Ejemplo n.º 1
0
    def eval(cls, x, k):
        x = sympify(x)
        k = sympify(k)

        if x is S.NaN:
            return S.NaN
        elif k.is_Integer:
            if k is S.NaN:
                return S.NaN
            elif k is S.Zero:
                return S.One
            else:
                if k.is_positive:
                    if x is S.Infinity:
                        return S.Infinity
                    elif x is S.NegativeInfinity:
                        if k.is_odd:
                            return S.NegativeInfinity
                        else:
                            return S.Infinity
                    else:
                        return reduce(lambda r, i: r*(x - i), xrange(0, int(k)), 1)
                else:
                    if x is S.Infinity:
                        return S.Infinity
                    elif x is S.NegativeInfinity:
                        return S.Infinity
                    else:
                        return 1/reduce(lambda r, i: r*(x + i), xrange(1, abs(int(k)) + 1), 1)
Ejemplo n.º 2
0
 def _eval_subs(self, old, new):
     old = sympify(old)
     if old==self.func:
         arg = self.args[0]
         new = sympify(new)
         return new(arg._eval_subs(old, new))
     return self
Ejemplo n.º 3
0
def _separatevars_dict(expr, *symbols):
    if symbols:
        assert all((t.is_Atom for t in symbols)), "symbols must be Atoms."
    ret = dict(((i,sympify(1)) for i in symbols))
    ret['coeff'] = sympify(1)
    if expr.is_Mul:
        for i in expr.args:
            expsym = i.atoms(Symbol)
            if len(set(symbols).intersection(expsym)) > 1:
                return None
            if len(set(symbols).intersection(expsym)) == 0:
                # There are no symbols, so it is part of the coefficient
                ret['coeff'] *= i
            else:
                ret[expsym.pop()] *= i
    else:
        expsym = expr.atoms(Symbol)
        if len(set(symbols).intersection(expsym)) > 1:
            return None
        if len(set(symbols).intersection(expsym)) == 0:
            # There are no symbols, so it is part of the coefficient
            ret['coeff'] *= expr
        else:
            ret[expsym.pop()] *= expr

    return ret
Ejemplo n.º 4
0
    def __new__(
        cls, center=None, hradius=None, vradius=None, eccentricity=None,
            **kwargs):
        hradius = sympify(hradius)
        vradius = sympify(vradius)

        eccentricity = sympify(eccentricity)

        if center is None:
            center = Point(0, 0)
        else:
            center = Point(center, dim=2)

        if len(center) != 2:
            raise ValueError('The center of "{0}" must be a two dimensional point'.format(cls))

        if len(list(filter(None, (hradius, vradius, eccentricity)))) != 2:
            raise ValueError('Exactly two arguments of "hradius", '
                '"vradius", and "eccentricity" must not be None."')

        if eccentricity is not None:
            if hradius is None:
                hradius = vradius / sqrt(1 - eccentricity**2)
            elif vradius is None:
                vradius = hradius * sqrt(1 - eccentricity**2)

        if hradius == vradius:
            return Circle(center, hradius, **kwargs)

        return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
Ejemplo n.º 5
0
 def _eval_Eq(self, other):
     # CRootOf represents a Root, so if other is that root, it should set
     # the expression to zero *and* it should be in the interval of the
     # CRootOf instance. It must also be a number that agrees with the
     # is_real value of the CRootOf instance.
     if type(self) == type(other):
         return sympify(self == other)
     if not (other.is_number and not other.has(AppliedUndef)):
         return S.false
     if not other.is_finite:
         return S.false
     z = self.expr.subs(self.expr.free_symbols.pop(), other).is_zero
     if z is False:  # all roots will make z True but we don't know
                     # whether this is the right root if z is True
         return S.false
     o = other.is_real, other.is_imaginary
     s = self.is_real, self.is_imaginary
     assert None not in s  # this is part of initial refinement
     if o != s and None not in o:
         return S.false
     re, im = other.as_real_imag()
     if self.is_real:
         if im:
             return S.false
         i = self._get_interval()
         a, b = [Rational(str(_)) for _ in (i.a, i.b)]
         return sympify(a <= other and other <= b)
     i = self._get_interval()
     r1, r2, i1, i2 = [Rational(str(j)) for j in (
         i.ax, i.bx, i.ay, i.by)]
     return sympify((
         r1 <= re and re <= r2) and (
         i1 <= im and im <= i2))
Ejemplo n.º 6
0
 def __new__(cls, e, z, z0, dir="+"):
     e = sympify(e)
     z = sympify(z)
     z0 = sympify(z0)
     obj = Expr.__new__(cls)
     obj._args = (e, z, z0, dir)
     return obj
Ejemplo n.º 7
0
 def __new__(cls, radius=1, center=[0,0,0], direction=[0,0,1], closed=False, **kwargs):
     """
     >>> from sympy import *
     >>> from symplus.strplus import init_mprinting
     >>> init_mprinting()
     >>> InfiniteCylinder()
     InfiniteCylinder(1, [0 0 0]', [0 0 1]', False)
     >>> InfiniteCylinder(2, [0,0,0], [0,1,1])
     InfiniteCylinder(2, [0 0 0]', [0 -sqrt(2)/2 -sqrt(2)/2]', False)
     >>> InfiniteCylinder().contains((1,1,1))
     False
     >>> InfiniteCylinder(2, [0,0,0], [0,1,1]).contains((1,1,1))
     True
     """
     normalization = kwargs.pop("normalization", True)
     radius = sympify(abs(radius))
     direction = Mat(direction)
     if normalization:
         if norm(direction) == 0:
             raise ValueError
         direction = simplify(normalize(direction))
     direction = max(direction, -direction, key=hash)
     center = Mat(center)
     if normalization:
         center = simplify(center - project(center, direction))
     closed = sympify(bool(closed))
     return Basic.__new__(cls, radius, center, direction, closed)
Ejemplo n.º 8
0
def real_root(arg, n=None):
    """Return the real nth-root of arg if possible. If n is omitted then
    all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
    will only create a real root of a principle root -- the presence of
    other factors may cause the result to not be real.

    Examples
    ========

    >>> from sympy import root, real_root, Rational
    >>> from sympy.abc import x, n

    >>> real_root(-8, 3)
    -2
    >>> root(-8, 3)
    2*(-1)**(1/3)
    >>> real_root(_)
    -2

    If one creates a non-principle root and applies real_root, the
    result will not be real (so use with caution):

    >>> root(-8, 3, 2)
    -2*(-1)**(2/3)
    >>> real_root(_)
    -2*(-1)**(2/3)


    See Also
    ========

    sympy.polys.rootoftools.RootOf
    sympy.core.power.integer_nthroot
    root, sqrt
    """
    from sympy import im, Piecewise
    if n is not None:
        try:
            n = as_int(n)
            arg = sympify(arg)
            if arg.is_positive or arg.is_negative:
                rv = root(arg, n)
            else:
                raise ValueError
        except ValueError:
            return root(arg, n)*Piecewise(
                (S.One, ~Equality(im(arg), 0)),
                (Pow(S.NegativeOne, S.One/n)**(2*floor(n/2)), And(
                    Equality(n % 2, 1),
                    arg < 0)),
                (S.One, True))
    else:
        rv = sympify(arg)
    n1pow = Transform(lambda x: -(-x.base)**x.exp,
                      lambda x:
                      x.is_Pow and
                      x.base.is_negative and
                      x.exp.is_Rational and
                      x.exp.p == 1 and x.exp.q % 2)
    return rv.xreplace(n1pow)
Ejemplo n.º 9
0
    def __new__(cls, center=None, hradius=None, vradius=None, eccentricity=None,
                **kwargs):
        hradius = sympify(hradius)
        vradius = sympify(vradius)
        eccentricity = sympify(eccentricity)

        if len(filter(None, (hradius, vradius, eccentricity))) != 2:
            raise ValueError, 'Exactly two arguments between "hradius", '\
                '"vradius", and "eccentricity" must be not None."'

        if eccentricity is not None:
            if hradius is None:
                hradius = vradius / sqrt(1 - eccentricity**2)
            elif vradius is None:
                vradius = hradius * sqrt(1 - eccentricity**2)
        else:
            if hradius is None and vradius is None:
                raise ValueError("At least two arguments between hradius, "
                    "vradius and eccentricity must not be none.")

        if center is None:
            center = Point(0, 0)

        if not isinstance(center, Point):
            raise TypeError("center must be a Point")

        if hradius == vradius:
            return Circle(center, hradius, **kwargs)
        return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
Ejemplo n.º 10
0
    def eval(cls, arg, base=None):
        from sympy import unpolarify
        if base is not None:
            base = sympify(base)

            if arg.is_positive and arg.is_Integer and \
               base.is_positive and base.is_Integer:
                base = int(base)
                arg = int(arg)
                n = multiplicity(base, arg)
                return S(n) + log(arg // base ** n) / log(base)
            if base is not S.Exp1:
                return cls(arg)/cls(base)
            else:
                return cls(arg)

        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.Zero:
                return S.ComplexInfinity
            elif arg is S.One:
                return S.Zero
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.NaN:
                return S.NaN
            elif arg.is_negative:
                return S.Pi * S.ImaginaryUnit + cls(-arg)
            elif arg.is_Rational:
                if arg.q != 1:
                    return cls(arg.p) - cls(arg.q)
                # remove perfect powers automatically
                p = perfect_power(int(arg))
                if p is not False:
                    return p[1]*cls(p[0])
        elif arg is S.ComplexInfinity:
            return S.ComplexInfinity
        elif arg is S.Exp1:
            return S.One
        elif arg.func is exp and arg.args[0].is_real:
            return arg.args[0]
        elif arg.func is exp_polar:
            return unpolarify(arg.exp)
        #don't autoexpand Pow or Mul (see the issue 252):
        elif not arg.is_Add:
            coeff = arg.as_coefficient(S.ImaginaryUnit)

            if coeff is not None:
                if coeff is S.Infinity:
                    return S.Infinity
                elif coeff is S.NegativeInfinity:
                    return S.Infinity
                elif coeff.is_Rational:
                    if coeff.is_nonnegative:
                        return S.Pi * S.ImaginaryUnit * S.Half + cls(coeff)
                    else:
                        return -S.Pi * S.ImaginaryUnit * S.Half + cls(-coeff)
Ejemplo n.º 11
0
Archivo: bessel.py Proyecto: Aang/sympy
def jn(n, z):
    """
    Spherical Bessel function of the first kind.

    Examples:

        >>> from sympy import Symbol, jn, sin, cos
        >>> z = Symbol("z")
        >>> print jn(0, z)
        sin(z)/z
        >>> jn(1, z) == sin(z)/z**2 - cos(z)/z
        True
        >>> jn(3, z) ==(1/z - 15/z**3)*cos(z) + (15/z**4 - 6/z**2)*sin(z)
        True

    The spherical Bessel functions are calculated using the formula:

    jn(n, z) == fn(n, z) * sin(z) + (-1)**(n+1) * fn(-n-1, z) * cos(z)

    where fn(n, z) are the coefficients, see fn()'s sourcecode for more
    information.
    """

    n = sympify(n)
    z = sympify(z)
    return fn(n, z) * sin(z) + (-1)**(n+1) * fn(-n-1, z) * cos(z)
Ejemplo n.º 12
0
 def _eval_expand_log(self, deep=True, **hints):
     if deep:
         arg = self.args[0].expand(deep=deep, **hints)
     else:
         arg = self.args[0]
     if arg.is_Mul:
         expr = sympify(0)
         nonpos = sympify(1)
         for x in arg.args:
             if deep:
                 x = x.expand(deep=deep, **hints)
             if x.is_positive:
                 expr += self.func(x)._eval_expand_log(deep=deep, **hints)
             else:
                 nonpos *= x
         return expr + log(nonpos)
     elif arg.is_Pow:
         if arg.exp.is_real:# and arg.base.is_positive:
             # This should only run when base.is_positive, but it breaks
             # nseries, so it will have to wait for the new assumptions system.
             # See the variable obj2 in log._eval_nseries.
             if deep:
                 b = arg.base.expand(deep=deep, **hints)
                 e = arg.exp.expand(deep=deep, **hints)
             else:
                 b = arg.base
                 e = arg.exp
             return e * self.func(b)._eval_expand_log(deep=deep,\
             **hints)
     return self.func(arg)
Ejemplo n.º 13
0
def bisect(f, a, b, tol):
    """
    Implements bisection. This function is used in RootOf.eval_rational() and
    it needs to be robust.

