, 1,3,6, 5,7, 8,9]
    # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
    # can = [0,2,4, 1,3,6, 5,7, 9,8]
    can = canonicalize(g, list(range(8)), 1, (base3, gens3,2,1), (base2a,gens2a,1,0))
    assert can == [0,2,4, 1,3,6, 5,7, 9,8]

    # A anticommuting symmetric, B anticommuting anticommuting,
    # no metric symmetry
    # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
    # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
    # can = [0,2,4, 1,3,7, 5,6, 8,9]
    can = canonicalize(g, list(range(8)), None, (base3, gens3,2,1), (base2a,gens2a,1,0))
    assert can == [0,2,4,1,3,7,5,6,8,9]

    # Gamma anticommuting
    # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha}
    # ord = [alpha, rho, mu,-mu,nu,-nu]
    # g = [3,5,1,4,2,0,6,7]
    # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu}
    # can = [2,4,1,0,3,5,7,6]]
    g = Permutation([3,5,1,4,2,0,6,7])
    t0 = (base2a, gens2a, 1, None)
    t1 = (base1, gens1, 1, None)
    t2 = (base3a, gens3a, 1, None)
    can = canonicalize(g, list(range(2, 6)), 0, t0, t1, t2)
    assert can == [2,4,1,0,3,5,7,6]

    # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha}
    # ord = [alpha, beta, gamma, -rho, mu,-mu,nu,-nu]
    #         0      1      2     3    4   5   6  7
    # g = [5,7,2,1,3,6,4,0,8,9]
    # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu}    # can = [4,6,1,2,3,0,5,7,8,9]
    t0 = (base2a, gens2a, 2, None)
    g = Permutation([5,7,2,1,3,6,4,0,8,9])
    can = canonicalize(g, list(range(4, 8)), 0, t0, t1, t2)
    assert can == [4,6,1,2,3,0,5,7,8,9]

    # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry
    # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b}
    # ord = [mu,-mu,nu,-nu,a,-a,b,-b,c,-c,d,-d, e, -e]
    #         0  1  2   3  4  5 6  7 8  9 10 11 12 13
    # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15]
    # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e}
    # can = [4,6,8,       5,10,12,   0,7,     1,11,       2,9,    3,13, 15,14]
    g = Permutation([8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15])
    base_f, gens_f = bsgs_direct_product(base1, gens1, base2a, gens2a)
    base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
    t0 = (base_f, gens_f, 2, 0)
    t1 = (base_A, gens_A, 4, 0)
    can = canonicalize(g, [list(range(4)), list(range(4, 14))], [0, 0], t0, t1)
    assert can == [4,6,8, 5,10,12, 0,7, 1,11, 2,9, 3,13, 15,14]