Ejemplo n.º 1
0
from sympy import symbols, Matrix, sin, cos, diff
from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point, Particle
from sympy.physics.mechanics import Lagrangian, LagrangesMethod
from sympy.physics.mechanics import mprint

t = symbols('t')  # 時間
m1, m2, l, g = symbols('m1 m2 l g')  # パラメータ
p, theta = dynamicsymbols('p theta')  # 一般化座標
F = dynamicsymbols('F')  # 外力

q = Matrix([p, theta])  # 座標ベクトル
qd = q.diff(t)  # 座標の時間微分

N = ReferenceFrame('N')  # 参照座標系

# 質点1(台車)の質点、位置
P1 = Point('P1')
x1 = p  # 質点1の位置
y1 = 0
vx1 = diff(x1, t)  # x1.diff(t)?でもOK?
vy1 = diff(y1, t)
P1.set_vel(N, vx1 * N.x + vy1 * N.y)

Pa1 = Particle('Pa1', P1, m1)
Pa1.potential_energy = m1 * g * y1

# 質点2(振子)の質点、位置
P2 = Point('P2')
x2 = p - l * sin(theta)
y2 = cos(theta)
vx2 = diff(x2, t)
Ejemplo n.º 2
0
def test_Vector_diffs():
    q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
    q1d, q2d, q3d, q4d = dynamicsymbols('q1 q2 q3 q4', 1)
    q1dd, q2dd, q3dd, q4dd = dynamicsymbols('q1 q2 q3 q4', 2)
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q3, N.z])
    B = A.orientnew('B', 'Axis', [q2, A.x])
    v1 = q2 * A.x + q3 * N.y
    v2 = q3 * B.x + v1
    v3 = v1.dt(B)
    v4 = v2.dt(B)

    assert v1.dt(N) == q2d * A.x + q2 * q3d * A.y + q3d * N.y
    assert v1.dt(A) == q2d * A.x + q3 * q3d * N.x + q3d * N.y
    assert v1.dt(B) == (q2d * A.x + q3 * q3d * N.x + q3d * N.y - q3 * cos(q3) *
                        q2d * N.z)
    assert v2.dt(N) == (q2d * A.x + (q2 + q3) * q3d * A.y + q3d * B.x + q3d *
                        N.y)
    assert v2.dt(A) == q2d * A.x + q3d * B.x + q3 * q3d * N.x + q3d * N.y
    assert v2.dt(B) == (q2d * A.x + q3d * B.x + q3 * q3d * N.x + q3d * N.y -
                        q3 * cos(q3) * q2d * N.z)
    assert v3.dt(N) == (q2dd * A.x + q2d * q3d * A.y + (q3d**2 + q3 * q3dd) *
                        N.x + q3dd * N.y + (q3 * sin(q3) * q2d * q3d -
                        cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z)
    assert v3.dt(A) == (q2dd * A.x + (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd -
                        q3 * q3d**2) * N.y + (q3 * sin(q3) * q2d * q3d -
                        cos(q3) * q2d * q3d - q3 * cos(q3) * q2dd) * N.z)
    assert v3.dt(B) == (q2dd * A.x - q3 * cos(q3) * q2d**2 * A.y + (2 *
                        q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) *
                        N.y + (2 * q3 * sin(q3) * q2d * q3d - 2 * cos(q3) *
                        q2d * q3d - q3 * cos(q3) * q2dd) * N.z)
    assert v4.dt(N) == (q2dd * A.x + q3d * (q2d + q3d) * A.y + q3dd * B.x +
                        (q3d**2 + q3 * q3dd) * N.x + q3dd * N.y + (q3 *
                        sin(q3) * q2d * q3d - cos(q3) * q2d * q3d - q3 *
                        cos(q3) * q2dd) * N.z)
    assert v4.dt(A) == (q2dd * A.x + q3dd * B.x + (2 * q3d**2 + q3 * q3dd) *
                        N.x + (q3dd - q3 * q3d**2) * N.y + (q3 * sin(q3) *
                        q2d * q3d - cos(q3) * q2d * q3d - q3 * cos(q3) *
                        q2dd) * N.z)
    assert v4.dt(B) == (q2dd * A.x - q3 * cos(q3) * q2d**2 * A.y + q3dd * B.x +
                        (2 * q3d**2 + q3 * q3dd) * N.x + (q3dd - q3 * q3d**2) *
                        N.y + (2 * q3 * sin(q3) * q2d * q3d - 2 * cos(q3) *
                        q2d * q3d - q3 * cos(q3) * q2dd) * N.z)
    assert v3.diff(q1d, N) == 0
    assert v3.diff(q2d, N) == A.x - q3 * cos(q3) * N.z
    assert v3.diff(q3d, N) == q3 * N.x + N.y
    assert v3.diff(q1d, A) == 0
    assert v3.diff(q2d, A) == A.x - q3 * cos(q3) * N.z
    assert v3.diff(q3d, A) == q3 * N.x + N.y
    assert v3.diff(q1d, B) == 0
    assert v3.diff(q2d, B) == A.x - q3 * cos(q3) * N.z
    assert v3.diff(q3d, B) == q3 * N.x + N.y
    assert v4.diff(q1d, N) == 0
    assert v4.diff(q2d, N) == A.x - q3 * cos(q3) * N.z
    assert v4.diff(q3d, N) == B.x + q3 * N.x + N.y
    assert v4.diff(q1d, A) == 0
    assert v4.diff(q2d, A) == A.x - q3 * cos(q3) * N.z
    assert v4.diff(q3d, A) == B.x + q3 * N.x + N.y
    assert v4.diff(q1d, B) == 0
    assert v4.diff(q2d, B) == A.x - q3 * cos(q3) * N.z
    assert v4.diff(q3d, B) == B.x + q3 * N.x + N.y
Ejemplo n.º 3
0
# Define generalized coordinates, speeds, and constants:
q0, q1, q2 = dynamicsymbols('q0:3')
q0d, q1d, q2d = dynamicsymbols('q0:3', level=1)
u1, u2, u3 = dynamicsymbols('u1:4')
LA, LB, LP = symbols('LA LB LP')
p1, p2, p3 = symbols('p1:4')
A1, A2, A3 = symbols('A1:4')
B1, B2, B3 = symbols('B1:4')
C1, C2, C3 = symbols('C1:4')
D11, D22, D33, D12, D23, D31 = symbols('D11 D22 D33 D12 D23 D31')
g, mA, mB, mC, mD, t = symbols('g mA mB mC mD t')
TA_star, TB_star, TC_star, TD_star = symbols('TA* TB* TC* TD*')