    Examples
    ========

    >>> from sympy import S
    >>> from sympy.polys.rootoftools import bisect
    >>> bisect(lambda x: x**2-1, -10, 0, S(1)/10**2)
    -1025/1024
    >>> bisect(lambda x: x**2-1, -10, 0, S(1)/10**4)
    -131075/131072

    """
    a = sympify(a)
    b = sympify(b)
    fa = f(a)
    fb = f(b)
    if fa * fb >= 0:
        raise ValueError("bisect: f(a) and f(b) must have opposite signs")
    while (b - a > tol):
        c = (a + b)/2
        fc = f(c)
        if (fc == 0):
            return c  # We need to make sure f(c) is not zero below
        if (fa * fc < 0):
            b = c
            fb = fc
        else:
            a = c
            fa = fc
    return (a + b)/2
Ejemplo n.º 14
0
def swinnerton_dyer_poly(n, x=None, **args):
    """Generates n-th Swinnerton-Dyer polynomial in `x`.  """
    from numberfields import minimal_polynomial
    if n <= 0:
        raise ValueError(
            "can't generate Swinnerton-Dyer polynomial of order %s" % n)

    if x is not None:
        sympify(x)
    else:
        x = Dummy('x')

    if n > 3:
        p = 2
        a = [sqrt(2)]
        for i in xrange(2, n + 1):
            p = nextprime(p)
            a.append(sqrt(p))
        return minimal_polynomial(Add(*a), x, polys=args.get('polys', False))

    if n == 1:
        ex = x**2 - 2
    elif n == 2:
        ex = x**4 - 10*x**2 + 1
    elif n == 3:
        ex = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
    if not args.get('polys', False):
        return ex
    else:
        return PurePoly(ex, x)
Ejemplo n.º 15
0
 def _eval_expand_log(self, deep=True, **hints):
     if deep:
         arg = self.args[0].expand(deep=deep, **hints)
     else:
         arg = self.args[0]
     if arg.is_Mul:
         expr = sympify(0)
         nonpos = sympify(1)
         for x in arg.args:
             if deep:
                 x = x.expand(deep=deep, **hints)
             if x.is_positive:
                 expr += self.func(x)._eval_expand_log(deep=deep, **hints)
             else:
                 nonpos *= x
         return expr + log(nonpos)
     elif arg.is_Pow:
         if arg.exp.is_real and arg.base.is_positive:
             if deep:
                 b = arg.base.expand(deep=deep, **hints)
                 e = arg.exp.expand(deep=deep, **hints)
             else:
                 b = arg.base
                 e = arg.exp
             return e * self.func(b)._eval_expand_log(deep=deep,\
             **hints)
     return self.func(arg)
Ejemplo n.º 16
0
    def __new__(cls, function, *symbols, **assumptions):
        # Any embedded piecewise functions need to be brought out to the
        # top level so that integration can go into piecewise mode at the
        # earliest possible moment.
        function = piecewise_fold(sympify(function))

        if function.is_Number:
            if function is S.NaN:
                return S.NaN
            elif function is S.Infinity:
                return S.Infinity
            elif function is S.NegativeInfinity:
                return S.NegativeInfinity

        if symbols:
            limits = []

            for V in symbols:
                if isinstance(V, Symbol):
                    limits.append(Tuple(V))
                    continue
                elif isinstance(V, (tuple, list, Tuple)):
                    V = flatten(V)
                    newsymbol = sympify(V[0])
                    if len(V) == 3:
                        if isinstance(newsymbol, Symbol):
                            nlim = map(sympify, V[1:])
                            if V[1] is None and V[2] is not None:
                                nlim = [V[2]]
                            if V[2] is None and V[1] is not None:
                                function = -function
                                nlim = [V[1]]
                            if V[1] is None and V[2] is None:
                                nlim = []
                            limits.append( Tuple(newsymbol, *nlim ))
                            continue
                    elif len(V) == 1 or (len(V) == 2 and V[1] is None):
                        if isinstance(newsymbol, Symbol):
                            limits.append(Tuple(newsymbol))
                            continue
                    elif len(V) == 2:
                        if isinstance(newsymbol, Symbol):
                            limits.append(Tuple(newsymbol,V[1]))
                            continue


                raise ValueError("Invalid integration variable or limits: %s" % str(symbols))
        else:
            # no symbols provided -- let's compute full anti-derivative
            limits = [Tuple(symb) for symb in function.atoms(Symbol)]

            if not limits:
                return function

        obj = Expr.__new__(cls, **assumptions)
        arglist = [function]
        arglist.extend(limits)
        obj._args = tuple(arglist)

        return obj
Ejemplo n.º 17
0
    def eval(cls, A):
        from .customized_commands import MatrixAsVector
        from numpy import array
        from numpy.linalg import eig
        from sympy.core import sympify
        
        # convert A to a numpy array of type float64
        try:
            A_array = array(A.tolist(), dtype='float64')
        except (TypeError, AttributeError):
            raise ValueError("Argument to eigenvects_tuple must be a matrix of numerical entries")

        [evals,evects] = eig(A_array)

        eigtuplelist = []
        for i in range(evals.size):
            eigtuplelist.append([sympify(evals[i]),
                                 sympify(evects[:,i].tolist())])


        eigtuplelist.sort(key=lambda w: customized_sort_key(w[0]))

        eiglist=[]
        for t in eigtuplelist:
            eiglist.append(MatrixAsVector(t[1]))
        return TupleNoParen(*eiglist)
Ejemplo n.º 18
0
 def __new__(cls, function, limits):
     fun = sympify(function)
     if not ordered_iter(fun) or len(fun) != 2:
         raise ValueError("Function argument should be (x(t), y(t)) but got %s" % str(function))
     if not ordered_iter(limits) or len(limits) != 3:
         raise ValueError("Limit argument should be (t, tmin, tmax) but got %s" % str(limits))
     return GeometryEntity.__new__(cls, tuple(sympify(fun)), tuple(sympify(limits)))
Ejemplo n.º 19
0
    def __getitem__(self, key):
        if not isinstance(key, tuple) and isinstance(key, slice):
            from sympy.matrices.expressions.slice import MatrixSlice

            return MatrixSlice(self, key, (0, None, 1))
        if isinstance(key, tuple) and len(key) == 2:
            i, j = key
            if isinstance(i, slice) or isinstance(j, slice):
                from sympy.matrices.expressions.slice import MatrixSlice

                return MatrixSlice(self, i, j)
            i, j = sympify(i), sympify(j)
            if self.valid_index(i, j) != False:
                return self._entry(i, j)
            else:
                raise IndexError("Invalid indices (%s, %s)" % (i, j))
        elif isinstance(key, (int, Integer)):
            # row-wise decomposition of matrix
            rows, cols = self.shape
            if not (isinstance(rows, Integer) and isinstance(cols, Integer)):
                raise IndexError("Single index only supported for " "non-symbolic matrix shapes.")
            key = sympify(key)
            i = key // cols
            j = key % cols
            if self.valid_index(i, j) != False:
                return self._entry(i, j)
            else:
                raise IndexError("Invalid index %s" % key)
        elif isinstance(key, (Symbol, Expr)):
            raise IndexError("Single index only supported for " "non-symbolic indices.")
        raise IndexError("Invalid index, wanted %s[i,j]" % self)
Ejemplo n.º 20
0
    def eval(cls, arg, k=0):
        """
        Returns a simplified form or a value of DiracDelta depending on the
        argument passed by the DiracDelta object.

        The ``eval()`` method is automatically called when the ``DiracDelta`` class
        is about to be instantiated and it returns either some simplified instance
        or the unevaluated instance depending on the argument passed. In other words,
        ``eval()`` method is not needed to be called explicitly, it is being called
        and evaluated once the object is called.

        Examples
        ========

        >>> from sympy import DiracDelta, S, Subs
        >>> from sympy.abc import x

        >>> DiracDelta(x)
        DiracDelta(x)

        >>> DiracDelta(x,1)
        DiracDelta(x, 1)

        >>> DiracDelta(1)
        0

        >>> DiracDelta(5,1)
        0

        >>> DiracDelta(0)
        DiracDelta(0)

        >>> DiracDelta(-1)
        0

        >>> DiracDelta(S.NaN)
        nan

        >>> DiracDelta(x).eval(1)
        0

        >>> DiracDelta(x - 100).subs(x, 5)
        0

        >>> DiracDelta(x - 100).subs(x, 100)
        DiracDelta(0)

        """
        k = sympify(k)
        if not k.is_Integer or k.is_negative:
            raise ValueError("Error: the second argument of DiracDelta must be \
            a non-negative integer, %s given instead." % (k,))
        arg = sympify(arg)
        if arg is S.NaN:
            return S.NaN
        if arg.is_nonzero:
            return S.Zero
        if fuzzy_not(im(arg).is_zero):
            raise ValueError("Function defined only for Real Values. Complex part: %s  found in %s ." % (repr(im(arg)), repr(arg)) )
Ejemplo n.º 21
0
    def __new__(cls, f, x, index=None, radicals=False, expand=True):
        """ Construct an indexed complex root of a polynomial.

        See ``rootof`` for the parameters.

        The default value of ``radicals`` is ``False`` to satisfy
        ``eval(srepr(expr) == expr``.
        """
        x = sympify(x)

        if index is None and x.is_Integer:
            x, index = None, x
        else:
            index = sympify(index)

        if index is not None and index.is_Integer:
            index = int(index)
        else:
            raise ValueError("expected an integer root index, got %s" % index)

        poly = PurePoly(f, x, greedy=False, expand=expand)

        if not poly.is_univariate:
            raise PolynomialError("only univariate polynomials are allowed")

        if not poly.gen.is_Symbol:
            # PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of
            # x for each are not the same: issue 8617
            raise PolynomialError("generator must be a Symbol")

        degree = poly.degree()

        if degree <= 0:
            raise PolynomialError("can't construct CRootOf object for %s" % f)

        if index < -degree or index >= degree:
            raise IndexError("root index out of [%d, %d] range, got %d" %
                             (-degree, degree - 1, index))
        elif index < 0:
            index += degree

        dom = poly.get_domain()

        if not dom.is_Exact:
            poly = poly.to_exact()

        roots = cls._roots_trivial(poly, radicals)

        if roots is not None:
            return roots[index]

        coeff, poly = preprocess_roots(poly)
        dom = poly.get_domain()

        if not dom.is_ZZ:
            raise NotImplementedError("CRootOf is not supported over %s" % dom)

        root = cls._indexed_root(poly, index)
        return coeff * cls._postprocess_root(root, radicals)
Ejemplo n.º 22
0
    def eval(cls, arg, base=None):
        if base is not None:
            base = sympify(base)

            if arg.is_positive and arg.is_Integer and \
               base.is_positive and base.is_Integer:
                base = int(base)
                arg = int(arg)
                n = multiplicity(base, arg)
                return S(n) + log(arg // base ** n) / log(base)
            if base is not S.Exp1:
                return cls(arg)/cls(base)
            else:
                return cls(arg)

        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.Zero:
                return S.ComplexInfinity
            elif arg is S.One:
                return S.Zero
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.NaN:
                return S.NaN
            elif arg.is_negative:
                return S.Pi * S.ImaginaryUnit + cls(-arg)
        elif arg is S.ComplexInfinity:
            return S.ComplexInfinity
        elif arg is S.Exp1:
            return S.One
        #this doesn't work due to caching: :(
        #elif arg.func is exp and arg.args[0].is_real:
        #using this one instead:
        elif arg.func is exp and arg.args[0].is_real:
            return arg.args[0]
        #this shouldn't happen automatically (see the issue 252):
        #elif arg.is_Pow:
        #    if arg.exp.is_Number or arg.exp.is_NumberSymbol or \
        #        arg.exp.is_number:
        #        return arg.exp * self(arg.base)
        #elif arg.is_Mul and arg.is_real:
        #    return Add(*[self(a) for a in arg])
        elif not arg.is_Add:
            coeff = arg.as_coefficient(S.ImaginaryUnit)

            if coeff is not None:
                if coeff is S.Infinity:
                    return S.Infinity
                elif coeff is S.NegativeInfinity:
                    return S.Infinity
                elif coeff.is_Rational:
                    if coeff.is_nonnegative:
                        return S.Pi * S.ImaginaryUnit * S.Half + cls(coeff)
                    else:
                        return -S.Pi * S.ImaginaryUnit * S.Half + cls(-coeff)
Ejemplo n.º 23
0
 def __new__(cls, expr1, expr2):
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     expr1, expr2 = sorted([expr1, expr2], key=default_sort_key)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Ejemplo n.º 24
0
    def apply_load(self, value, start, order, end=None):
        """
        This method adds up the loads given to a particular beam object.

        Parameters
        ==========
        value : Sympifyable
            The magnitude of an applied load.
        start : Sympifyable
            The starting point of the applied load. For point moments and
            point forces this is the location of application.
        order : Integer
            The order of the applied load.
            - For moments, order= -2
            - For point loads, order=-1
            - For constant distributed load, order=0
            - For ramp loads, order=1
            - For parabolic ramp loads, order=2
            - ... so on.
        end : Sympifyable, optional
            An optional argument that can be used if the load has an end point
            within the length of the beam.

        Examples
        ========
        There is a beam of length 4 meters. A moment of magnitude 3 Nm is
        applied in the clockwise direction at the starting point of the beam.
        A pointload of magnitude 4 N is applied from the top of the beam at
        2 meters from the starting point and a parabolic ramp load of magnitude
        2 N/m is applied below the beam starting from 2 meters to 3 meters
        away from the starting point of the beam.

        >>> from sympy.physics.continuum_mechanics.beam import Beam
        >>> from sympy import symbols
        >>> E, I = symbols('E, I')
        >>> b = Beam(4, E, I)
        >>> b.apply_load(-3, 0, -2)
        >>> b.apply_load(4, 2, -1)
        >>> b.apply_load(-2, 2, 2, end = 3)
        >>> b.load
        -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2)
            + 2*SingularityFunction(x, 3, 0) + 2*SingularityFunction(x, 3, 2)
        """
        x = self.variable
        value = sympify(value)
        start = sympify(start)
        order = sympify(order)

        self._applied_loads.append((value, start, order, end))
        self._load += value*SingularityFunction(x, start, order)

        if end:
            if order == 0:
                self._load -= value*SingularityFunction(x, end, order)
            elif order.is_positive:
                self._load -= value*SingularityFunction(x, end, order) + value*SingularityFunction(x, end, 0)
            else:
                raise ValueError("""Order of the load should be positive.""")
def nthroot(expr, n, max_len=4, prec=15):
    """
    compute a real nth-root of a sum of surds

    Parameters
    ==========

    expr : sum of surds
    n : integer
    max_len : maximum number of surds passed as constants to ``nsimplify``

    Algorithm
    =========

    First ``nsimplify`` is used to get a candidate root; if it is not a
    root the minimal polynomial is computed; the answer is one of its
    roots.

