Ejemplo n.º 1
0
def test_order_at():
    a = Poly(t**4, t)
    b = Poly((t**2 + 1)**3*t, t)
    p1 = Poly(t, t)
    p2 = Poly(1 + t**2, t)
    assert order_at(a, p1, t) == 4
    assert order_at(b, p1, t) == 1
    assert order_at(a, p2, t) == 0
    assert order_at(b, p2, t) == 3
    assert order_at(Poly(0, t), Poly(t, t), t) == oo
    assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
           order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
    assert order_at_oo(Poly(0, t), Poly(1, t), t) == oo
Ejemplo n.º 2
0
def test_order_at():
    a = Poly(t**4, t)
    b = Poly((t**2 + 1)**3*t, t)
    p1 = Poly(t, t)
    p2 = Poly(1 + t**2, t)
    assert order_at(a, p1, t) == 4
    assert order_at(b, p1, t) == 1
    assert order_at(a, p2, t) == 0
    assert order_at(b, p2, t) == 3
    assert order_at(Poly(0, t), Poly(t, t), t) == oo
    assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
        order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
    assert order_at_oo(Poly(0, t), Poly(1, t), t) == oo
Ejemplo n.º 3
0
    # TODO: Merge this with the very similar special_denom() in rde.py
    if case == 'auto':
        case = DE.case

    if case == 'exp':
        p = Poly(DE.t, DE.t)
    elif case == 'tan':
        p = Poly(DE.t**2 + 1, DE.t)
    elif case in ['primitive', 'base']:
        B = ba.quo(bd)
        return (a, B, G, Poly(1, DE.t))
    else:
        raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
                         "'base'}, not %s." % case)

    nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
    nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])
    n = min(0, nc - min(0, nb))
    if not nb:
        # Possible cancellation.
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0) / bd.eval(0) / a.eval(0),
                                         DE.t)
                etaa, etad = frac_in(dcoeff, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    a, m, z = A
                    if a == 1:
Ejemplo n.º 4
0
def prde_special_denom(a, ba, bd, G, DE, case='auto'):
    """
    Parametric Risch Differential Equation - Special part of the denominator.

    case is on of {'exp', 'tan', 'primitive'} for the hyperexponential,
    hypertangent, and primitive cases, respectively.  For the hyperexponential
    (resp. hypertangent) case, given a derivation D on k[t] and a in k[t],
    b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in
    k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
    gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in
    k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in
    Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in
    k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)).

    For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this
    case.
    """
    # TODO: Merge this with the very similar special_denom() in rde.py
    if case == 'auto':
        case = DE.case

    if case == 'exp':
        p = Poly(DE.t, DE.t)
    elif case == 'tan':
        p = Poly(DE.t**2 + 1, DE.t)
    elif case in ['primitive', 'base']:
        B = ba.quo(bd)
        return (a, B, G, Poly(1, DE.t))
    else:
        raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
            "'base'}, not %s." % case)

    nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
    nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])
    n = min(0, nc - min(0, nb))
    if not nb:
        # Possible cancellation.
        if case == 'exp':
            dcoeff = DE.d.quo(Poly(DE.t, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t)
                etaa, etad = frac_in(dcoeff, DE.t)
                A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                if A is not None:
                    a, m, z = A
                    if a == 1:
                        n = min(n, m)

        elif case == 'tan':
            dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t))
            with DecrementLevel(DE):  # We are guaranteed to not have problems,
                                      # because case != 'base'.
                betaa, alphaa, alphad =  real_imag(ba, bd*a, DE.t)
                betad = alphad
                etaa, etad = frac_in(dcoeff, DE.t)
                if recognize_log_derivative(2*betaa, betad, DE):
                    A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE)
                    B = parametric_log_deriv(betaa, betad, etaa, etad, DE)
                    if A is not None and B is not None:
                        a, s, z = A
                        if a == 1:
                             n = min(n, s/2)

    N = max(0, -nb)
    pN = p**N
    pn = p**-n  # This is 1/h

    A = a*pN
    B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
    G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G]
    h = pn

    # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n)
    return (A, B, G, h)
Ejemplo n.º 5
0
def test_order_at():
    a = Poly(t**4, t)
    b = Poly((t**2 + 1)**3*t, t)
    c = Poly((t**2 + 1)**6*t, t)
    d = Poly((t**2 + 1)**10*t**10, t)
    e = Poly((t**2 + 1)**100*t**37, t)
    p1 = Poly(t, t)
    p2 = Poly(1 + t**2, t)
    assert order_at(a, p1, t) == 4
    assert order_at(b, p1, t) == 1
    assert order_at(c, p1, t) == 1
    assert order_at(d, p1, t) == 10
    assert order_at(e, p1, t) == 37
    assert order_at(a, p2, t) == 0
    assert order_at(b, p2, t) == 3
    assert order_at(c, p2, t) == 6
    assert order_at(d, p1, t) == 10
    assert order_at(e, p2, t) == 100
    assert order_at(Poly(0, t), Poly(t, t), t) == oo
    assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \
        order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1
    assert order_at_oo(Poly(0, t), Poly(1, t), t) == oo
Ejemplo n.º 6
0
def prde_special_denom(a, ba, bd, G, DE, case='auto'):
    """
    Parametric Risch Differential Equation - Special part of the denominator.

    case is on of {'exp', 'tan', 'primitive'} for the hyperexponential,
    hypertangent, and primitive cases, respectively.  For the hyperexponential
    (resp. hypertangent) case, given a derivation D on k[t] and a in k[t],
    b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in
    k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp.
    gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in
    k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in
    Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in
    k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)).

    For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this
    case.
    """
    # TODO: Merge this with the very similar special_denom() in rde.py
    if case == 'auto':
        case = DE.case

    if case == 'exp':
        p = Poly(DE.t, DE.t)
    elif case == 'tan':
        p = Poly(DE.t**2 + 1, DE.t)
    elif case in ['primitive', 'base']:
        B = ba.quo(bd)
        return (a, B, G, Poly(1, DE.t))
    else:
        raise ValueError("case must be one of {'exp', 'tan', 'primitive', "
            "'base'}, not %s." % case)

    nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t)
    nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G])

    n = min(0, nc - min(0, nb))
    if not nb:
        # Possible cancellation
        #
        # if case == 'exp':
        #     alpha = (-b/a).rem(p) == -b(0)/a(0)
        #     if alpha == m*Dt/t + Dz/z # parametric logarithmic derivative problem
        #         n = min(n, m)
        # elif case == 'tan':
        #     alpha*sqrt(-1) + beta = (-b/a)/rem(p) == -b(sqrt(-1))/a(sqrt(-1))
        #     eta = derivation(t, DE).quo(Poly(t**2 + 1, t)) # eta in k
        #     if 2*beta == Db/b for some v in k* (see pg. 176) and \
        #     alpha*sqrt(-1) + beta == 2*b*eta*sqrt(-1) + Dz/z:
        #     # parametric logarithmic derivative problem
        #         n = min(n, m)
        raise NotImplementedError("The ability to solve the parametric "
            "logarithmic derivative problem is required to solve this PRDE.")

    N = max(0, -nb)
    pN = p**N
    pn = p**-n  # This is 1/h

    A = a*pN
    B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN
    G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G]
    h = pn

    # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n)
    return (A, B, G, h)