def rs_tan(p, x, prec): """ Tangent of a series Returns the series expansion of the tan of p, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_tan >>> R, x, y = ring('x, y', QQ) >>> rs_tan(x + x*y, x, 4) 1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x See Also ======== tan """ if rs_is_puiseux(p, x): r = rs_puiseux(rs_tan, p, x, prec) return r R = p.ring const = 0 c = _get_constant_term(p, x) if c: if R.domain is EX: c_expr = c.as_expr() const = tan(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(tan(c_expr)) except ValueError: R = R.add_gens([tan(c_expr, )]) p = p.set_ring(R) x = x.set_ring(R) c = c.set_ring(R) const = R(tan(c_expr)) else: try: const = R(tan(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c # Makes use of sympy fuctions to evaluate the values of the cos/sin # of the constant term. t2 = rs_tan(p1, x, prec) t = rs_series_inversion(1 - const*t2, x, prec) return rs_mul(const + t2, t, x, prec) if R.ngens == 1: return _tan1(p, x, prec) else: return rs_fun(p, rs_tan, x, prec)
def rs_tan(p, x, prec): """ Tangent of a series Returns the series expansion of the tan of p, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_tan >>> R, x, y = ring('x, y', QQ) >>> rs_tan(x + x*y, x, 4) 1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x See Also ======== tan """ if rs_is_puiseux(p, x): r = rs_puiseux(rs_tan, p, x, prec) return r R = p.ring const = 0 if _has_constant_term(p, x): zm = R.zero_monom c = p[zm] if R.domain is EX: c_expr = c.as_expr() const = tan(c_expr) elif isinstance(c, PolyElement): try: c_expr = c.as_expr() const = R(tan(c_expr)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") else: try: const = R(tan(c)) except ValueError: raise DomainError("The given series can't be expanded in " "this domain.") p1 = p - c # Makes use of sympy fuctions to evaluate the values of the cos/sin # of the constant term. t2 = rs_tan(p1, x, prec) t = rs_series_inversion(1 - const * t2, x, prec) return rs_mul(const + t2, t, x, prec) if R.ngens == 1: return _tan1(p, x, prec) else: return rs_fun(p, rs_tan, x, prec)
def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)* cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a)*(cos(a**2) + a**4/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0, 6).removeO()) p = a**QQ(2,5) + a**QQ(2,3) + a r = rs_series(tan(p), a, 2) assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \ a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(exp(p), a, 1) assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1 r = rs_series(sin(p), a, 2) assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \ a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(cos(p), a, 2) assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \ a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1 assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0, 5).removeO()
def rs_tan(p, x, prec): """ Tangent of a series Returns the series expansion of the tan of p, about 0. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import rs_tan >>> R, x, y = ring('x, y', QQ) >>> rs_tan(x + x*y, x, 4) 1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x See Also ======== tan """ R = p.ring const = 0 if _has_constant_term(p, x): zm = R.zero_monom c = p[zm] c_expr = c.as_expr() if R.domain is EX: const = tan(c_expr) elif isinstance(c, PolyElement): try: const = R(tan(c_expr)) except ValueError: raise DomainError("The given series can't be expanded in this " "domain.") else: raise DomainError("The given series can't be expanded in this " "domain") raise NotImplementedError p1 = p - c # Makes use of sympy fuctions to evaluate the values of the cos/sin # of the constant term. t2 = rs_tan(p1, x, prec) t = rs_series_inversion(1 - const * t2, x, prec) return rs_mul(const + t2, t, x, prec) if R.ngens == 1: return _tan1(p, x, prec) else: return fun(p, _tan1, x, prec)
def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(1/a), a, 5).as_expr() == sin(1/a) assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)* cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a)*(cos(a**2) + a**4/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0, 6).removeO())
def _get_general_solution(self, *, simplify: bool = True): a, b, c, d = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) mu = sqrt(4*d*b - (a - c)**2) gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) return [gensol]