    Examples
    ========

    >>> from sympy.simplify.simplify import nthroot
    >>> from sympy import Rational, sqrt
    >>> nthroot(90 + 34*sqrt(7), 3)
    sqrt(7) + 3

    """
    expr = sympify(expr)
    n = sympify(n)
    p = expr**Rational(1, n)
    if not n.is_integer:
        return p
    if not _is_sum_surds(expr):
        return p
    surds = []
    coeff_muls = [x.as_coeff_Mul() for x in expr.args]
    for x, y in coeff_muls:
        if not x.is_rational:
            return p
        if y is S.One:
            continue
        if not (y.is_Pow and y.exp == S.Half and y.base.is_integer):
            return p
        surds.append(y)
    surds.sort()
    surds = surds[:max_len]
    if expr < 0 and n % 2 == 1:
        p = (-expr)**Rational(1, n)
        a = nsimplify(p, constants=surds)
        res = a if _mexpand(a**n) == _mexpand(-expr) else p
        return -res
    a = nsimplify(p, constants=surds)
    if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr):
        return _mexpand(a)
    expr = _nthroot_solve(expr, n, prec)
    if expr is None:
        return p
    return expr
Ejemplo n.º 26
0
def singularityintegrate(f, x):
    """
    This function handles the indefinite integrations of Singularity functions.
    The ``integrate`` function calls this function intenally whenever an
    instance of SingularityFunction is passed as argument.

    The idea for integration is the following:

    - If we are dealing with a SingularityFunction expression,
      i.e. ``SingularityFunction(x, a, n)``, we just return
      ``SingularityFunction(x, a, n + 1)/(n + 1)`` if ``n >= 0`` and
      ``SingularityFunction(x, a, n + 1)`` if ``n < 0``.

    - If the node is a multiplication or power node having a
      SingularityFunction term we rewrite the whole expression in terms of
      Heaviside and DiracDelta and then integrate the output. Lastly, we
      rewrite the output of integration back in terms of SingularityFunction.

    - If none of the above case arises, we return None.

    Examples
    ========
    >>> from sympy.integrals.singularityfunctions import singularityintegrate
    >>> from sympy import SingularityFunction, symbols, Function
    >>> x, a, n, y = symbols('x a n y')
    >>> f = Function('f')
    >>> singularityintegrate(SingularityFunction(x, a, 3), x)
    SingularityFunction(x, a, 4)/4
    >>> singularityintegrate(5*SingularityFunction(x, 5, -2), x)
    5*SingularityFunction(x, 5, -1)
    >>> singularityintegrate(6*SingularityFunction(x, 5, -1), x)
    6*SingularityFunction(x, 5, 0)
    >>> singularityintegrate(x*SingularityFunction(x, 0, -1), x)
    0
    >>> singularityintegrate(SingularityFunction(x, 1, -1) * f(x), x)
    f(1)*SingularityFunction(x, 1, 0)

    """

    if not f.has(SingularityFunction):
        return None

    if f.func == SingularityFunction:
        x = sympify(f.args[0])
        a = sympify(f.args[1])
        n = sympify(f.args[2])
        if n.is_positive or n.is_zero:
            return SingularityFunction(x, a, n + 1)/(n + 1)
        elif n == -1 or n == -2:
            return SingularityFunction(x, a, n + 1)

    if f.is_Mul or f.is_Pow:

        expr = f.rewrite(DiracDelta)
        expr = integrate(expr, x)
        return expr.rewrite(SingularityFunction)
    return None
Ejemplo n.º 27
0
 def __new__(cls, expr1, expr2):
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     if default_sort_key(expr1) > default_sort_key(expr2):
         return -Cross(expr2, expr1)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Ejemplo n.º 28
0
 def __new__(cls, expr1, expr2):
     if not (isinstance(expr1, Vector) and isinstance(expr2, Vector)):
         raise ValueError('Arguments must be the vectors.')
     expr1 = sympify(expr1)
     expr2 = sympify(expr2)
     obj = Expr.__new__(cls, expr1, expr2)
     obj._expr1 = expr1
     obj._expr2 = expr2
     return obj
Ejemplo n.º 29
0
    def eval(cls, arg, H0=None):
        """
        Returns a simplified form or a value of Heaviside depending on the
        argument passed by the Heaviside object.

        The ``eval()`` method is automatically called when the ``Heaviside`` class
        is about to be instantiated and it returns either some simplified instance
        or the unevaluated instance depending on the argument passed. In other words,
        ``eval()`` method is not needed to be called explicitly, it is being called
        and evaluated once the object is called.

        Examples
        ========

        >>> from sympy import Heaviside, S
        >>> from sympy.abc import x

        >>> Heaviside(x)
        Heaviside(x)

        >>> Heaviside(19)
        1

        >>> Heaviside(0)
        Heaviside(0)

        >>> Heaviside(0, 1)
        1

        >>> Heaviside(-5)
        0

        >>> Heaviside(S.NaN)
        nan

        >>> Heaviside(x).eval(100)
        1

        >>> Heaviside(x - 100).subs(x, 5)
        0

        >>> Heaviside(x - 100).subs(x, 105)
        1

        """
        H0 = sympify(H0)
        arg = sympify(arg)
        if arg.is_negative:
            return S.Zero
        elif arg.is_positive:
            return S.One
        elif arg.is_zero:
            return H0
        elif arg is S.NaN:
            return S.NaN
        elif fuzzy_not(im(arg).is_zero):
            raise ValueError("Function defined only for Real Values. Complex part: %s  found in %s ." % (repr(im(arg)), repr(arg)) )
 def eval(cls, arg, k=0):
     k = sympify(k)
     if not k.is_Integer or k.is_negative:
         raise ValueError("Error: the second argument of DiracDelta must be \
         a non-negative integer, %s given instead." % (k,))
     arg = sympify(arg)
     if arg is S.NaN:
         return S.NaN
     if arg.is_positive or arg.is_negative:
         return S.Zero
Ejemplo n.º 31
0
    "rho_s": 1.,
    "rho_f": 1.,
    "g_0": 0.9,
    "K": 1,
    "param_a": 1.0,
    "param_b": 0,
    "S_0": 0.4,
    "nu": 0.0,
    "W": 1.,
    "U": 1.,
    "domain_half_length": 4.
}

FORMULAS = {
    "friction":
        sympify("K * (solid_t / density_s - fluid_t / density_f)"),


    "stress_tv":
        sympify('S_0 * exp( - X**2/W**2)'
                ).subs(sy.Symbol('X'),
                       sympify(
                           'sign(x)*(-domain_half_length + '
                           '(fabs(x) - domain_half_length) '
                           '% (2.*domain_half_length))'
                           )
                       ).subs(sympify('sign(x)**2'),
                              1
                              ).subs(sy.Symbol('x'),
                                     sympify(
                                         'solid + x_coord - U*time'
Ejemplo n.º 32
0
    def eval(cls, arg, base=None):
        from sympy import unpolarify
        arg = sympify(arg)

        if base is not None:
            base = sympify(base)
            if base == 1:
                if arg == 1:
                    return S.NaN
                else:
                    return S.ComplexInfinity
            try:
                # handle extraction of powers of the base now
                # or else expand_log in Mul would have to handle this
                n = multiplicity(base, arg)
                if n:
                    den = base**n
                    if den.is_Integer:
                        return n + log(arg // den) / log(base)
                    else:
                        return n + log(arg / den) / log(base)
                else:
                    return log(arg) / log(base)
            except ValueError:
                pass
            if base is not S.Exp1:
                return cls(arg) / cls(base)
            else:
                return cls(arg)

        if arg.is_Number:
            if arg is S.Zero:
                return S.ComplexInfinity
            elif arg is S.One:
                return S.Zero
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.NaN:
                return S.NaN
            elif arg.is_Rational:
                if arg.q != 1:
                    return cls(arg.p) - cls(arg.q)

        if arg.func is exp and arg.args[0].is_real:
            return arg.args[0]
        elif arg.func is exp_polar:
            return unpolarify(arg.exp)

        if arg.is_number:
            if arg.is_negative:
                return S.Pi * S.ImaginaryUnit + cls(-arg)
            elif arg is S.ComplexInfinity:
                return S.ComplexInfinity
            elif arg is S.Exp1:
                return S.One

        # don't autoexpand Pow or Mul (see the issue 3351):
        if not arg.is_Add:
            coeff = arg.as_coefficient(S.ImaginaryUnit)

            if coeff is not None:
                if coeff is S.Infinity:
                    return S.Infinity
                elif coeff is S.NegativeInfinity:
                    return S.Infinity
                elif coeff.is_Rational:
                    if coeff.is_nonnegative:
                        return S.Pi * S.ImaginaryUnit * S.Half + cls(coeff)
                    else:
                        return -S.Pi * S.ImaginaryUnit * S.Half + cls(-coeff)
    def eval(cls, variable, offset, exponent):
        """
        Returns a simplified form or a value of Singularity Function depending on the
        argument passed by the object.

        The ``eval()`` method is automatically called when the ``SingularityFunction`` class
        is about to be instantiated and it returns either some simplified instance
        or the unevaluated instance depending on the argument passed. In other words,
        ``eval()`` method is not needed to be called explicitly, it is being called
        and evaluated once the object is called.

        Examples
        ========
        >>> from sympy import SingularityFunction, Symbol, nan
        >>> from sympy.abc import x, a, n
        >>> SingularityFunction(x, a, n)
        SingularityFunction(x, a, n)
        >>> SingularityFunction(5, 3, 2)
        4
        >>> SingularityFunction(x, a, nan)
        nan
        >>> SingularityFunction(x, 3, 0).subs(x, 3)
        1
        >>> SingularityFunction(x, a, n).eval(3, 5, 1)
        0
        >>> SingularityFunction(x, a, n).eval(4, 1, 5)
        243
        >>> x = Symbol('x', positive = True)
        >>> a = Symbol('a', negative = True)
        >>> n = Symbol('n', nonnegative = True)
        >>> SingularityFunction(x, a, n)
        (-a + x)**n
        >>> x = Symbol('x', negative = True)
        >>> a = Symbol('a', positive = True)
        >>> SingularityFunction(x, a, n)
        0

        """

        x = sympify(variable)
        a = sympify(offset)
        n = sympify(exponent)
        shift = (x - a)

        if fuzzy_not(im(shift).is_zero):
            raise ValueError(
                "Singularity Functions are defined only for Real Numbers.")
        if fuzzy_not(im(n).is_zero):
            raise ValueError(
                "Singularity Functions are not defined for imaginary exponents."
            )
        if shift is S.NaN or n is S.NaN:
            return S.NaN
        if (n + 2).is_negative:
            raise ValueError(
                "Singularity Functions are not defined for exponents less than -2."
            )
        if shift.is_negative:
            return S.Zero
        if n.is_nonnegative and shift.is_nonnegative:
            return (x - a)**n
        if n == -1 or n == -2:
            if shift.is_negative or shift.is_positive:
                return S.Zero
            if shift.is_zero:
                return S.Infinity
Ejemplo n.º 34
0
def interpolating_spline(d, x, X, Y):
    """Return spline of degree ``d``, passing through the given ``X``
    and ``Y`` values.

    This function returns a piecewise function such that each part is
    a polynomial of degree not greater than ``d``. The value of ``d``
    must be 1 or greater and the values of ``X`` must be strictly
    increasing.

    Examples
    ========

    >>> from sympy import interpolating_spline
    >>> from sympy.abc import x
    >>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7])
    Piecewise((3*x, (x >= 1) & (x <= 2)),
            (7 - x/2, (x >= 2) & (x <= 4)),
            (2*x/3 + 7/3, (x >= 4) & (x <= 7)))
    >>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3])
    Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)),
            (10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4)))

    See Also
    ========

    bsplines_basis_set, sympy.polys.specialpolys.interpolating_poly
    """
    from sympy import symbols, Number, Dummy, Rational
    from sympy.solvers.solveset import linsolve
    from sympy.matrices.dense import Matrix

    # Input sanitization
    d = sympify(d)
    if not (d.is_Integer and d.is_positive):
        raise ValueError("Spline degree must be a positive integer, not %s." %
                         d)
    if len(X) != len(Y):
        raise ValueError("Number of X and Y coordinates must be the same.")
    if len(X) < d + 1:
        raise ValueError(
            "Degree must be less than the number of control points.")
    if not all(a < b for a, b in zip(X, X[1:])):
        raise ValueError("The x-coordinates must be strictly increasing.")

