Ejemplo n.º 1
0
    def _eval_nseries(self, x, n, logx, cdir=0):

        from sympy.functions import factorial, RisingFactorial
        from sympy import Order, Add

        arg = self.args[2]
        x0 = arg.limit(x, 0)
        ap = self.args[0]
        bq = self.args[1]

        if x0 != 0:
            return super()._eval_nseries(x, n, logx)

        terms = []

        for i in range(n):
            num = 1
            den = 1
            for a in ap:
                num *= RisingFactorial(a, i)

            for b in bq:
                den *= RisingFactorial(b, i)

            terms.append(((num / den) * (arg**i)) / factorial(i))

        return (Add(*terms) + Order(x**n, x))
Ejemplo n.º 2
0
 def _eval_rewrite_as_Sum(self, ap, bq, z):
     from sympy.functions import factorial, RisingFactorial, Piecewise
     n = C.Dummy("n", integer=True)
     rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
     rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
     coeff = Mul(*rfap) / Mul(*rfbq)
     return Piecewise((C.Sum(coeff * z**n / factorial(n), (n, 0, oo)),
                      self.convergence_statement), (self, True))
Ejemplo n.º 3
0
 def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs):
     from sympy.concrete.summations import Sum
     n = Dummy("n", integer=True)
     rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
     rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
     coeff = Mul(*rfap) / Mul(*rfbq)
     return Piecewise((Sum(coeff * z**n / factorial(n),
                           (n, 0, oo)), self.convergence_statement),
                      (self, True))
Ejemplo n.º 4
0
def test_Function():
    assert mcode(f(x, y, z)) == "f[x, y, z]"
    assert mcode(sin(x)**cos(x)) == "Sin[x]^Cos[x]"
    assert mcode(conjugate(x)) == "Conjugate[x]"
    assert mcode(Max(x, y, z) * Min(y, z)) == "Max[x, y, z]*Min[y, z]"
    assert mcode(fresnelc(x)) == "FresnelC[x]"
    assert mcode(fresnels(x)) == "FresnelS[x]"
    assert mcode(gamma(x)) == "Gamma[x]"
    assert mcode(uppergamma(x, y)) == "Gamma[x, y]"
    assert mcode(polygamma(x, y)) == "PolyGamma[x, y]"
    assert mcode(loggamma(x)) == "LogGamma[x]"
    assert mcode(erf(x)) == "Erf[x]"
    assert mcode(erfc(x)) == "Erfc[x]"
    assert mcode(erfi(x)) == "Erfi[x]"
    assert mcode(erf2(x, y)) == "Erf[x, y]"
    assert mcode(expint(x, y)) == "ExpIntegralE[x, y]"
    assert mcode(erfcinv(x)) == "InverseErfc[x]"
    assert mcode(erfinv(x)) == "InverseErf[x]"
    assert mcode(erf2inv(x, y)) == "InverseErf[x, y]"
    assert mcode(Ei(x)) == "ExpIntegralEi[x]"
    assert mcode(Ci(x)) == "CosIntegral[x]"
    assert mcode(li(x)) == "LogIntegral[x]"
    assert mcode(Si(x)) == "SinIntegral[x]"
    assert mcode(Shi(x)) == "SinhIntegral[x]"
    assert mcode(Chi(x)) == "CoshIntegral[x]"
    assert mcode(beta(x, y)) == "Beta[x, y]"
    assert mcode(factorial(x)) == "Factorial[x]"
    assert mcode(factorial2(x)) == "Factorial2[x]"
    assert mcode(subfactorial(x)) == "Subfactorial[x]"
    assert mcode(FallingFactorial(x, y)) == "FactorialPower[x, y]"
    assert mcode(RisingFactorial(x, y)) == "Pochhammer[x, y]"
    assert mcode(catalan(x)) == "CatalanNumber[x]"
    assert mcode(harmonic(x)) == "HarmonicNumber[x]"
    assert mcode(harmonic(x, y)) == "HarmonicNumber[x, y]"
Ejemplo n.º 5
0
def test_Function_change_name():
    assert mcode(abs(x)) == "abs(x)"
    assert mcode(ceiling(x)) == "ceil(x)"
    assert mcode(arg(x)) == "angle(x)"
    assert mcode(im(x)) == "imag(x)"
    assert mcode(re(x)) == "real(x)"
    assert mcode(conjugate(x)) == "conj(x)"
    assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
    assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
    assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
    assert mcode(Chi(x)) == "coshint(x)"
    assert mcode(Shi(x)) == "sinhint(x)"
    assert mcode(Ci(x)) == "cosint(x)"
    assert mcode(Si(x)) == "sinint(x)"
    assert mcode(li(x)) == "logint(x)"
    assert mcode(loggamma(x)) == "gammaln(x)"
    assert mcode(polygamma(x, y)) == "psi(x, y)"
    assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
    assert mcode(DiracDelta(x)) == "dirac(x)"
    assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
    assert mcode(Heaviside(x)) == "heaviside(x)"
    assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
Ejemplo n.º 6
0
    def _eval_product(self, term, limits):
        from sympy.concrete.delta import deltaproduct, _has_simple_delta
        from sympy.concrete.summations import summation
        from sympy.functions import KroneckerDelta, RisingFactorial