def test_C99CodePrinter__precision(): n = symbols('n', integer=True) f32_printer = C99CodePrinter(dict(type_aliases={real: float32})) f64_printer = C99CodePrinter(dict(type_aliases={real: float64})) f80_printer = C99CodePrinter(dict(type_aliases={real: float80})) assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)' assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)' assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)' for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']): def check(expr, ref): assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) check(Abs(n), 'abs(n)') check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})') check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))') check(exp(x*8.0), 'exp{s}(8.0{S}*x)') check(exp2(x), 'exp2{s}(x)') check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)') check(Mod(n, 2), '((n) % (2))') check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))') check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})') check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})') check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)') check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)') check(log2(x*8.0), 'log2{s}(8.0{S}*x)') check(log1p(x), 'log1p{s}(x)') check(2**x, 'pow{s}(2, x)') check(2.0**x, 'pow{s}(2.0{S}, x)') check(x**3, 'pow{s}(x, 3)') check(x**4.0, 'pow{s}(x, 4.0{S})') check(sqrt(3+x), 'sqrt{s}(x + 3)') check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})') check(hypot(x, y), 'hypot{s}(x, y)') check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})') check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})') check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})') check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})') check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})') check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})') check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)') check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})') check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})') check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})') check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})') check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})') check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})') check(erf(42.*x), 'erf{s}(42.0{S}*x)') check(erfc(42.*x), 'erfc{s}(42.0{S}*x)') check(gamma(x), 'tgamma{s}(x)') check(loggamma(x), 'lgamma{s}(x)') check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})") check(floor(x + 2.), "floor{s}(x + 2.0{S})") check(fma(x, y, -z), 'fma{s}(x, y, -z)') check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))') check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
def test_issue_21195(): t = symbols('t') x = Function('x')(t) dx = x.diff(t) exp1 = cos(x) + cos(x) * dx exp2 = sin(x) + tan(x) * (dx.diff(t)) exp3 = sin(x) * sin(t) * (dx.diff(t)).diff(t) A = Matrix([[exp1], [exp2], [exp3]]) B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]]) assert A.diff(x) == B
def test_trigintegrate_mixed(): assert trigintegrate(sin(x)*sec(x), x) == -log(sin(x)**2 - 1)/2 assert trigintegrate(sin(x)*csc(x), x) == x assert trigintegrate(sin(x)*cot(x), x) == sin(x) assert trigintegrate(cos(x)*sec(x), x) == x assert trigintegrate(cos(x)*csc(x), x) == log(cos(x)**2 - 1)/2 assert trigintegrate(cos(x)*tan(x), x) == -cos(x) assert trigintegrate(cos(x)*cot(x), x) == log(cos(x) - 1)/2 \ - log(cos(x) + 1)/2 + cos(x)
def test_trigintegrate_mixed(): assert trigintegrate(sin(x) * sec(x), x) == -log(sin(x)**2 - 1) / 2 assert trigintegrate(sin(x) * csc(x), x) == x assert trigintegrate(sin(x) * cot(x), x) == sin(x) assert trigintegrate(cos(x) * sec(x), x) == x assert trigintegrate(cos(x) * csc(x), x) == log(cos(x)**2 - 1) / 2 assert trigintegrate(cos(x) * tan(x), x) == -cos(x) assert trigintegrate(cos(x)*cot(x), x) == log(cos(x) - 1)/2 \ - log(cos(x) + 1)/2 + cos(x)
def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(1 / a), a, 5).as_expr() == sin(1 / a) assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a) * cos(a), a, 5).as_expr() == ((sin(a) * cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a) * (cos(a**2) + a**4 / 2) assert expand(rs_series(p, a, 10).as_expr()) == expand( p.series(a, 0, 10).removeO()) p = sin(a**2 / 2 + a / 3) + cos(a / 5) * sin(a / 2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand( p.series(a, 0, 5).removeO()) p = sin(x**2 + a) * (cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand( p.series(a, 0, 5).removeO()) p = sin(a**2 - a / 3 + 2)**5 * exp(a**3 - a / 2) assert expand(rs_series(p, a, 10).as_expr()) == expand( p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand( p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand( p.series(a, 0, 6).removeO())