    # Evaluating knots value
    if d.is_odd:
        j = (d + 1) // 2
        interior_knots = X[j:-j]
    else:
        j = d // 2
        interior_knots = [
            Rational(a + b, 2) for a, b in zip(X[j:-j - 1], X[j + 1:-j])
        ]

    knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1)

    basis = bspline_basis_set(d, knots, x)

    A = [[b.subs(x, v) for b in basis] for v in X]

    coeff = linsolve((Matrix(A), Matrix(Y)),
                     symbols("c0:{}".format(len(X)), cls=Dummy))
    coeff = list(coeff)[0]
    intervals = set([c for b in basis for (e, c) in b.args if c != True])

    # Sorting the intervals
    #  ival contains the end-points of each interval
    ival = [e.atoms(Number) for e in intervals]
    ival = [list(sorted(e))[0] for e in ival]
    com = zip(ival, intervals)
    com = sorted(com, key=lambda x: x[0])
    intervals = [y for x, y in com]

    basis_dicts = [dict((c, e) for (e, c) in b.args) for b in basis]
    spline = []
    for i in intervals:
        piece = sum(
            [c * d.get(i, S.Zero) for (c, d) in zip(coeff, basis_dicts)],
            S.Zero)
        spline.append((piece, i))
    return Piecewise(*spline)
Ejemplo n.º 35
0
def decompogen(f, symbol):
    """
    Computes General functional decomposition of ``f``.
    Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``,
    where::
              f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))

    Note: This is a General decomposition function. It also decomposes
    Polynomials. For only Polynomial decomposition see ``decompose`` in polys.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy import decompogen, sqrt, sin, cos
    >>> decompogen(sin(cos(x)), x)
    [sin(x), cos(x)]
    >>> decompogen(sin(x)**2 + sin(x) + 1, x)
    [x**2 + x + 1, sin(x)]
    >>> decompogen(sqrt(6*x**2 - 5), x)
    [sqrt(x), 6*x**2 - 5]
    >>> decompogen(sin(sqrt(cos(x**2 + 1))), x)
    [sin(x), sqrt(x), cos(x), x**2 + 1]
    >>> decompogen(x**4 + 2*x**3 - x - 1, x)
    [x**2 - x - 1, x**2 + x]

    """
    f = sympify(f)
    if not isinstance(f, Expr) or isinstance(f, Relational):
        raise TypeError('expecting Expr but got: `%s`' % func_name(f))
    if symbol not in f.free_symbols:
        return [f]

    # ===== Simple Functions ===== #
    if isinstance(f, (Function, Pow)):
        if f.is_Pow and f.base == S.Exp1:
            arg = f.exp
        else:
            arg = f.args[0]
        if arg == symbol:
            return [f]
        return [f.subs(arg, symbol)] + decompogen(arg, symbol)

    # ===== Min/Max Functions ===== #
    if isinstance(f, (Min, Max)):
        args = list(f.args)
        d0 = None
        for i, a in enumerate(args):
            if not a.has_free(symbol):
                continue
            d = decompogen(a, symbol)
            if len(d) == 1:
                d = [symbol] + d
            if d0 is None:
                d0 = d[1:]
            elif d[1:] != d0:
                # decomposition is not the same for each arg:
                # mark as having no decomposition
                d = [symbol]
                break
            args[i] = d[0]
        if d[0] == symbol:
            return [f]
        return [f.func(*args)] + d0

    # ===== Convert to Polynomial ===== #
    fp = Poly(f)
    gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens))

    if len(gens) == 1 and gens[0] != symbol:
        f1 = f.subs(gens[0], symbol)
        f2 = gens[0]
        return [f1] + decompogen(f2, symbol)

    # ===== Polynomial decompose() ====== #
    try:
        return decompose(f)
    except ValueError:
        return [f]
Ejemplo n.º 36
0
def root(arg, n):
    """The n-th root function (a shortcut for ``arg**(1/n)``)

    root(x, n) -> Returns the principal n-th root of x.


    Examples
    ========

    >>> from sympy import root, Rational
    >>> from sympy.abc import x, n

    >>> root(x, 2)
    sqrt(x)

    >>> root(x, 3)
    x**(1/3)

    >>> root(x, n)
    x**(1/n)

    >>> root(x, -Rational(2, 3))
    x**(-3/2)


    To get all n n-th roots you can use the RootOf function.
    The following examples show the roots of unity for n
    equal 2, 3 and 4:

    >>> from sympy import RootOf, I

    >>> [ RootOf(x**2-1,i) for i in (0,1) ]
    [-1, 1]

    >>> [ RootOf(x**3-1,i) for i in (0,1,2) ]
    [1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]

    >>> [ RootOf(x**4-1,i) for i in (0,1,2,3) ]
    [-1, 1, -I, I]

    SymPy, like other symbolic algebra systems, returns the
    complex root of negative numbers. This is the principal
    root and differs from the text-book result that one might
    be expecting. For example, the cube root of -8 does not
    come back as -2:

    >>> root(-8, 3)
    2*(-1)**(1/3)

    The real_root function can be used to either make such a result
    real or simply return the real root in the first place:

    >>> from sympy import real_root
    >>> real_root(_)
    -2
    >>> real_root(-32, 5)
    -2

    See Also
    ========

    sympy.polys.rootoftools.RootOf
    sympy.core.power.integer_nthroot
    sqrt, real_root

    References
    ==========

    * http://en.wikipedia.org/wiki/Square_root
    * http://en.wikipedia.org/wiki/real_root
    * http://en.wikipedia.org/wiki/Root_of_unity
    * http://en.wikipedia.org/wiki/Principal_value
    * http://mathworld.wolfram.com/CubeRoot.html

    """
    n = sympify(n)
    return C.Pow(arg, 1 / n)
Ejemplo n.º 37
0
    def __new__(cls, expr, *args, **kwargs):
        expr = sympify(expr)

        if not args:
            if expr.is_Order:
                variables = expr.variables
                point = expr.point
            else:
                variables = list(expr.free_symbols)
                point = [S.Zero]*len(variables)
        else:
            args = list(args if is_sequence(args) else [args])
            variables, point = [], []
            if is_sequence(args[0]):
                for a in args:
                    v, p = list(map(sympify, a))
                    variables.append(v)
                    point.append(p)
            else:
                variables = list(map(sympify, args))
                point = [S.Zero]*len(variables)

        if not all(v.is_symbol for v in variables):
            raise TypeError('Variables are not symbols, got %s' % variables)

        if len(list(uniq(variables))) != len(variables):
            raise ValueError('Variables are supposed to be unique symbols, got %s' % variables)

        if expr.is_Order:
            expr_vp = dict(expr.args[1:])
            new_vp = dict(expr_vp)
            vp = dict(zip(variables, point))
            for v, p in vp.items():
                if v in new_vp.keys():
                    if p != new_vp[v]:
                        raise NotImplementedError(
                            "Mixing Order at different points is not supported.")
                else:
                    new_vp[v] = p
            if set(expr_vp.keys()) == set(new_vp.keys()):
                return expr
            else:
                variables = list(new_vp.keys())
                point = [new_vp[v] for v in variables]

        if expr is S.NaN:
            return S.NaN

        if any(x in p.free_symbols for x in variables for p in point):
            raise ValueError('Got %s as a point.' % point)

        if variables:
            if any(p != point[0] for p in point):
                raise NotImplementedError(
                    "Multivariable orders at different points are not supported.")
            if point[0] is S.Infinity:
                s = {k: 1/Dummy() for k in variables}
                rs = {1/v: 1/k for k, v in s.items()}
            elif point[0] is S.NegativeInfinity:
                s = {k: -1/Dummy() for k in variables}
                rs = {-1/v: -1/k for k, v in s.items()}
            elif point[0] is not S.Zero:
                s = dict((k, Dummy() + point[0]) for k in variables)
                rs = dict((v - point[0], k - point[0]) for k, v in s.items())
            else:
                s = ()
                rs = ()

            expr = expr.subs(s)

            if expr.is_Add:
                from sympy import expand_multinomial
                expr = expand_multinomial(expr)

            if s:
                args = tuple([r[0] for r in rs.items()])
            else:
                args = tuple(variables)

            if len(variables) > 1:
                # XXX: better way?  We need this expand() to
                # workaround e.g: expr = x*(x + y).
                # (x*(x + y)).as_leading_term(x, y) currently returns
                # x*y (wrong order term!).  That's why we want to deal with
                # expand()'ed expr (handled in "if expr.is_Add" branch below).
                expr = expr.expand()

            if expr.is_Add:
                lst = expr.extract_leading_order(args)
                expr = Add(*[f.expr for (e, f) in lst])

            elif expr:
                expr = expr.as_leading_term(*args)
                expr = expr.as_independent(*args, as_Add=False)[1]

                expr = expand_power_base(expr)
                expr = expand_log(expr)

                if len(args) == 1:
                    # The definition of O(f(x)) symbol explicitly stated that
                    # the argument of f(x) is irrelevant.  That's why we can
                    # combine some power exponents (only "on top" of the
                    # expression tree for f(x)), e.g.:
                    # x**p * (-x)**q -> x**(p+q) for real p, q.
                    x = args[0]
                    margs = list(Mul.make_args(
                        expr.as_independent(x, as_Add=False)[1]))

                    for i, t in enumerate(margs):
                        if t.is_Pow:
                            b, q = t.args
                            if b in (x, -x) and q.is_real and not q.has(x):
                                margs[i] = x**q
                            elif b.is_Pow and not b.exp.has(x):
                                b, r = b.args
                                if b in (x, -x) and r.is_real:
                                    margs[i] = x**(r*q)
                            elif b.is_Mul and b.args[0] is S.NegativeOne:
                                b = -b
                                if b.is_Pow and not b.exp.has(x):
                                    b, r = b.args
                                    if b in (x, -x) and r.is_real:
                                        margs[i] = x**(r*q)

                    expr = Mul(*margs)

            expr = expr.subs(rs)

        if expr is S.Zero:
            return expr

        if expr.is_Order:
            expr = expr.expr

        if not expr.has(*variables):
            expr = S.One

        # create Order instance:
        vp = dict(zip(variables, point))
        variables.sort(key=default_sort_key)
        point = [vp[v] for v in variables]
        args = (expr,) + Tuple(*zip(variables, point))
        obj = Expr.__new__(cls, *args)
        return obj
Ejemplo n.º 38
0
 def __init__(self, mu, sigma):
     self.mu = sympify(mu)
     self.sigma = sympify(sigma)
Ejemplo n.º 39
0
 def __init__(self, a, b):
     self.a = sympify(a)
     self.b = sympify(b)
Ejemplo n.º 40
0
def rsolve_ratio(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek
    for all rational solutions over field `K` of characteristic zero.

    This procedure accepts only polynomials, however if you are
    interested in solving recurrence with rational coefficients
    then use ``rsolve`` which will pre-process the given equation
    and run this procedure with polynomial arguments.

    The algorithm performs two basic steps:

        (1) Compute polynomial `v(n)` which can be used as universal
            denominator of any rational solution of equation
            `\operatorname{L} y = f`.

        (2) Construct new linear difference equation by substitution
            `y(n) = u(n)/v(n)` and solve it for `u(n)` finding all its
            polynomial solutions. Return ``None`` if none were found.

    Algorithm implemented here is a revised version of the original
    Abramov's algorithm, developed in 1989. The new approach is much
    simpler to implement and has better overall efficiency. This
    method can be easily adapted to q-difference equations case.

    Besides finding rational solutions alone, this functions is
    an important part of Hyper algorithm were it is used to find
    particular solution of inhomogeneous part of a recurrence.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.solvers.recurr import rsolve_ratio
    >>> rsolve_ratio([-2*x**3 + x**2 + 2*x - 1, 2*x**3 + x**2 - 6*x,
    ... - 2*x**3 - 11*x**2 - 18*x - 9, 2*x**3 + 13*x**2 + 22*x + 8], 0, x)
    C2*(2*x - 3)/(2*(x**2 - 1))

    References
    ==========

    .. [1] S. A. Abramov, Rational solutions of linear difference
           and q-difference equations with polynomial coefficients,
           in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York,
           1995, 285-289

    See Also
    ========

    rsolve_hyper
    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return None

    coeffs = list(map(sympify, coeffs))

    r = len(coeffs) - 1

    A, B = coeffs[r], coeffs[0]
    A = A.subs(n, n - r).expand()

    h = Dummy('h')

    res = resultant(A, B.subs(n, n + h), n)

    if not res.is_polynomial(h):
        p, q = res.as_numer_denom()
        res = quo(p, q, h)

    nni_roots = list(roots(res, h, filter='Z',
        predicate=lambda r: r >= 0).keys())

    if not nni_roots:
        return rsolve_poly(coeffs, f, n, **hints)
    else:
        C, numers = S.One, [S.Zero]*(r + 1)

        for i in range(int(max(nni_roots)), -1, -1):
            d = gcd(A, B.subs(n, n + i), n)

            A = quo(A, d, n)
            B = quo(B, d.subs(n, n - i), n)

            C *= Mul(*[ d.subs(n, n - j) for j in range(0, i + 1) ])

        denoms = [ C.subs(n, n + i) for i in range(0, r + 1) ]

        for i in range(0, r + 1):
            g = gcd(coeffs[i], denoms[i], n)

            numers[i] = quo(coeffs[i], g, n)
            denoms[i] = quo(denoms[i], g, n)

        for i in range(0, r + 1):
            numers[i] *= Mul(*(denoms[:i] + denoms[i + 1:]))

        result = rsolve_poly(numers, f * Mul(*denoms), n, **hints)

        if result is not None:
            if hints.get('symbols', False):
                return (simplify(result[0] / C), result[1])
            else:
                return simplify(result / C)
        else:
            return None
Ejemplo n.º 41
0
 def pdf(s, x):
     """Return the probability density function as an expression in x"""
     x = sympify(x)
     return 1/(s.sigma*sqrt(2*pi)) * exp(-(x-s.mu)**2 / (2*s.sigma**2))
Ejemplo n.º 42
0
 def cdf(s, x):
     """Return the cumulative density function as an expression in x"""
     x = sympify(x)
     return (1+erf((x-s.mu)/(s.sigma*sqrt(2))))/2
Ejemplo n.º 43
0
def ask(proposition, assumptions=True, context=global_assumptions):
    """
    Method for inferring properties about objects.