        (k, a, n) = limits

        if k not in term.free_symbols:
            if (term - 1).is_zero:
                return S.One
            return term**(n - a + 1)

        if a == n:
            return term.subs(k, a)

        if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]):
            return deltaproduct(term, limits)

        dif = n - a
        if dif.is_Integer:
            return Mul(*[term.subs(k, a + i) for i in range(dif + 1)])

        elif term.is_polynomial(k):
            poly = term.as_poly(k)

            A = B = Q = S.One

            all_roots = roots(poly)

            M = 0
            for r, m in all_roots.items():
                M += m
                A *= RisingFactorial(a - r, n - a + 1)**m
                Q *= (n - r)**m

            if M < poly.degree():
                arg = quo(poly, Q.as_poly(k))
                B = self.func(arg, (k, a, n)).doit()

            return poly.LC()**(n - a + 1) * A * B

        elif term.is_Add:
            p, q = term.as_numer_denom()

            p = self._eval_product(p, (k, a, n))
            q = self._eval_product(q, (k, a, n))

            return p / q

        elif term.is_Mul:
            exclude, include = [], []

            for t in term.args:
                p = self._eval_product(t, (k, a, n))

                if p is not None:
                    exclude.append(p)
                else:
                    include.append(t)

            if not exclude:
                return None
            else:
                arg = term._new_rawargs(*include)
                A = Mul(*exclude)
                B = self.func(arg, (k, a, n)).doit()
                return A * B

        elif term.is_Pow:
            if not term.base.has(k):
                s = summation(term.exp, (k, a, n))

                return term.base**s
            elif not term.exp.has(k):
                p = self._eval_product(term.base, (k, a, n))

                if p is not None:
                    return p**term.exp

        elif isinstance(term, Product):
            evaluated = term.doit()
            f = self._eval_product(evaluated, limits)
            if f is None:
                return self.func(evaluated, limits)
            else:
                return f
Ejemplo n.º 7
0
    def _eval_product(self, term, limits):
        from sympy.concrete.delta import deltaproduct, _has_simple_delta
        from sympy.concrete.summations import summation
        from sympy.functions import KroneckerDelta, RisingFactorial

        (k, a, n) = limits

        if k not in term.free_symbols:
            if (term - 1).is_zero:
                return S.One
            return term**(n - a + 1)

        if a == n:
            return term.subs(k, a)

        if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]):
            return deltaproduct(term, limits)

        dif = n - a
        definite = dif.is_Integer
        if definite and (dif < 100):
            return self._eval_product_direct(term, limits)

        elif term.is_polynomial(k):
            poly = term.as_poly(k)

            A = B = Q = S.One

            all_roots = roots(poly)

            M = 0
            for r, m in all_roots.items():
                M += m
                A *= RisingFactorial(a - r, n - a + 1)**m
                Q *= (n - r)**m

            if M < poly.degree():
                arg = quo(poly, Q.as_poly(k))
                B = self.func(arg, (k, a, n)).doit()

            return poly.LC()**(n - a + 1) * A * B

        elif term.is_Add:
            factored = factor_terms(term, fraction=True)
            if factored.is_Mul:
                return self._eval_product(factored, (k, a, n))

        elif term.is_Mul:
            # Factor in part without the summation variable and part with
            without_k, with_k = term.as_coeff_mul(k)

            if len(with_k) >= 2:
                # More than one term including k, so still a multiplication
                exclude, include = [], []
                for t in with_k:
                    p = self._eval_product(t, (k, a, n))

                    if p is not None:
                        exclude.append(p)
                    else:
                        include.append(t)

                if not exclude:
                    return None
                else:
                    arg = term._new_rawargs(*include)
                    A = Mul(*exclude)
                    B = self.func(arg, (k, a, n)).doit()
                    return without_k**(n - a + 1) * A * B
            else:
                # Just a single term
                p = self._eval_product(with_k[0], (k, a, n))
                if p is None:
                    p = self.func(with_k[0], (k, a, n)).doit()
                return without_k**(n - a + 1) * p

        elif term.is_Pow:
            if not term.base.has(k):
                s = summation(term.exp, (k, a, n))

                return term.base**s
            elif not term.exp.has(k):
                p = self._eval_product(term.base, (k, a, n))

                if p is not None:
                    return p**term.exp

        elif isinstance(term, Product):
            evaluated = term.doit()
            f = self._eval_product(evaluated, limits)
            if f is None:
                return self.func(evaluated, limits)
            else:
                return f

        if definite:
            return self._eval_product_direct(term, limits)