def Trig_Check(s): if sin(s.args[0])/s is S.One or cos(s.args[0])/s is S.One \ or csc(s.args[0])/s is S.One or sec(s.args[0])/s is S.One \ or tan(s.args[0])/s is S.One or cot(s.args[0])/s is S.One: return True
def test_tan(): R, x, y = ring('x, y', QQ) assert rs_tan(x, x, 9) == \ x + x**3/3 + 2*x**5/15 + 17*x**7/315 assert rs_tan(x*y + x**2*y**3, x, 9) == 4/3*x**8*y**11 + 17/45*x**8*y**9 + \ 4/3*x**7*y**9 + 17/315*x**7*y**7 + 1/3*x**6*y**9 + 2/3*x**6*y**7 + \ x**5*y**7 + 2/15*x**5*y**5 + x**4*y**5 + 1/3*x**3*y**3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[tan(a), a]) assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**3/3 + \ 2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + 1/3)*x**3 + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \ (tan(a)**4 + 4/3*tan(a)**2 + 1/3)*x**3 + (tan(a)**2 + 1)*x**2*y + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) R, x, y = ring('x, y', EX) assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 + \ 2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a)) assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 + \ 2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \ EX(tan(a)**2 + 1)*x + EX(tan(a)) p = x + x**2 + 5 assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + 67701870330562640/ \ 668083460499)
def exptrigsimp(expr, simplify=True): """ Simplifies exponential / trigonometric / hyperbolic functions. When ``simplify`` is True (default) the expression obtained after the simplification step will be then be passed through simplify to precondition it so the final transformations will be applied. Examples ======== >>> from sympy import exptrigsimp, exp, cosh, sinh >>> from sympy.abc import z >>> exptrigsimp(exp(z) + exp(-z)) 2*cosh(z) >>> exptrigsimp(cosh(z) - sinh(z)) exp(-z) """ from sympy.simplify.fu import hyper_as_trig, TR2i from sympy.simplify.simplify import bottom_up def exp_trig(e): # select the better of e, and e rewritten in terms of exp or trig # functions choices = [e] if e.has(*_trigs): choices.append(e.rewrite(exp)) choices.append(e.rewrite(cos)) return min(*choices, key=count_ops) newexpr = bottom_up(expr, exp_trig) if simplify: newexpr = newexpr.simplify() # conversion from exp to hyperbolic ex = newexpr.atoms(exp, S.Exp1) ex = [ei for ei in ex if 1/ei not in ex] ## sinh and cosh for ei in ex: e2 = ei**-2 if e2 in ex: a = e2.args[0]/2 if not e2 is S.Exp1 else S.Half newexpr = newexpr.subs((e2 + 1)*ei, 2*cosh(a)) newexpr = newexpr.subs((e2 - 1)*ei, 2*sinh(a)) ## exp ratios to tan and tanh for ei in ex: n, d = ei - 1, ei + 1 et = n/d etinv = d/n # not 1/et or else recursion errors arise a = ei.args[0] if ei.func is exp else S.One if a.is_Mul or a is S.ImaginaryUnit: c = a.as_coefficient(I) if c: t = S.ImaginaryUnit*tan(c/2) newexpr = newexpr.subs(etinv, 1/t) newexpr = newexpr.subs(et, t) continue t = tanh(a/2) newexpr = newexpr.subs(etinv, 1/t) newexpr = newexpr.subs(et, t) # sin/cos and sinh/cosh ratios to tan and tanh, respectively if newexpr.has(HyperbolicFunction): e, f = hyper_as_trig(newexpr) newexpr = f(TR2i(e)) if newexpr.has(TrigonometricFunction): newexpr = TR2i(newexpr) # can we ever generate an I where there was none previously? if not (newexpr.has(I) and not expr.has(I)): expr = newexpr return expr
def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a) * cos(a), a, 5).as_expr() == ((sin(a) * cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a) * (cos(a**2) + a**4 / 2) assert expand(rs_series(p, a, 10).as_expr()) == expand( p.series(a, 0, 10).removeO()) p = sin(a**2 / 2 + a / 3) + cos(a / 5) * sin(a / 2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand( p.series(a, 0, 5).removeO()) p = sin(x**2 + a) * (cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand( p.series(a, 0, 5).removeO()) p = sin(a**2 - a / 3 + 2)**5 * exp(a**3 - a / 2) assert expand(rs_series(p, a, 10).as_expr()) == expand( p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand( p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand( p.series(a, 0, 6).removeO()) p = a**QQ(2, 5) + a**QQ(2, 3) + a r = rs_series(tan(p), a, 2) assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \ a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(exp(p), a, 1) assert r.as_expr() == a**QQ(4, 5) / 2 + a**QQ(2, 3) + a**QQ(2, 5) + 1 r = rs_series(sin(p), a, 2) assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \ a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(cos(p), a, 2) assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \ a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1 assert rs_series(sin(a) / 7, a, 5).as_expr() == (sin(a) / 7).series(a, 0, 5).removeO() assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \ x**2/2 + x assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \ 8*x**2 + 4*x assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \ x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \ x**2/2 + x assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \ x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \ x**2*a**4/2 + x*a**2