    **Syntax**

        * ask(proposition)

        * ask(proposition, assumptions)

            where ``proposition`` is any boolean expression

    Examples
    ========

    >>> from sympy import ask, Q, pi
    >>> from sympy.abc import x, y
    >>> ask(Q.rational(pi))
    False
    >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
    True
    >>> ask(Q.prime(4*x), Q.integer(x))
    False

    **Remarks**
        Relations in assumptions are not implemented (yet), so the following
        will not give a meaningful result.

        >>> ask(Q.positive(x), Q.is_true(x > 0)) # doctest: +SKIP

        It is however a work in progress.

    """
    from sympy.assumptions.satask import satask

    if not isinstance(proposition,
                      (BooleanFunction, AppliedPredicate, bool, BooleanAtom)):
        raise TypeError("proposition must be a valid logical expression")

    if not isinstance(assumptions,
                      (BooleanFunction, AppliedPredicate, bool, BooleanAtom)):
        raise TypeError("assumptions must be a valid logical expression")

    if isinstance(proposition, AppliedPredicate):
        key, expr = proposition.func, sympify(proposition.arg)
    else:
        key, expr = Q.is_true, sympify(proposition)

    assumptions = And(assumptions, And(*context))
    assumptions = to_cnf(assumptions)

    local_facts = _extract_facts(assumptions, expr)

    known_facts_cnf = get_known_facts_cnf()
    known_facts_dict = get_known_facts_dict()

    if local_facts and satisfiable(And(local_facts, known_facts_cnf)) is False:
        raise ValueError("inconsistent assumptions %s" % assumptions)

    # direct resolution method, no logic
    res = key(expr)._eval_ask(assumptions)
    if res is not None:
        return bool(res)

    if local_facts is None:
        return satask(proposition, assumptions=assumptions, context=context)

    # See if there's a straight-forward conclusion we can make for the inference
    if local_facts.is_Atom:
        if key in known_facts_dict[local_facts]:
            return True
        if Not(key) in known_facts_dict[local_facts]:
            return False
    elif (isinstance(local_facts, And)
          and all(k in known_facts_dict for k in local_facts.args)):
        for assum in local_facts.args:
            if assum.is_Atom:
                if key in known_facts_dict[assum]:
                    return True
                if Not(key) in known_facts_dict[assum]:
                    return False
            elif isinstance(assum, Not) and assum.args[0].is_Atom:
                if key in known_facts_dict[assum]:
                    return False
                if Not(key) in known_facts_dict[assum]:
                    return True
    elif (isinstance(key, Predicate) and isinstance(local_facts, Not)
          and local_facts.args[0].is_Atom):
        if local_facts.args[0] in known_facts_dict[key]:
            return False

    # Failing all else, we do a full logical inference
    res = ask_full_inference(key, local_facts, known_facts_cnf)
    if res is None:
        return satask(proposition, assumptions=assumptions, context=context)
    return res
Ejemplo n.º 44
0
def rsolve_hyper(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order `k`
    with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f` we seek for all hypergeometric solutions
    over field `K` of characteristic zero.

    The inhomogeneous part can be either hypergeometric or a sum
    of a fixed number of pairwise dissimilar hypergeometric terms.

    The algorithm performs three basic steps:

        (1) Group together similar hypergeometric terms in the
            inhomogeneous part of `\operatorname{L} y = f`, and find
            particular solution using Abramov's algorithm.

        (2) Compute generating set of `\operatorname{L}` and find basis
            in it, so that all solutions are linearly independent.

        (3) Form final solution with the number of arbitrary
            constants equal to dimension of basis of `\operatorname{L}`.

    Term `a(n)` is hypergeometric if it is annihilated by first order
    linear difference equations with polynomial coefficients or, in
    simpler words, if consecutive term ratio is a rational function.

    The output of this procedure is a linear combination of fixed
    number of hypergeometric terms. However the underlying method
    can generate larger class of solutions - D'Alembertian terms.

    Note also that this method not only computes the kernel of the
    inhomogeneous equation, but also reduces in to a basis so that
    solutions generated by this procedure are linearly independent

    Examples
    ========

    >>> from sympy.solvers import rsolve_hyper
    >>> from sympy.abc import x

    >>> rsolve_hyper([-1, -1, 1], 0, x)
    C0*(1/2 + sqrt(5)/2)**x + C1*(-sqrt(5)/2 + 1/2)**x

    >>> rsolve_hyper([-1, 1], 1 + x, x)
    C0 + x*(x + 1)/2

    References
    ==========

    .. [1] M. Petkovsek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.
    """
    coeffs = list(map(sympify, coeffs))

    f = sympify(f)

    r, kernel, symbols = len(coeffs) - 1, [], set()

    if not f.is_zero:
        if f.is_Add:
            similar = {}

            for g in f.expand().args:
                if not g.is_hypergeometric(n):
                    return None

                for h in similar.keys():
                    if hypersimilar(g, h, n):
                        similar[h] += g
                        break
                else:
                    similar[g] = S.Zero

            inhomogeneous = []

            for g, h in similar.items():
                inhomogeneous.append(g + h)
        elif f.is_hypergeometric(n):
            inhomogeneous = [f]
        else:
            return None

        for i, g in enumerate(inhomogeneous):
            coeff, polys = S.One, coeffs[:]
            denoms = [ S.One ] * (r + 1)

            s = hypersimp(g, n)

            for j in range(1, r + 1):
                coeff *= s.subs(n, n + j - 1)

                p, q = coeff.as_numer_denom()

                polys[j] *= p
                denoms[j] = q

            for j in range(0, r + 1):
                polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))

            R = rsolve_poly(polys, Mul(*denoms), n)

            if not (R is None or R is S.Zero):
                inhomogeneous[i] *= R
            else:
                return None

            result = Add(*inhomogeneous)
    else:
        result = S.Zero

    Z = Dummy('Z')

    p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)

    p_factors = [ z for z in roots(p, n).keys() ]
    q_factors = [ z for z in roots(q, n).keys() ]

    factors = [ (S.One, S.One) ]

    for p in p_factors:
        for q in q_factors:
            if p.is_integer and q.is_integer and p <= q:
                continue
            else:
                factors += [(n - p, n - q)]

    p = [ (n - p, S.One) for p in p_factors ]
    q = [ (S.One, n - q) for q in q_factors ]

    factors = p + factors + q

    for A, B in factors:
        polys, degrees = [], []
        D = A*B.subs(n, n + r - 1)

        for i in range(0, r + 1):
            a = Mul(*[ A.subs(n, n + j) for j in range(0, i) ])
            b = Mul(*[ B.subs(n, n + j) for j in range(i, r) ])

            poly = quo(coeffs[i]*a*b, D, n)
            polys.append(poly.as_poly(n))

            if not poly.is_zero:
                degrees.append(polys[i].degree())

        if degrees:
            d, poly = max(degrees), S.Zero
        else:
            return None

        for i in range(0, r + 1):
            coeff = polys[i].nth(d)

            if coeff is not S.Zero:
                poly += coeff * Z**i

        for z in roots(poly, Z).keys():
            if z.is_zero:
                continue

            (C, s) = rsolve_poly([ polys[i]*z**i for i in range(r + 1) ], 0, n, symbols=True)

            if C is not None and C is not S.Zero:
                symbols |= set(s)

                ratio = z * A * C.subs(n, n + 1) / B / C
                ratio = simplify(ratio)
                # If there is a nonnegative root in the denominator of the ratio,
                # this indicates that the term y(n_root) is zero, and one should
                # start the product with the term y(n_root + 1).
                n0 = 0
                for n_root in roots(ratio.as_numer_denom()[1], n).keys():
                    if n_root.has(I):
                        return None
                    elif (n0 < (n_root + 1)) == True:
                        n0 = n_root + 1
                K = product(ratio, (n, n0, n - 1))
                if K.has(factorial, FallingFactorial, RisingFactorial):
                    K = simplify(K)

                if casoratian(kernel + [K], n, zero=False) != 0:
                    kernel.append(K)

    kernel.sort(key=default_sort_key)
    sk = list(zip(numbered_symbols('C'), kernel))

    if sk:
        for C, ker in sk:
            result += C * ker
    else:
        return None

    if hints.get('symbols', False):
        symbols |= {s for s, k in sk}
        return (result, list(symbols))
    else:
        return result
Ejemplo n.º 45
0
def reduce_inequalities(inequalities, symbols=[]):
    """Reduce a system of inequalities with rational coefficients.

    Examples
    ========

    >>> from sympy import sympify as S, Symbol
    >>> from sympy.abc import x, y
    >>> from sympy.solvers.inequalities import reduce_inequalities

    >>> reduce_inequalities(0 <= x + 3, [])
    (-3 <= x) & (x < oo)

    >>> reduce_inequalities(0 <= x + y*2 - 1, [x])
    (x < oo) & (x >= 1 - 2*y)
    """
    if not iterable(inequalities):
        inequalities = [inequalities]
    inequalities = [sympify(i) for i in inequalities]

    gens = set().union(*[i.free_symbols for i in inequalities])

    if not iterable(symbols):
        symbols = [symbols]
    symbols = (set(symbols) or gens) & gens
    if any(i.is_extended_real is False for i in symbols):
        raise TypeError(
            filldedent("""
            inequalities cannot contain symbols that are not real.
            """))

    # make vanilla symbol real
    recast = {
        i: Dummy(i.name, extended_real=True)
        for i in gens if i.is_extended_real is None
    }
    inequalities = [i.xreplace(recast) for i in inequalities]
    symbols = {i.xreplace(recast) for i in symbols}

    # prefilter
    keep = []
    for i in inequalities:
        if isinstance(i, Relational):
            i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
        elif i not in (True, False):
            i = Eq(i, 0)
        if i == True:
            continue
        elif i == False:
            return S.false
        if i.lhs.is_number:
            raise NotImplementedError("could not determine truth value of %s" %
                                      i)
        keep.append(i)
    inequalities = keep
    del keep

    # solve system
    rv = _reduce_inequalities(inequalities, symbols)

    # restore original symbols and return
    return rv.xreplace({v: k for k, v in recast.items()})
Ejemplo n.º 46
0
def _rewrite_hyperbolics_as_exp(expr):
    expr = sympify(expr)
    return expr.xreplace(dict([(h, h.rewrite(exp))
        for h in expr.atoms(HyperbolicFunction)]))
def trigsimp(expr, **opts):
    """
    reduces expression by using known trig identities

    Notes
    =====

    method:
    - Determine the method to use. Valid choices are 'matching' (default),
    'groebner', 'combined', and 'fu'. If 'matching', simplify the
    expression recursively by targeting common patterns. If 'groebner', apply
    an experimental groebner basis algorithm. In this case further options
    are forwarded to ``trigsimp_groebner``, please refer to its docstring.
    If 'combined', first run the groebner basis algorithm with small
    default parameters, then run the 'matching' algorithm. 'fu' runs the
    collection of trigonometric transformations described by Fu, et al.
    (see the `fu` docstring).


    Examples
    ========

    >>> from sympy import trigsimp, sin, cos, log
    >>> from sympy.abc import x, y
    >>> e = 2*sin(x)**2 + 2*cos(x)**2
    >>> trigsimp(e)
    2

    Simplification occurs wherever trigonometric functions are located.

    >>> trigsimp(log(e))
    log(2)

    Using `method="groebner"` (or `"combined"`) might lead to greater
    simplification.

    The old trigsimp routine can be accessed as with method 'old'.

    >>> from sympy import coth, tanh
    >>> t = 3*tanh(x)**7 - 2/coth(x)**7
    >>> trigsimp(t, method='old') == t
    True
    >>> trigsimp(t)
    tanh(x)**7

    """
    from sympy.simplify.fu import fu

    expr = sympify(expr)

    try:
        return expr._eval_trigsimp(**opts)
    except AttributeError:
        pass

    old = opts.pop('old', False)
    if not old:
        opts.pop('deep', None)
        recursive = opts.pop('recursive', None)
        method = opts.pop('method', 'matching')
    else:
        method = 'old'

    def groebnersimp(ex, **opts):
        def traverse(e):
            if e.is_Atom:
                return e
            args = [traverse(x) for x in e.args]
            if e.is_Function or e.is_Pow:
                args = [trigsimp_groebner(x, **opts) for x in args]
            return e.func(*args)
        new = traverse(ex)
        if not isinstance(new, Expr):
            return new
        return trigsimp_groebner(new, **opts)

    trigsimpfunc = {
        'fu': (lambda x: fu(x, **opts)),
        'matching': (lambda x: futrig(x)),
        'groebner': (lambda x: groebnersimp(x, **opts)),
        'combined': (lambda x: futrig(groebnersimp(x,
                               polynomial=True, hints=[2, tan]))),
        'old': lambda x: trigsimp_old(x, **opts),
                   }[method]

    return trigsimpfunc(expr)
Ejemplo n.º 48
0
def fraction(expr, exact=False):
    """Returns a pair with expression's numerator and denominator.
       If the given expression is not a fraction then this function
       will return the tuple (expr, 1).

       This function will not make any attempt to simplify nested
       fractions or to do any term rewriting at all.

       If only one of the numerator/denominator pair is needed then
       use numer(expr) or denom(expr) functions respectively.