def __init__(self): self.s, self.t, self.x, self.y, self.z = symbols('s,t,x,y,z') self.stack = [] self.defs = {} self.mode = 0 self.hist = [('', [])] # Innehåller en lista med (kommandorad, stack) self.lastx = '' self.clear = True self.op0 = { 's': lambda: self.s, 't': lambda: self.t, 'x': lambda: self.x, 'y': lambda: self.y, 'z': lambda: self.z, 'oo': lambda: S('oo'), 'inf': lambda: S('oo'), 'infinity': lambda: S('oo'), '?': lambda: self.help(), 'help': lambda: self.help(), 'hist': lambda: self.history(), 'history': lambda: self.history(), 'sketch': lambda: self.sketch(), } self.op1 = { 'radians': lambda x: pi / 180 * x, 'sin': lambda x: sin(x), 'cos': lambda x: cos(x), 'tan': lambda x: tan(x), 'sq': lambda x: x**2, 'sqrt': lambda x: sqrt(x), 'ln': lambda x: ln(x), 'exp': lambda x: exp(x), 'log': lambda x: log(x), 'simplify': lambda x: simplify(x), 'polynom': lambda x: self.polynom(x), 'inv': lambda x: 1 / x, 'chs': lambda x: -x, 'center': lambda x: x.center, 'radius': lambda x: x.radius, 'expand': lambda x: x.expand(), 'factor': lambda x: x.factor(), 'incircle': lambda x: x.incircle, 'circumcircle': lambda x: x.circumcircle, 'xdiff': lambda x: x.diff(self.x), 'ydiff': lambda x: x.diff(self.y), 'xint': lambda x: x.integrate(self.x), 'xsolve': lambda x: solve(x, self.x), 'xapart': lambda x: apart(x, self.x), 'xtogether': lambda x: together(x, self.x), 'N': lambda x: N(x), 'info': lambda x: [x.__class__.__name__, [m for m in dir(x) if m[0] != '_']], } self.op2 = { '+': lambda x, y: y + x, '-': lambda x, y: y - x, '*': lambda x, y: y * x, '/': lambda x, y: y / x, '**': lambda x, y: y**x, 'item': lambda x, y: y[x], 'point': lambda x, y: Point(y, x), 'line': lambda x, y: Line(y, x), 'circle': lambda x, y: Circle(y, x), 'tangent_lines': lambda x, y: y.tangent_lines(x), 'intersection': lambda x, y: intersection(x, y), 'perpendicular_line': lambda x, y: y.perpendicular_line(x), 'diff': lambda x, y: y.diff(x), 'int': lambda x, y: y.integrate(x), 'solve': lambda x, y: solve(y, x), 'apart': lambda x, y: apart(y, x), 'together': lambda x, y: together(y, x), 'xeval': lambda x, y: y.subs(self.x, x), } self.op3 = { 'triangle': lambda x, y, z: Triangle(x, y, z), 'limit': lambda x, y, z: limit( z, y, x), # limit(sin(x)/x,x,0) <=> x sin x / x 0 limit 'eval': lambda x, y, z: z.subs(y, x), } self.op4 = { 'sum': lambda x, y, z, t: Sum(t, (z, y, x)).doit( ) # Sum(1/x**2,(x,1,oo)).doit() <=> 1 x x * / x 1 oo sum } self.lastx = ''
def _trigpats(): global _trigpat a, b, c = symbols('a b c', cls=Wild) d = Wild('d', commutative=False) # for the simplifications like sinh/cosh -> tanh: # DO NOT REORDER THE FIRST 14 since these are assumed to be in this # order in _match_div_rewrite. matchers_division = ( (a * sin(b)**c / cos(b)**c, a * tan(b)**c, sin(b), cos(b)), (a * tan(b)**c * cos(b)**c, a * sin(b)**c, sin(b), cos(b)), (a * cot(b)**c * sin(b)**c, a * cos(b)**c, sin(b), cos(b)), (a * tan(b)**c / sin(b)**c, a / cos(b)**c, sin(b), cos(b)), (a * cot(b)**c / cos(b)**c, a / sin(b)**c, sin(b), cos(b)), (a * cot(b)**c * tan(b)**c, a, sin(b), cos(b)), (a * (cos(b) + 1)**c * (cos(b) - 1)**c, a * (-sin(b)**2)**c, cos(b) + 1, cos(b) - 1), (a * (sin(b) + 1)**c * (sin(b) - 1)**c, a * (-cos(b)**2)**c, sin(b) + 1, sin(b) - 1), (a * sinh(b)**c / cosh(b)**c, a * tanh(b)**c, S.One, S.One), (a * tanh(b)**c * cosh(b)**c, a * sinh(b)**c, S.One, S.One), (a * coth(b)**c * sinh(b)**c, a * cosh(b)**c, S.One, S.One), (a * tanh(b)**c / sinh(b)**c, a / cosh(b)**c, S.One, S.One), (a * coth(b)**c / cosh(b)**c, a / sinh(b)**c, S.One, S.One), (a * coth(b)**c * tanh(b)**c, a, S.One, S.One), (c * (tanh(a) + tanh(b)) / (1 + tanh(a) * tanh(b)), tanh(a + b) * c, S.One, S.One), ) matchers_add = ( (c * sin(a) * cos(b) + c * cos(a) * sin(b) + d, sin(a + b) * c + d), (c * cos(a) * cos(b) - c * sin(a) * sin(b) + d, cos(a + b) * c + d), (c * sin(a) * cos(b) - c * cos(a) * sin(b) + d, sin(a - b) * c + d), (c * cos(a) * cos(b) + c * sin(a) * sin(b) + d, cos(a - b) * c + d), (c * sinh(a) * cosh(b) + c * sinh(b) * cosh(a) + d, sinh(a + b) * c + d), (c * cosh(a) * cosh(b) + c * sinh(a) * sinh(b) + d, cosh(a + b) * c + d), ) # for cos(x)**2 + sin(x)**2 -> 1 