       >>> from sympy import fraction, Rational, Symbol
       >>> from sympy.abc import x, y

       >>> fraction(x/y)
       (x, y)
       >>> fraction(x)
       (x, 1)

       >>> fraction(1/y**2)
       (1, y**2)

       >>> fraction(x*y/2)
       (x*y, 2)
       >>> fraction(Rational(1, 2))
       (1, 2)

       This function will also work fine with assumptions:

       >>> k = Symbol('k', negative=True)
       >>> fraction(x * y**k)
       (x, y**(-k))

       If we know nothing about sign of some exponent and 'exact'
       flag is unset, then structure this exponent's structure will
       be analyzed and pretty fraction will be returned:

       >>> from sympy import exp, Mul
       >>> fraction(2*x**(-y))
       (2, x**y)

       >>> fraction(exp(-x))
       (1, exp(x))

       >>> fraction(exp(-x), exact=True)
       (exp(-x), 1)

       The `exact` flag will also keep any unevaluated Muls from
       being evaluated:

       >>> u = Mul(2, x + 1, evaluate=False)
       >>> fraction(u)
       (2*x + 2, 1)
       >>> fraction(u, exact=True)
       (2*(x  + 1), 1)
    """
    expr = sympify(expr)

    numer, denom = [], []

    for term in Mul.make_args(expr):
        if term.is_commutative and (term.is_Pow or isinstance(term, exp)):
            b, ex = term.as_base_exp()
            if ex.is_negative:
                if ex is S.NegativeOne:
                    denom.append(b)
                elif exact:
                    if ex.is_constant():
                        denom.append(Pow(b, -ex))
                    else:
                        numer.append(term)
                else:
                    denom.append(Pow(b, -ex))
            elif ex.is_positive:
                numer.append(term)
            elif not exact and ex.is_Mul:
                n, d = term.as_numer_denom()
                numer.append(n)
                denom.append(d)
            else:
                numer.append(term)
        elif term.is_Rational:
            n, d = term.as_numer_denom()
            numer.append(n)
            denom.append(d)
        else:
            numer.append(term)
    if exact:
        return Mul(*numer, evaluate=False), Mul(*denom, evaluate=False)
    else:
        return Mul(*numer), Mul(*denom)
Ejemplo n.º 49
0
def together(expr, deep=False):
    """
    Denest and combine rational expressions using symbolic methods.

    This function takes an expression or a container of expressions
    and puts it (them) together by denesting and combining rational
    subexpressions. No heroic measures are taken to minimize degree
    of the resulting numerator and denominator. To obtain completely
    reduced expression use :func:`cancel`. However, :func:`together`
    can preserve as much as possible of the structure of the input
    expression in the output (no expansion is performed).

    A wide variety of objects can be put together including lists,
    tuples, sets, relational objects, integrals and others. It is
    also possible to transform interior of function applications,
    by setting ``deep`` flag to ``True``.

    By definition, :func:`together` is a complement to :func:`apart`,
    so ``apart(together(expr))`` should return expr unchanged. Note
    however, that :func:`together` uses only symbolic methods, so
    it might be necessary to use :func:`cancel` to perform algebraic
    simplification and minimize degree of the numerator and denominator.

    Examples
    ========

    >>> from sympy import together, exp
    >>> from sympy.abc import x, y, z

    >>> together(1/x + 1/y)
    (x + y)/(x*y)
    >>> together(1/x + 1/y + 1/z)
    (x*y + x*z + y*z)/(x*y*z)

    >>> together(1/(x*y) + 1/y**2)
    (x + y)/(x*y**2)

    >>> together(1/(1 + 1/x) + 1/(1 + 1/y))
    (x*(y + 1) + y*(x + 1))/((x + 1)*(y + 1))

    >>> together(exp(1/x + 1/y))
    exp(1/y + 1/x)
    >>> together(exp(1/x + 1/y), deep=True)
    exp((x + y)/(x*y))

    >>> together(1/exp(x) + 1/(x*exp(x)))
    (x + 1)*exp(-x)/x

    >>> together(1/exp(2*x) + 1/(x*exp(3*x)))
    (x*exp(x) + 1)*exp(-3*x)/x

    """
    def _together(expr):
        if isinstance(expr, Basic):
            if expr.is_Atom or (expr.is_Function and not deep):
                return expr
            elif expr.is_Add:
                return gcd_terms(list(map(_together, Add.make_args(expr))))
            elif expr.is_Pow:
                base = _together(expr.base)

                if deep:
                    exp = _together(expr.exp)
                else:
                    exp = expr.exp

                return expr.__class__(base, exp)
            else:
                return expr.__class__(*[_together(arg) for arg in expr.args])
        elif iterable(expr):
            return expr.__class__([_together(ex) for ex in expr])

        return expr

    return _together(sympify(expr))
Ejemplo n.º 50
0
def collect(expr,
            syms,
            func=None,
            evaluate=None,
            exact=False,
            distribute_order_term=True):
    """
    Collect additive terms of an expression.

    This function collects additive terms of an expression with respect
    to a list of expression up to powers with rational exponents. By the
    term symbol here are meant arbitrary expressions, which can contain
    powers, products, sums etc. In other words symbol is a pattern which
    will be searched for in the expression's terms.

    The input expression is not expanded by :func:`collect`, so user is
    expected to provide an expression is an appropriate form. This makes
    :func:`collect` more predictable as there is no magic happening behind the
    scenes. However, it is important to note, that powers of products are
    converted to products of powers using the :func:`expand_power_base`
    function.

    There are two possible types of output. First, if ``evaluate`` flag is
    set, this function will return an expression with collected terms or
    else it will return a dictionary with expressions up to rational powers
    as keys and collected coefficients as values.

    Examples
    ========

    >>> from sympy import S, collect, expand, factor, Wild
    >>> from sympy.abc import a, b, c, x, y, z

    This function can collect symbolic coefficients in polynomials or
    rational expressions. It will manage to find all integer or rational
    powers of collection variable::

        >>> collect(a*x**2 + b*x**2 + a*x - b*x + c, x)
        c + x**2*(a + b) + x*(a - b)

    The same result can be achieved in dictionary form::

        >>> d = collect(a*x**2 + b*x**2 + a*x - b*x + c, x, evaluate=False)
        >>> d[x**2]
        a + b
        >>> d[x]
        a - b
        >>> d[S.One]
        c

    You can also work with multivariate polynomials. However, remember that
    this function is greedy so it will care only about a single symbol at time,
    in specification order::

        >>> collect(x**2 + y*x**2 + x*y + y + a*y, [x, y])
        x**2*(y + 1) + x*y + y*(a + 1)

    Also more complicated expressions can be used as patterns::

        >>> from sympy import sin, log
        >>> collect(a*sin(2*x) + b*sin(2*x), sin(2*x))
        (a + b)*sin(2*x)

        >>> collect(a*x*log(x) + b*(x*log(x)), x*log(x))
        x*(a + b)*log(x)

    You can use wildcards in the pattern::

        >>> w = Wild('w1')
        >>> collect(a*x**y - b*x**y, w**y)
        x**y*(a - b)

    It is also possible to work with symbolic powers, although it has more
    complicated behavior, because in this case power's base and symbolic part
    of the exponent are treated as a single symbol::

        >>> collect(a*x**c + b*x**c, x)
        a*x**c + b*x**c
        >>> collect(a*x**c + b*x**c, x**c)
        x**c*(a + b)

    However if you incorporate rationals to the exponents, then you will get
    well known behavior::

        >>> collect(a*x**(2*c) + b*x**(2*c), x**c)
        x**(2*c)*(a + b)

    Note also that all previously stated facts about :func:`collect` function
    apply to the exponential function, so you can get::

        >>> from sympy import exp
        >>> collect(a*exp(2*x) + b*exp(2*x), exp(x))
        (a + b)*exp(2*x)

    If you are interested only in collecting specific powers of some symbols
    then set ``exact`` flag in arguments::

        >>> collect(a*x**7 + b*x**7, x, exact=True)
        a*x**7 + b*x**7
        >>> collect(a*x**7 + b*x**7, x**7, exact=True)
        x**7*(a + b)

    You can also apply this function to differential equations, where
    derivatives of arbitrary order can be collected. Note that if you
    collect with respect to a function or a derivative of a function, all
    derivatives of that function will also be collected. Use
    ``exact=True`` to prevent this from happening::

        >>> from sympy import Derivative as D, collect, Function
        >>> f = Function('f') (x)

        >>> collect(a*D(f,x) + b*D(f,x), D(f,x))
        (a + b)*Derivative(f(x), x)

        >>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), f)
        (a + b)*Derivative(f(x), (x, 2))

        >>> collect(a*D(D(f,x),x) + b*D(D(f,x),x), D(f,x), exact=True)
        a*Derivative(f(x), (x, 2)) + b*Derivative(f(x), (x, 2))

        >>> collect(a*D(f,x) + b*D(f,x) + a*f + b*f, f)
        (a + b)*f(x) + (a + b)*Derivative(f(x), x)

    Or you can even match both derivative order and exponent at the same time::

        >>> collect(a*D(D(f,x),x)**2 + b*D(D(f,x),x)**2, D(f,x))
        (a + b)*Derivative(f(x), (x, 2))**2

    Finally, you can apply a function to each of the collected coefficients.
    For example you can factorize symbolic coefficients of polynomial::

        >>> f = expand((x + a + 1)**3)

        >>> collect(f, x, factor)
        x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + (a + 1)**3

    .. note:: Arguments are expected to be in expanded form, so you might have
              to call :func:`expand` prior to calling this function.

    See Also
    ========
    collect_const, collect_sqrt, rcollect
    """
    expr = sympify(expr)
    syms = list(syms) if iterable(syms) else [syms]

    if evaluate is None:
        evaluate = global_evaluate[0]

    def make_expression(terms):
        product = []

        for term, rat, sym, deriv in terms:
            if deriv is not None:
                var, order = deriv

                while order > 0:
                    term, order = Derivative(term, var), order - 1

            if sym is None:
                if rat is S.One:
                    product.append(term)
                else:
                    product.append(Pow(term, rat))
            else:
                product.append(Pow(term, rat * sym))

        return Mul(*product)

    def parse_derivative(deriv):
        # scan derivatives tower in the input expression and return
        # underlying function and maximal differentiation order
        expr, sym, order = deriv.expr, deriv.variables[0], 1

        for s in deriv.variables[1:]:
            if s == sym:
                order += 1
            else:
                raise NotImplementedError(
                    'Improve MV Derivative support in collect')

        while isinstance(expr, Derivative):
            s0 = expr.variables[0]

            for s in expr.variables:
                if s != s0:
                    raise NotImplementedError(
                        'Improve MV Derivative support in collect')

            if s0 == sym:
                expr, order = expr.expr, order + len(expr.variables)
            else:
                break

        return expr, (sym, Rational(order))

    def parse_term(expr):
        """Parses expression expr and outputs tuple (sexpr, rat_expo,
        sym_expo, deriv)
        where:
         - sexpr is the base expression
         - rat_expo is the rational exponent that sexpr is raised to
         - sym_expo is the symbolic exponent that sexpr is raised to
         - deriv contains the derivatives the the expression

         for example, the output of x would be (x, 1, None, None)
         the output of 2**x would be (2, 1, x, None)
        """
        rat_expo, sym_expo = S.One, None
        sexpr, deriv = expr, None

        if expr.is_Pow:
            if isinstance(expr.base, Derivative):
                sexpr, deriv = parse_derivative(expr.base)
            else:
                sexpr = expr.base

            if expr.exp.is_Number:
                rat_expo = expr.exp
            else:
                coeff, tail = expr.exp.as_coeff_Mul()

                if coeff.is_Number:
                    rat_expo, sym_expo = coeff, tail
                else:
                    sym_expo = expr.exp
        elif isinstance(expr, exp):
            arg = expr.args[0]
            if arg.is_Rational:
                sexpr, rat_expo = S.Exp1, arg
            elif arg.is_Mul:
                coeff, tail = arg.as_coeff_Mul(rational=True)
                sexpr, rat_expo = exp(tail), coeff
        elif isinstance(expr, Derivative):
            sexpr, deriv = parse_derivative(expr)

        return sexpr, rat_expo, sym_expo, deriv

    def parse_expression(terms, pattern):
        """Parse terms searching for a pattern.
        terms is a list of tuples as returned by parse_terms;
        pattern is an expression treated as a product of factors
        """
        pattern = Mul.make_args(pattern)

        if len(terms) < len(pattern):
            # pattern is longer than matched product
            # so no chance for positive parsing result
            return None
        else:
            pattern = [parse_term(elem) for elem in pattern]

            terms = terms[:]  # need a copy
            elems, common_expo, has_deriv = [], None, False

            for elem, e_rat, e_sym, e_ord in pattern:

                if elem.is_Number and e_rat == 1 and e_sym is None:
                    # a constant is a match for everything
                    continue

                for j in range(len(terms)):
                    if terms[j] is None:
                        continue

                    term, t_rat, t_sym, t_ord = terms[j]

                    # keeping track of whether one of the terms had
                    # a derivative or not as this will require rebuilding
                    # the expression later
                    if t_ord is not None:
                        has_deriv = True

                    if (term.match(elem) is not None
                            and (t_sym == e_sym
                                 or t_sym is not None and e_sym is not None
                                 and t_sym.match(e_sym) is not None)):
                        if exact is False:
                            # we don't have to be exact so find common exponent
                            # for both expression's term and pattern's element
                            expo = t_rat / e_rat

                            if common_expo is None:
                                # first time
                                common_expo = expo
                            else:
                                # common exponent was negotiated before so
                                # there is no chance for a pattern match unless
                                # common and current exponents are equal
                                if common_expo != expo:
                                    common_expo = 1
                        else:
                            # we ought to be exact so all fields of
                            # interest must match in every details
                            if e_rat != t_rat or e_ord != t_ord:
                                continue

                        # found common term so remove it from the expression
                        # and try to match next element in the pattern
                        elems.append(terms[j])
                        terms[j] = None

                        break

                else:
                    # pattern element not found
                    return None

            return [_f for _f in terms if _f], elems, common_expo, has_deriv

    if evaluate:
        if expr.is_Mul:
            return expr.func(*[
                collect(term, syms, func, True, exact, distribute_order_term)
                for term in expr.args
            ])
        elif expr.is_Pow:
            b = collect(expr.base, syms, func, True, exact,
                        distribute_order_term)
            return Pow(b, expr.exp)

    syms = [expand_power_base(i, deep=False) for i in syms]

    order_term = None

    if distribute_order_term:
        order_term = expr.getO()

        if order_term is not None:
            if order_term.has(*syms):
                order_term = None
            else:
                expr = expr.removeO()

    summa = [expand_power_base(i, deep=False) for i in Add.make_args(expr)]

    collected, disliked = defaultdict(list), S.Zero
    for product in summa:
        c, nc = product.args_cnc(split_1=False)
        args = list(ordered(c)) + nc
        terms = [parse_term(i) for i in args]
        small_first = True

        for symbol in syms:
            if SYMPY_DEBUG:
                print("DEBUG: parsing of expression %s with symbol %s " %
                      (str(terms), str(symbol)))

            if isinstance(symbol, Derivative) and small_first:
                terms = list(reversed(terms))
                small_first = not small_first
            result = parse_expression(terms, symbol)

            if SYMPY_DEBUG:
                print("DEBUG: returned %s" % str(result))

            if result is not None:
                terms, elems, common_expo, has_deriv = result

                # when there was derivative in current pattern we
                # will need to rebuild its expression from scratch
                if not has_deriv:
                    margs = []
                    for elem in elems:
                        if elem[2] is None:
                            e = elem[1]
                        else:
                            e = elem[1] * elem[2]
                        margs.append(Pow(elem[0], e))
                    index = Mul(*margs)
                else:
                    index = make_expression(elems)
                terms = expand_power_base(make_expression(terms), deep=False)
                index = expand_power_base(index, deep=False)
                collected[index].append(terms)
                break
        else:
            # none of the patterns matched
            disliked += product
    # add terms now for each key
    collected = {k: Add(*v) for k, v in collected.items()}

    if disliked is not S.Zero:
        collected[S.One] = disliked

    if order_term is not None:
        for key, val in collected.items():
            collected[key] = val + order_term

    if func is not None:
        collected = dict([(key, func(val)) for key, val in collected.items()])

    if evaluate:
        return Add(*[key * val for key, val in collected.items()])
    else:
        return collected
Ejemplo n.º 51
0
def bspline_basis(d, knots, n, x):
    """The `n`-th B-spline at `x` of degree `d` with knots.

    B-Splines are piecewise polynomials of degree `d` [1]_.  They are
    defined on a set of knots, which is a sequence of integers or
    floats.

    The 0th degree splines have a value of one on a single interval:

        >>> from sympy import bspline_basis
        >>> from sympy.abc import x
        >>> d = 0
        >>> knots = tuple(range(5))
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((1, (x >= 0) & (x <= 1)), (0, True))

    For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines
    defined, that are indexed by ``n`` (starting at 0).

    Here is an example of a cubic B-spline:

        >>> bspline_basis(3, tuple(range(5)), 0, x)
        Piecewise((x**3/6, (x >= 0) & (x <= 1)),
                  (-x**3/2 + 2*x**2 - 2*x + 2/3,
                  (x >= 1) & (x <= 2)),
                  (x**3/2 - 4*x**2 + 10*x - 22/3,
                  (x >= 2) & (x <= 3)),
                  (-x**3/6 + 2*x**2 - 8*x + 32/3,
                  (x >= 3) & (x <= 4)),
                  (0, True))

    By repeating knot points, you can introduce discontinuities in the
    B-splines and their derivatives:

        >>> d = 1
        >>> knots = (0, 0, 2, 3, 4)
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True))

    It is quite time consuming to construct and evaluate B-splines. If
    you need to evaluate a B-splines many times, it is best to
    lambdify them first:

        >>> from sympy import lambdify
        >>> d = 3
        >>> knots = tuple(range(10))
        >>> b0 = bspline_basis(d, knots, 0, x)
        >>> f = lambdify(x, b0)
        >>> y = f(0.5)

    See Also
    ========

    bsplines_basis_set

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/B-spline

    """
    knots = tuple(sympify(k) for k in knots)
    d = int(d)
    n = int(n)
    n_knots = len(knots)
    n_intervals = n_knots - 1
    if n + d + 1 > n_intervals:
        raise ValueError("n + d + 1 must not exceed len(knots) - 1")
    if d == 0:
        result = Piecewise(
            (S.One, Interval(knots[n], knots[n + 1]).contains(x)), (0, True))
    elif d > 0:
        denom = knots[n + d + 1] - knots[n + 1]
        if denom != S.Zero:
            B = (knots[n + d + 1] - x) / denom
            b2 = bspline_basis(d - 1, knots, n + 1, x)
        else:
            b2 = B = S.Zero

        denom = knots[n + d] - knots[n]
        if denom != S.Zero:
            A = (x - knots[n]) / denom
            b1 = bspline_basis(d - 1, knots, n, x)
        else:
            b1 = A = S.Zero

        result = _add_splines(A, b1, B, b2)
    else:
        raise ValueError("degree must be non-negative: %r" % n)
    return result
Ejemplo n.º 52
0
 def __init__(self, ex):
     if not isinstance(ex, self.__class__):
         self.ex = sympify(ex)
     else:
         self.ex = ex.ex
Ejemplo n.º 53
0
 def taylor_term(n, x, *previous_terms):
     if n < 0 or n % 2 == 0:
         return S.Zero
     else:
         x = sympify(x)
         return x**n / n
Ejemplo n.º 54
0
 def __new__(cls, n):
     return super(Identity, cls).__new__(cls, sympify(n))
Ejemplo n.º 55
0
def collect_const(expr, *vars, **kwargs):
    """A non-greedy collection of terms with similar number coefficients in
    an Add expr. If ``vars`` is given then only those constants will be
    targeted. Although any Number can also be targeted, if this is not
    desired set ``Numbers=False`` and no Float or Rational will be collected.

    Parameters
    ==========

    expr : sympy expression
        This parameter defines the expression the expression from which
        terms with similar coefficients are to be collected. A non-Add
        expression is returned as it is.

    vars : variable length collection of Numbers, optional
        Specifies the constants to target for collection. Can be multiple in
        number.

    kwargs : ``Numbers`` is the only possible argument to pass.
        Numbers (default=True) specifies to target all instance of
        :class:`sympy.core.numbers.Number` class. If ``Numbers=False``, then
        no Float or Rational will be collected.

    Returns
    =======

    expr : Expr
        Returns an expression with similar coefficient terms collected.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.abc import a, s, x, y, z
    >>> from sympy.simplify.radsimp import collect_const
    >>> collect_const(sqrt(3) + sqrt(3)*(1 + sqrt(2)))
    sqrt(3)*(sqrt(2) + 2)
    >>> collect_const(sqrt(3)*s + sqrt(7)*s + sqrt(3) + sqrt(7))
    (sqrt(3) + sqrt(7))*(s + 1)
    >>> s = sqrt(2) + 2
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7))
    (sqrt(2) + 3)*(sqrt(3) + sqrt(7))
    >>> collect_const(sqrt(3)*s + sqrt(3) + sqrt(7)*s + sqrt(7), sqrt(3))
    sqrt(7) + sqrt(3)*(sqrt(2) + 3) + sqrt(7)*(sqrt(2) + 2)

    The collection is sign-sensitive, giving higher precedence to the
    unsigned values:

    >>> collect_const(x - y - z)
    x - (y + z)
    >>> collect_const(-y - z)
    -(y + z)
    >>> collect_const(2*x - 2*y - 2*z, 2)
    2*(x - y - z)
    >>> collect_const(2*x - 2*y - 2*z, -2)
    2*x - 2*(y + z)

    See Also
    ========
    collect, collect_sqrt, rcollect
    """
    if not expr.is_Add:
        return expr

    recurse = False
    Numbers = kwargs.get('Numbers', True)

    if not vars:
        recurse = True
        vars = set()
        for a in expr.args:
            for m in Mul.make_args(a):
                if m.is_number:
                    vars.add(m)
    else:
        vars = sympify(vars)
    if not Numbers:
        vars = [v for v in vars if not v.is_Number]

    vars = list(ordered(vars))
    for v in vars:
        terms = defaultdict(list)
        Fv = Factors(v)
        for m in Add.make_args(expr):
            f = Factors(m)
            q, r = f.div(Fv)
            if r.is_one:
                # only accept this as a true factor if
                # it didn't change an exponent from an Integer
                # to a non-Integer, e.g. 2/sqrt(2) -> sqrt(2)
                # -- we aren't looking for this sort of change
                fwas = f.factors.copy()
                fnow = q.factors
                if not any(k in fwas and fwas[k].is_Integer
                           and not fnow[k].is_Integer for k in fnow):
                    terms[v].append(q.as_expr())
                    continue
            terms[S.One].append(m)

        args = []
        hit = False
        uneval = False
        for k in ordered(terms):
            v = terms[k]
            if k is S.One:
                args.extend(v)
                continue

            if len(v) > 1:
                v = Add(*v)
                hit = True
                if recurse and v != expr:
                    vars.append(v)
            else:
                v = v[0]

            # be careful not to let uneval become True unless
            # it must be because it's going to be more expensive
            # to rebuild the expression as an unevaluated one
            if Numbers and k.is_Number and v.is_Add:
                args.append(_keep_coeff(k, v, sign=True))
                uneval = True
            else:
                args.append(k * v)

        if hit:
            if uneval:
                expr = _unevaluated_Add(*args)
            else:
                expr = Add(*args)
            if not expr.is_Add:
                break

    return expr
Ejemplo n.º 56
0
    def convert(self, element, base=None):
        """Convert ``element`` to ``self.dtype``. """

        if base is not None:
            if _not_a_coeff(element):
                raise CoercionFailed('%s is not in any domain' % element)
            return self.convert_from(element, base)

        if self.of_type(element):
            return element

        if _not_a_coeff(element):
            raise CoercionFailed('%s is not in any domain' % element)

        from sympy.polys.domains import ZZ, QQ, RealField, ComplexField

        if ZZ.of_type(element):
            return self.convert_from(element, ZZ)

        if isinstance(element, int):
            return self.convert_from(ZZ(element), ZZ)

        if HAS_GMPY:
            integers = ZZ
            if isinstance(element, integers.tp):
                return self.convert_from(element, integers)

            rationals = QQ
            if isinstance(element, rationals.tp):
                return self.convert_from(element, rationals)

        if isinstance(element, float):
            parent = RealField(tol=False)
            return self.convert_from(parent(element), parent)

        if isinstance(element, complex):
            parent = ComplexField(tol=False)
            return self.convert_from(parent(element), parent)

        if isinstance(element, DomainElement):
            return self.convert_from(element, element.parent())

        # TODO: implement this in from_ methods
        if self.is_Numerical and getattr(element, 'is_ground', False):
            return self.convert(element.LC())

        if isinstance(element, Basic):
            try:
                return self.from_sympy(element)
            except (TypeError, ValueError):
                pass
        else: # TODO: remove this branch
            if not is_sequence(element):
                try:
                    element = sympify(element, strict=True)
                    if isinstance(element, Basic):
                        return self.from_sympy(element)
                except (TypeError, ValueError):
                    pass

        raise CoercionFailed("Cannot convert %s of type %s to %s" % (element, type(element), self))
Ejemplo n.º 57
0
def bspline_basis(d, knots, n, x, close=True):
    """The n-th B-spline at x of degree d with knots.

    B-Splines are piecewise polynomials of degree d [1].  They are defined on
    a set of knots, which is a sequence of integers or floats.

    The 0th degree splines have a value of one on a single interval:

        >>> from sympy import bspline_basis
        >>> from sympy.abc import x
        >>> d = 0
        >>> knots = range(5)
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((1, [0, 1]), (0, True))

    For a given (d, knots) there are len(knots)-d-1 B-splines defined, that
    are indexed by n (starting at 0).