matchers_identity = ( (a * sin(b)**2, a - a * cos(b)**2), (a * tan(b)**2, a * (1 / cos(b))**2 - a), (a * cot(b)**2, a * (1 / sin(b))**2 - a), (a * sin(b + c), a * (sin(b) * cos(c) + sin(c) * cos(b))), (a * cos(b + c), a * (cos(b) * cos(c) - sin(b) * sin(c))), (a * tan(b + c), a * ((tan(b) + tan(c)) / (1 - tan(b) * tan(c)))), (a * sinh(b)**2, a * cosh(b)**2 - a), (a * tanh(b)**2, a - a * (1 / cosh(b))**2), (a * coth(b)**2, a + a * (1 / sinh(b))**2), (a * sinh(b + c), a * (sinh(b) * cosh(c) + sinh(c) * cosh(b))), (a * cosh(b + c), a * (cosh(b) * cosh(c) + sinh(b) * sinh(c))), (a * tanh(b + c), a * ((tanh(b) + tanh(c)) / (1 + tanh(b) * tanh(c)))), ) # Reduce any lingering artifacts, such as sin(x)**2 changing # to 1-cos(x)**2 when sin(x)**2 was "simpler" artifacts = ( (a - a * cos(b)**2 + c, a * sin(b)**2 + c, cos), (a - a * (1 / cos(b))**2 + c, -a * tan(b)**2 + c, cos), (a - a * (1 / sin(b))**2 + c, -a * cot(b)**2 + c, sin), (a - a * cosh(b)**2 + c, -a * sinh(b)**2 + c, cosh), (a - a * (1 / cosh(b))**2 + c, a * tanh(b)**2 + c, cosh), (a + a * (1 / sinh(b))**2 + c, a * coth(b)**2 + c, sinh), # same as above but with noncommutative prefactor (a * d - a * d * cos(b)**2 + c, a * d * sin(b)**2 + c, cos), (a * d - a * d * (1 / cos(b))**2 + c, -a * d * tan(b)**2 + c, cos), (a * d - a * d * (1 / sin(b))**2 + c, -a * d * cot(b)**2 + c, sin), (a * d - a * d * cosh(b)**2 + c, -a * d * sinh(b)**2 + c, cosh), (a * d - a * d * (1 / cosh(b))**2 + c, a * d * tanh(b)**2 + c, cosh), (a * d + a * d * (1 / sinh(b))**2 + c, a * d * coth(b)**2 + c, sinh), ) _trigpat = (a, b, c, d, matchers_division, matchers_add, matchers_identity, artifacts) return _trigpat
def test_tan(): R, x, y = ring('x, y', QQ) assert rs_tan(x, x, 9)/x**5 == \ S(17)/315*x**2 + S(2)/15 + S(1)/3*x**(-2) + x**(-4) assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \ 4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \ x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[tan(a), a]) assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**S(3)/3 + 2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + S(1)/3)*x**3 + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \ (tan(a)**4 + S(4)/3*tan(a)**2 + S(1)/3)*x**3 + (tan(a)**2 + 1)*x**2*y + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) R, x, y = ring('x, y', EX) assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 + 2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a)) assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 + 2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \ EX(tan(a)**2 + 1)*x + EX(tan(a)) p = x + x**2 + 5 assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \ 668083460499)
def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)* cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a)*(cos(a**2) + a**4/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0, 6).removeO()) p = a**QQ(2,5) + a**QQ(2,3) + a r = rs_series(tan(p), a, 2) assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \ a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(exp(p), a, 1) assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1 r = rs_series(sin(p), a, 2) assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \ a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(cos(p), a, 2) assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \ a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1 assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0, 5).removeO() assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \ x**2/2 + x assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \ 8*x**2 + 4*x assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \ x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \ x**2/2 + x assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \ x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \ x**2*a**4/2 + x*a**2
plt.style.use("ggplot") # Define the variable and the function to approximate and point to approximate around. x = sy.Symbol('x') p0 = float( input("What point would you like to approximate your function around?: ")) "Analytic functions" #f = np.e**(x) #f = np.log(x) "The Trigonometric functions" #f = sin(x) #f = cos(x) f = tan(x) "The Hyperbolic functions" #f = sinh(x) #f = cosh(x) #f = tanh(x) # Factorial function def factorial(n): if n <= 0: return 1 else: return n * factorial(n - 1)
def test_tensorflow_math(): if not tf: skip("TensorFlow not installed") expr = Abs(x) assert tensorflow_code(expr) == "tensorflow.math.abs(x)" _compare_tensorflow_scalar((x, ), expr) expr = sign(x) assert tensorflow_code(expr) == "tensorflow.math.sign(x)" _compare_tensorflow_scalar((x, ), expr) expr = ceiling(x) assert tensorflow_code(expr) == "tensorflow.math.ceil(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = floor(x) assert tensorflow_code(expr) == "tensorflow.math.floor(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = exp(x) assert tensorflow_code(expr) == "tensorflow.math.exp(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = sqrt(x) assert tensorflow_code(expr) == "tensorflow.math.sqrt(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = x**4 assert tensorflow_code(expr) == "tensorflow.math.pow(x, 4)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = cos(x) assert tensorflow_code(expr) == "tensorflow.math.cos(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = acos(x) assert tensorflow_code(expr) == "tensorflow.math.acos(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(0, 0.95)) expr = sin(x) assert tensorflow_code(expr) == "tensorflow.math.sin(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = asin(x) assert tensorflow_code(expr) == "tensorflow.math.asin(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = tan(x) assert tensorflow_code(expr) == "tensorflow.math.tan(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = atan(x) assert tensorflow_code(expr) == "tensorflow.math.atan(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = atan2(y, x) assert tensorflow_code(expr) == "tensorflow.math.atan2(y, x)" _compare_tensorflow_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert tensorflow_code(expr) == "tensorflow.math.cosh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = acosh(x) assert tensorflow_code(expr) == "tensorflow.math.acosh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert tensorflow_code(expr) == "tensorflow.math.sinh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert tensorflow_code(expr) == "tensorflow.math.asinh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert tensorflow_code(expr) == "tensorflow.math.tanh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert tensorflow_code(expr) == "tensorflow.math.atanh(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert tensorflow_code(expr) == "tensorflow.math.erf(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random()) expr = loggamma(x) assert tensorflow_code(expr) == "tensorflow.math.lgamma(x)" _compare_tensorflow_scalar((x, ), expr, rng=lambda: random.random())
def exptrigsimp(expr, simplify=True): """ Simplifies exponential / trigonometric / hyperbolic functions. When ``simplify`` is True (default) the expression obtained after the simplification step will be then be passed through simplify to precondition it so the final transformations will be applied. Examples ======== >>> from sympy import exptrigsimp, exp, cosh, sinh >>> from sympy.abc import z >>> exptrigsimp(exp(z) + exp(-z)) 2*cosh(z) >>> exptrigsimp(cosh(z) - sinh(z)) exp(-z) """ from sympy.simplify.fu import hyper_as_trig, TR2i from sympy.simplify.simplify import bottom_up def exp_trig(e): # select the better of e, and e rewritten in terms of exp or trig # functions choices = [e] if e.has(*_trigs): choices.append(e.rewrite(exp)) choices.append(e.rewrite(cos)) return min(*choices, key=count_ops) newexpr = bottom_up(expr, exp_trig) if simplify: newexpr = newexpr.simplify() # conversion from exp to hyperbolic ex = newexpr.atoms(exp, S.Exp1) ex = [ei for ei in ex if 1 / ei not in ex] ## sinh and cosh for ei in ex: e2 = ei**-2 if e2 in ex: a = e2.args[0] / 2 if not e2 is S.Exp1 else S.Half newexpr = newexpr.subs((e2 + 1) * ei, 2 * cosh(a)) newexpr = newexpr.subs((e2 - 1) * ei, 2 * sinh(a)) ## exp ratios to tan and tanh for ei in ex: n, d = ei - 1, ei + 1 et = n / d etinv = d / n # not 1/et or else recursion errors arise a = ei.args[0] if ei.func is exp else S.One if a.is_Mul or a is S.ImaginaryUnit: c = a.as_coefficient(I) if c: t = S.ImaginaryUnit * tan(c / 2) newexpr = newexpr.subs(etinv, 1 / t) newexpr = newexpr.subs(et, t) continue t = tanh(a / 2) newexpr = newexpr.subs(etinv, 1 / t) newexpr = newexpr.subs(et, t) # sin/cos and sinh/cosh ratios to tan and tanh, respectively if newexpr.has(HyperbolicFunction): e, f = hyper_as_trig(newexpr) newexpr = f(TR2i(e)) if newexpr.has(TrigonometricFunction): newexpr = TR2i(newexpr) # can we ever generate an I where there was none previously? if not (newexpr.has(I) and not expr.has(I)): expr = newexpr return expr