    Here is an example of a cubic B-spline:

        >>> bspline_basis(3, range(5), 0, x)
        Piecewise((x**3/6, [0, 1)), (-x**3/2 + 2*x**2 - 2*x + 2/3, [1, 2)), (x**3/2 - 4*x**2 + 10*x - 22/3, [2, 3)), (-x**3/6 + 2*x**2 - 8*x + 32/3, [3, 4]), (0, True))

    By repeating knot points, you can introduce discontinuities in the
    B-splines and their derivatives:

        >>> d = 1
        >>> knots = [0,0,2,3,4]
        >>> bspline_basis(d, knots, 0, x)
        Piecewise((-x/2 + 1, [0, 2]), (0, True))

    It is quite time consuming to construct and evaluate B-splines. If you
    need to evaluate a B-splines many times, it is best to lambdify them
    first:

        >>> from sympy import lambdify
        >>> d = 3
        >>> knots = range(10)
        >>> b0 = bspline_basis(d, knots, 0, x)
        >>> f = lambdify(x, b0)
        >>> y = f(0.5)

    See Also
    ========

    bsplines_basis_set

    References
    ==========

    [1] http://en.wikipedia.org/wiki/B-spline

    """
    knots = [sympify(k) for k in knots]
    d = int(d)
    n = int(n)
    n_knots = len(knots)
    n_intervals = n_knots-1
    if n+d+1 > n_intervals:
        raise ValueError('n+d+1 must not exceed len(knots)-1')
    if d==0:
        result = Piecewise(
            (S.One, Interval(knots[n], knots[n+1], False, True)),
            (0, True)
        )
    elif d > 0:
        denom = knots[n+d] - knots[n]
        if denom != S.Zero:
            A = (x - knots[n])/denom
            b1 = bspline_basis(d-1, knots, n, x, close=False)
        else:
            b1 = A = S.Zero

        denom = knots[n+d+1] - knots[n+1]
        if denom != S.Zero:
            B = (knots[n+d+1] - x)/denom
            b2 = bspline_basis(d-1, knots, n+1, x, close=False)
        else:
            b2 = B = S.Zero
        result = _add_splines(A, b1, B, b2)
    else:
        raise ValueError('degree must be non-negative: %r' % n)
    if close:
        final_ec_pair = result.args[-2]
        final_cond = final_ec_pair.cond
        final_expr = final_ec_pair.expr
        new_args = final_cond.args[:3] + (False,)
        new_ec_pair = ExprCondPair(final_expr, Interval(*new_args))
        new_args = result.args[:-2] + (new_ec_pair, result.args[-1])
        result = Piecewise(*new_args)
    return result
Ejemplo n.º 58
0
 def __new__(cls, expr):
     expr = sympify(expr)
     obj = Expr.__new__(cls, expr)
     obj._expr = expr
     return obj
Ejemplo n.º 59
0
def rsolve_poly(coeffs, f, n, **hints):
    """
    Given linear recurrence operator `\operatorname{L}` of order
    `k` with polynomial coefficients and inhomogeneous equation
    `\operatorname{L} y = f`, where `f` is a polynomial, we seek for
    all polynomial solutions over field `K` of characteristic zero.

    The algorithm performs two basic steps:

        (1) Compute degree `N` of the general polynomial solution.
        (2) Find all polynomials of degree `N` or less
            of `\operatorname{L} y = f`.

    There are two methods for computing the polynomial solutions.
    If the degree bound is relatively small, i.e. it's smaller than
    or equal to the order of the recurrence, then naive method of
    undetermined coefficients is being used. This gives system
    of algebraic equations with `N+1` unknowns.

    In the other case, the algorithm performs transformation of the
    initial equation to an equivalent one, for which the system of
    algebraic equations has only `r` indeterminates. This method is
    quite sophisticated (in comparison with the naive one) and was
    invented together by Abramov, Bronstein and Petkovsek.

    It is possible to generalize the algorithm implemented here to
    the case of linear q-difference and differential equations.

    Lets say that we would like to compute `m`-th Bernoulli polynomial
    up to a constant. For this we can use `b(n+1) - b(n) = m n^{m-1}`
    recurrence, which has solution `b(n) = B_m + C`. For example:

    >>> from sympy import Symbol, rsolve_poly
    >>> n = Symbol('n', integer=True)

    >>> rsolve_poly([-1, 1], 4*n**3, n)
    C0 + n**4 - 2*n**3 + n**2

    References
    ==========

    .. [1] S. A. Abramov, M. Bronstein and M. Petkovsek, On polynomial
           solutions of linear operator equations, in: T. Levelt, ed.,
           Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.

    .. [2] M. Petkovsek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

    .. [3] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.

    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return None

    homogeneous = f.is_zero

    r = len(coeffs) - 1

    coeffs = [ Poly(coeff, n) for coeff in coeffs ]

    polys = [ Poly(0, n) ] * (r + 1)
    terms = [ (S.Zero, S.NegativeInfinity) ] *(r + 1)

    for i in range(0, r + 1):
        for j in range(i, r + 1):
            polys[i] += coeffs[j]*binomial(j, i)

        if not polys[i].is_zero:
            (exp,), coeff = polys[i].LT()
            terms[i] = (coeff, exp)

    d = b = terms[0][1]

    for i in range(1, r + 1):
        if terms[i][1] > d:
            d = terms[i][1]

        if terms[i][1] - i > b:
            b = terms[i][1] - i

    d, b = int(d), int(b)

    x = Dummy('x')

    degree_poly = S.Zero

    for i in range(0, r + 1):
        if terms[i][1] - i == b:
            degree_poly += terms[i][0]*FallingFactorial(x, i)

    nni_roots = list(roots(degree_poly, x, filter='Z',
        predicate=lambda r: r >= 0).keys())

    if nni_roots:
        N = [max(nni_roots)]
    else:
        N = []

    if homogeneous:
        N += [-b - 1]
    else:
        N += [f.as_poly(n).degree() - b, -b - 1]

    N = int(max(N))

    if N < 0:
        if homogeneous:
            if hints.get('symbols', False):
                return (S.Zero, [])
            else:
                return S.Zero
        else:
            return None

    if N <= r:
        C = []
        y = E = S.Zero

        for i in range(0, N + 1):
            C.append(Symbol('C' + str(i)))
            y += C[i] * n**i

        for i in range(0, r + 1):
            E += coeffs[i].as_expr()*y.subs(n, n + i)

        solutions = solve_undetermined_coeffs(E - f, C, n)

        if solutions is not None:
            C = [ c for c in C if (c not in solutions) ]
            result = y.subs(solutions)
        else:
            return None  # TBD
    else:
        A = r
        U = N + A + b + 1

        nni_roots = list(roots(polys[r], filter='Z',
            predicate=lambda r: r >= 0).keys())

        if nni_roots != []:
            a = max(nni_roots) + 1
        else:
            a = S.Zero

        def _zero_vector(k):
            return [S.Zero] * k

        def _one_vector(k):
            return [S.One] * k

        def _delta(p, k):
            B = S.One
            D = p.subs(n, a + k)

            for i in range(1, k + 1):
                B *= -Rational(k - i + 1, i)
                D += B * p.subs(n, a + k - i)

            return D

        alpha = {}

        for i in range(-A, d + 1):
            I = _one_vector(d + 1)

            for k in range(1, d + 1):
                I[k] = I[k - 1] * (x + i - k + 1)/k

            alpha[i] = S.Zero

            for j in range(0, A + 1):
                for k in range(0, d + 1):
                    B = binomial(k, i + j)
                    D = _delta(polys[j].as_expr(), k)

                    alpha[i] += I[k]*B*D

        V = Matrix(U, A, lambda i, j: int(i == j))

        if homogeneous:
            for i in range(A, U):
                v = _zero_vector(A)

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom
        else:
            G = _zero_vector(U)

            for i in range(A, U):
                v = _zero_vector(A)
                g = S.Zero

                for k in range(1, A + b + 1):
                    if i - k < 0:
                        break

                    B = alpha[k - A].subs(x, i - k)

                    for j in range(0, A):
                        v[j] += B * V[i - k, j]

                    g += B * G[i - k]

                denom = alpha[-A].subs(x, i)

                for j in range(0, A):
                    V[i, j] = -v[j] / denom

                G[i] = (_delta(f, i - A) - g) / denom

        P, Q = _one_vector(U), _zero_vector(A)

        for i in range(1, U):
            P[i] = (P[i - 1] * (n - a - i + 1)/i).expand()

        for i in range(0, A):
            Q[i] = Add(*[ (v*p).expand() for v, p in zip(V[:, i], P) ])

        if not homogeneous:
            h = Add(*[ (g*p).expand() for g, p in zip(G, P) ])

        C = [ Symbol('C' + str(i)) for i in range(0, A) ]

        g = lambda i: Add(*[ c*_delta(q, i) for c, q in zip(C, Q) ])

        if homogeneous:
            E = [ g(i) for i in range(N + 1, U) ]
        else:
            E = [ g(i) + _delta(h, i) for i in range(N + 1, U) ]

        if E != []:
            solutions = solve(E, *C)

            if not solutions:
                if homogeneous:
                    if hints.get('symbols', False):
                        return (S.Zero, [])
                    else:
                        return S.Zero
                else:
                    return None
        else:
            solutions = {}

        if homogeneous:
            result = S.Zero
        else:
            result = h

        for c, q in list(zip(C, Q)):
            if c in solutions:
                s = solutions[c]*q
                C.remove(c)
            else:
                s = c*q

            result += s.expand()

    if hints.get('symbols', False):
        return (result, C)
    else:
        return result
Ejemplo n.º 60
0
    def eval(cls, arg, base=None):
        from sympy import unpolarify
        from sympy.calculus import AccumBounds
        from sympy.sets.setexpr import SetExpr
        from sympy.functions.elementary.complexes import Abs

        arg = sympify(arg)

        if base is not None:
            base = sympify(base)
            if base == 1:
                if arg == 1:
                    return S.NaN
                else:
                    return S.ComplexInfinity
            try:
                # handle extraction of powers of the base now
                # or else expand_log in Mul would have to handle this
                n = multiplicity(base, arg)
                if n:
                    return n + log(arg / base**n) / log(base)
                else:
                    return log(arg) / log(base)
            except ValueError:
                pass
            if base is not S.Exp1:
                return cls(arg) / cls(base)
            else:
                return cls(arg)

        if arg.is_Number:
            if arg.is_zero:
                return S.ComplexInfinity
            elif arg is S.One:
                return S.Zero
            elif arg is S.Infinity:
                return S.Infinity
            elif arg is S.NegativeInfinity:
                return S.Infinity
            elif arg is S.NaN:
                return S.NaN
            elif arg.is_Rational and arg.p == 1:
                return -cls(arg.q)

        I = S.ImaginaryUnit
        if isinstance(arg, exp) and arg.args[0].is_extended_real:
            return arg.args[0]
        elif isinstance(arg, exp) and arg.args[0].is_number:
            r_, i_ = match_real_imag(arg.args[0])
            if i_ and i_.is_comparable:
                i_ %= 2 * S.Pi
                if i_ > S.Pi:
                    i_ -= 2 * S.Pi
                return r_ + expand_mul(i_ * I, deep=False)
        elif isinstance(arg, exp_polar):
            return unpolarify(arg.exp)
        elif isinstance(arg, AccumBounds):
            if arg.min.is_positive:
                return AccumBounds(log(arg.min), log(arg.max))
            else:
                return
        elif isinstance(arg, SetExpr):
            return arg._eval_func(cls)

        if arg.is_number:
            if arg.is_negative:
                return S.Pi * I + cls(-arg)
            elif arg is S.ComplexInfinity:
                return S.ComplexInfinity
            elif arg is S.Exp1:
                return S.One

        if arg.is_zero:
            return S.ComplexInfinity

        # don't autoexpand Pow or Mul (see the issue 3351):
        if not arg.is_Add:
            coeff = arg.as_coefficient(I)

            if coeff is not None:
                if coeff is S.Infinity:
                    return S.Infinity
                elif coeff is S.NegativeInfinity:
                    return S.Infinity
                elif coeff.is_Rational:
                    if coeff.is_nonnegative:
                        return S.Pi * I * S.Half + cls(coeff)
                    else:
                        return -S.Pi * I * S.Half + cls(-coeff)

        if arg.is_number and arg.is_algebraic:
            # Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
            coeff, arg_ = arg.as_independent(I, as_Add=False)
            if coeff.is_negative:
                coeff *= -1
                arg_ *= -1
            arg_ = expand_mul(arg_, deep=False)
            r_, i_ = arg_.as_independent(I, as_Add=True)
            i_ = i_.as_coefficient(I)
            if coeff.is_real and i_ and i_.is_real and r_.is_real:
                if r_.is_zero:
                    if i_.is_positive:
                        return S.Pi * I * S.Half + cls(coeff * i_)
                    elif i_.is_negative:
                        return -S.Pi * I * S.Half + cls(coeff * -i_)
                else:
                    from sympy.simplify import ratsimp
                    # Check for arguments involving rational multiples of pi
                    t = (i_ / r_).cancel()
                    atan_table = {
                        # first quadrant only
                        sqrt(3):
                        S.Pi / 3,
                        1:
                        S.Pi / 4,
                        sqrt(5 - 2 * sqrt(5)):
                        S.Pi / 5,
                        sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)):
                        S.Pi / 5,
                        sqrt(5 + 2 * sqrt(5)):
                        S.Pi * Rational(2, 5),
                        sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)):
                        S.Pi * Rational(2, 5),
                        sqrt(3) / 3:
                        S.Pi / 6,
                        sqrt(2) - 1:
                        S.Pi / 8,
                        sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2):
                        S.Pi / 8,
                        sqrt(2) + 1:
                        S.Pi * Rational(3, 8),
                        sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)):
                        S.Pi * Rational(3, 8),
                        sqrt(1 - 2 * sqrt(5) / 5):
                        S.Pi / 10,
                        (-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)):
                        S.Pi / 10,
                        sqrt(1 + 2 * sqrt(5) / 5):
                        S.Pi * Rational(3, 10),
                        (sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))):
                        S.Pi * Rational(3, 10),
                        2 - sqrt(3):
                        S.Pi / 12,
                        (-1 + sqrt(3)) / (1 + sqrt(3)):
                        S.Pi / 12,
                        2 + sqrt(3):
                        S.Pi * Rational(5, 12),
                        (1 + sqrt(3)) / (-1 + sqrt(3)):
                        S.Pi * Rational(5, 12)
                    }
                    if t in atan_table:
                        modulus = ratsimp(coeff * Abs(arg_))
                        if r_.is_positive:
                            return cls(modulus) + I * atan_table[t]
                        else:
                            return cls(modulus) + I * (atan_table[t] - S.Pi)
                    elif -t in atan_table:
                        modulus = ratsimp(coeff * Abs(arg_))
                        if r_.is_positive:
                            return cls(modulus) + I * (-atan_table[-t])
                        else:
                            return cls(modulus) + I * (S.Pi - atan_table[-t])