def test_tan(): R, x, y = ring('x, y', QQ) assert rs_tan(x, x, 9)/x**5 == \ Rational(17, 315)*x**2 + Rational(2, 15) + Rational(1, 3)*x**(-2) + x**(-4) assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \ 4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \ x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[tan(a), a]) assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**3/3 + 2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + Rational(1, 3))*x**3 + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \ (tan(a)**4 + Rational(4, 3)*tan(a)**2 + Rational(1, 3))*x**3 + (tan(a)**2 + 1)*x**2*y + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) R, x, y = ring('x, y', EX) assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 + 2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a)) assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 + 2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \ EX(tan(a)**2 + 1)*x + EX(tan(a)) p = x + x**2 + 5 assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \ 668083460499)
def test_C99CodePrinter__precision(): n = symbols("n", integer=True) f32_printer = C99CodePrinter(dict(type_aliases={real: float32})) f64_printer = C99CodePrinter(dict(type_aliases={real: float64})) f80_printer = C99CodePrinter(dict(type_aliases={real: float80})) assert f32_printer.doprint(sin(x + 2.1)) == "sinf(x + 2.1F)" assert f64_printer.doprint(sin(x + 2.1)) == "sin(x + 2.1000000000000001)" assert f80_printer.doprint(sin(x + Float("2.0"))) == "sinl(x + 2.0L)" for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ["f", "", "l"]): def check(expr, ref): assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) check(Abs(n), "abs(n)") check(Abs(x + 2.0), "fabs{s}(x + 2.0{S})") check( sin(x + 4.0) ** cos(x - 2.0), "pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))", ) check(exp(x * 8.0), "exp{s}(8.0{S}*x)") check(exp2(x), "exp2{s}(x)") check(expm1(x * 4.0), "expm1{s}(4.0{S}*x)") check(Mod(n, 2), "((n) % (2))") check(Mod(2 * n + 3, 3 * n + 5), "((2*n + 3) % (3*n + 5))") check(Mod(x + 2.0, 3.0), "fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})") check(Mod(x, 2.0 * x + 3.0), "fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})") check(log(x / 2), "log{s}((1.0{S}/2.0{S})*x)") check(log10(3 * x / 2), "log10{s}((3.0{S}/2.0{S})*x)") check(log2(x * 8.0), "log2{s}(8.0{S}*x)") check(log1p(x), "log1p{s}(x)") check(2 ** x, "pow{s}(2, x)") check(2.0 ** x, "pow{s}(2.0{S}, x)") check(x ** 3, "pow{s}(x, 3)") check(x ** 4.0, "pow{s}(x, 4.0{S})") check(sqrt(3 + x), "sqrt{s}(x + 3)") check(Cbrt(x - 2.0), "cbrt{s}(x - 2.0{S})") check(hypot(x, y), "hypot{s}(x, y)") check(sin(3.0 * x + 2.0), "sin{s}(3.0{S}*x + 2.0{S})") check(cos(3.0 * x - 1.0), "cos{s}(3.0{S}*x - 1.0{S})") check(tan(4.0 * y + 2.0), "tan{s}(4.0{S}*y + 2.0{S})") check(asin(3.0 * x + 2.0), "asin{s}(3.0{S}*x + 2.0{S})") check(acos(3.0 * x + 2.0), "acos{s}(3.0{S}*x + 2.0{S})") check(atan(3.0 * x + 2.0), "atan{s}(3.0{S}*x + 2.0{S})") check(atan2(3.0 * x, 2.0 * y), "atan2{s}(3.0{S}*x, 2.0{S}*y)") check(sinh(3.0 * x + 2.0), "sinh{s}(3.0{S}*x + 2.0{S})") check(cosh(3.0 * x - 1.0), "cosh{s}(3.0{S}*x - 1.0{S})") check(tanh(4.0 * y + 2.0), "tanh{s}(4.0{S}*y + 2.0{S})") check(asinh(3.0 * x + 2.0), "asinh{s}(3.0{S}*x + 2.0{S})") check(acosh(3.0 * x + 2.0), "acosh{s}(3.0{S}*x + 2.0{S})") check(atanh(3.0 * x + 2.0), "atanh{s}(3.0{S}*x + 2.0{S})") check(erf(42.0 * x), "erf{s}(42.0{S}*x)") check(erfc(42.0 * x), "erfc{s}(42.0{S}*x)") check(gamma(x), "tgamma{s}(x)") check(loggamma(x), "lgamma{s}(x)") check(ceiling(x + 2.0), "ceil{s}(x + 2.0{S})") check(floor(x + 2.0), "floor{s}(x + 2.0{S})") check(fma(x, y, -z), "fma{s}(x, y, -z)") check(Max(x, 8.0, x ** 4.0), "fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))") check(Min(x, 2.0), "fmin{s}(2.0{S}, x)")
def _trigpats(): global _trigpat a, b, c = symbols('a b c', cls=Wild) d = Wild('d', commutative=False) # for the simplifications like sinh/cosh -> tanh: # DO NOT REORDER THE FIRST 14 since these are assumed to be in this # order in _match_div_rewrite. matchers_division = ( (a*sin(b)**c/cos(b)**c, a*tan(b)**c, sin(b), cos(b)), (a*tan(b)**c*cos(b)**c, a*sin(b)**c, sin(b), cos(b)), (a*cot(b)**c*sin(b)**c, a*cos(b)**c, sin(b), cos(b)), (a*tan(b)**c/sin(b)**c, a/cos(b)**c, sin(b), cos(b)), (a*cot(b)**c/cos(b)**c, a/sin(b)**c, sin(b), cos(b)), (a*cot(b)**c*tan(b)**c, a, sin(b), cos(b)), (a*(cos(b) + 1)**c*(cos(b) - 1)**c, a*(-sin(b)**2)**c, cos(b) + 1, cos(b) - 1), (a*(sin(b) + 1)**c*(sin(b) - 1)**c, a*(-cos(b)**2)**c, sin(b) + 1, sin(b) - 1), (a*sinh(b)**c/cosh(b)**c, a*tanh(b)**c, S.One, S.One), (a*tanh(b)**c*cosh(b)**c, a*sinh(b)**c, S.One, S.One), (a*coth(b)**c*sinh(b)**c, a*cosh(b)**c, S.One, S.One), (a*tanh(b)**c/sinh(b)**c, a/cosh(b)**c, S.One, S.One), (a*coth(b)**c/cosh(b)**c, a/sinh(b)**c, S.One, S.One), (a*coth(b)**c*tanh(b)**c, a, S.One, S.One), (c*(tanh(a) + tanh(b))/(1 + tanh(a)*tanh(b)), tanh(a + b)*c, S.One, S.One), ) matchers_add = ( (c*sin(a)*cos(b) + c*cos(a)*sin(b) + d, sin(a + b)*c + d), (c*cos(a)*cos(b) - c*sin(a)*sin(b) + d, cos(a + b)*c + d), (c*sin(a)*cos(b) - c*cos(a)*sin(b) + d, sin(a - b)*c + d), (c*cos(a)*cos(b) + c*sin(a)*sin(b) + d, cos(a - b)*c + d), (c*sinh(a)*cosh(b) + c*sinh(b)*cosh(a) + d, sinh(a + b)*c + d), (c*cosh(a)*cosh(b) + c*sinh(a)*sinh(b) + d, cosh(a + b)*c + d), ) # for cos(x)**2 + sin(x)**2 -> 1 matchers_identity = ( (a*sin(b)**2, a - a*cos(b)**2), (a*tan(b)**2, a*(1/cos(b))**2 - a), (a*cot(b)**2, a*(1/sin(b))**2 - a), (a*sin(b + c), a*(sin(b)*cos(c) + sin(c)*cos(b))), (a*cos(b + c), a*(cos(b)*cos(c) - sin(b)*sin(c))), (a*tan(b + c), a*((tan(b) + tan(c))/(1 - tan(b)*tan(c)))), (a*sinh(b)**2, a*cosh(b)**2 - a), (a*tanh(b)**2, a - a*(1/cosh(b))**2), (a*coth(b)**2, a + a*(1/sinh(b))**2), (a*sinh(b + c), a*(sinh(b)*cosh(c) + sinh(c)*cosh(b))), (a*cosh(b + c), a*(cosh(b)*cosh(c) + sinh(b)*sinh(c))), (a*tanh(b + c), a*((tanh(b) + tanh(c))/(1 + tanh(b)*tanh(c)))), ) # Reduce any lingering artifacts, such as sin(x)**2 changing # to 1-cos(x)**2 when sin(x)**2 was "simpler" artifacts = ( (a - a*cos(b)**2 + c, a*sin(b)**2 + c, cos), (a - a*(1/cos(b))**2 + c, -a*tan(b)**2 + c, cos), (a - a*(1/sin(b))**2 + c, -a*cot(b)**2 + c, sin), (a - a*cosh(b)**2 + c, -a*sinh(b)**2 + c, cosh), (a - a*(1/cosh(b))**2 + c, a*tanh(b)**2 + c, cosh), (a + a*(1/sinh(b))**2 + c, a*coth(b)**2 + c, sinh), # same as above but with noncommutative prefactor (a*d - a*d*cos(b)**2 + c, a*d*sin(b)**2 + c, cos), (a*d - a*d*(1/cos(b))**2 + c, -a*d*tan(b)**2 + c, cos), (a*d - a*d*(1/sin(b))**2 + c, -a*d*cot(b)**2 + c, sin), (a*d - a*d*cosh(b)**2 + c, -a*d*sinh(b)**2 + c, cosh), (a*d - a*d*(1/cosh(b))**2 + c, a*d*tanh(b)**2 + c, cosh), (a*d + a*d*(1/sinh(b))**2 + c, a*d*coth(b)**2 + c, sinh), ) _trigpat = (a, b, c, d, matchers_division, matchers_add, matchers_identity, artifacts) return _trigpat
def test_torch_math(): if not torch: skip("Torch not installed") ma = torch.tensor([[1, 2, -3, -4]]) expr = Abs(x) assert torch_code(expr) == "torch.abs(x)" f = lambdify(x, expr, 'torch') y = f(ma) c = torch.abs(ma) assert (y == c).all() expr = sign(x) assert torch_code(expr) == "torch.sign(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.randint(0, 10)) expr = ceiling(x) assert torch_code(expr) == "torch.ceil(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = floor(x) assert torch_code(expr) == "torch.floor(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = exp(x) assert torch_code(expr) == "torch.exp(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) # expr = sqrt(x) # assert torch_code(expr) == "torch.sqrt(x)" # _compare_torch_scalar((x,), expr, rng=lambda: random.random()) # expr = x ** 4 # assert torch_code(expr) == "torch.pow(x, 4)" # _compare_torch_scalar((x,), expr, rng=lambda: random.random()) expr = cos(x) assert torch_code(expr) == "torch.cos(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = acos(x) assert torch_code(expr) == "torch.acos(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(0, 0.95)) expr = sin(x) assert torch_code(expr) == "torch.sin(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = asin(x) assert torch_code(expr) == "torch.asin(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = tan(x) assert torch_code(expr) == "torch.tan(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = atan(x) assert torch_code(expr) == "torch.atan(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) # expr = atan2(y, x) # assert torch_code(expr) == "torch.atan2(y, x)" # _compare_torch_scalar((y, x), expr, rng=lambda: random.random()) expr = cosh(x) assert torch_code(expr) == "torch.cosh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = acosh(x) assert torch_code(expr) == "torch.acosh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = sinh(x) assert torch_code(expr) == "torch.sinh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = asinh(x) assert torch_code(expr) == "torch.asinh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = tanh(x) assert torch_code(expr) == "torch.tanh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(1, 2)) expr = atanh(x) assert torch_code(expr) == "torch.atanh(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.uniform(-.5, .5)) expr = erf(x) assert torch_code(expr) == "torch.erf(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random()) expr = loggamma(x) assert torch_code(expr) == "torch.lgamma(x)" _compare_torch_scalar((x, ), expr, rng=lambda: random.random())