## --- reference frames ---
E = ReferenceFrame('E')
A = E.orientnew('A', 'Axis', [q0, E.x])
B = A.orientnew('B', 'Axis', [q1, A.y])
C = B.orientnew('C', 'Axis', [0, B.x])
D = C.orientnew('D', 'Axis', [0, C.x])

## --- points and their velocities ---
pO = Point('O')
pA_star = pO.locatenew('A*', LA * A.z)
pP = pO.locatenew('P', LP * A.z)
pB_star = pP.locatenew('B*', LB * B.z)
pC_star = pB_star.locatenew('C*', q2 * B.z)
pD_star = pC_star.locatenew('D*', p1 * B.x + p2 * B.y + p3 * B.z)

pO.set_vel(E, 0)  # Point O is fixed in Reference Frame E
Ejemplo n.º 4
0
# Projection of COM on X-Y plane
x1 = lg_1 * cos(theta_1)
y1 = lg_1 * sin(theta_1)

x2 = l_1 * cos(theta_1) + lg_2 * cos(theta_1 + theta_2)
y2 = l_1 * sin(theta_1) + lg_2 * sin(theta_1 + theta_2)

# Velocity on X-Y plane
vx1 = diff(x1, t)
vy1 = diff(y1, t)

vx2 = diff(x2, t)
vy2 = diff(y2, t)

# Setting Reference Frames
N = ReferenceFrame("N")

# Lumped mass abstraction
P_1 = Point("P_1")
P_2 = Point("P_2")

# Velocity of Point mass in X-Y plane
P_1.set_vel(N, vx1 * N.x + vy1 * N.y)
P_2.set_vel(N, vx2 * N.x + vy2 * N.y)

# Making a particle from point mass
Pa_1 = Particle("P_1", P_1, m_1)
Pa_2 = Particle("P_2", P_2, m_2)

# Potential energy of system
Pa_1.potential_energy = m_1 * g * y1
Ejemplo n.º 5
0
from __future__ import division
from sympy import cos, pi, solve, symbols, S
from sympy.physics.mechanics import ReferenceFrame, Point
from sympy.physics.mechanics import dynamicsymbols
from util import msprint, partial_velocities, generalized_active_forces
from util import potential_energy


q1 = dynamicsymbols('q1')
q1d = dynamicsymbols('q1', level=1)
u1 = dynamicsymbols('u1')
g, m, r, theta = symbols('g m r θ')
omega, t = symbols('ω t')

# reference frames
M = ReferenceFrame('M')
# Plane containing W rotates about a vertical line through center of W.
N = M.orientnew('N', 'Axis', [omega * t, M.z])
C = N.orientnew('C', 'Axis', [q1, N.x])
R = C # R is fixed relative to C
A = C.orientnew('A', 'Axis', [-theta, R.x])
B = C.orientnew('B', 'Axis', [theta, R.x])

# points, velocities
pO = Point('O') # Point O is at the center of the circular wire
pA = pO.locatenew('A', -r * A.z)
pB = pO.locatenew('B', -r * B.z)
pR_star = pO.locatenew('R*', 1/S(2) * (pA.pos_from(pO) + pB.pos_from(pO)))

pO.set_vel(N, 0)
pO.set_vel(C, 0)
Ejemplo n.º 6
0
def test_sub_qdot():
    # This test solves exercises 8.12, 8.17 from Kane 1985 and defines
    # some velocities in terms of q, qdot.

    ## --- Declare symbols ---
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3 = dynamicsymbols('u1:4')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
    Q1, Q2, Q3 = symbols('Q1 Q2 Q3')

    # --- Reference Frames ---
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1*A.x + u3*A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])

    ## --- define points D, S*, Q on frame A and their velocities ---
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll w/o slip
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e*A.y)
    pQ = pD.locatenew('Q', f*A.y - R*A.x)
    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a*A.y)
    pB_star = pD.locatenew('B*', b*A.z)
    pC_star = pD.locatenew('C*', -b*A.z)
    for p in [pS_star, pQ, pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R*A.x)
    pC_hat = pC_star.locatenew('C^', -R*A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # --- relate qdot, u ---
    # the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip
    kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
    kde += [u1 - q1d]
    kde_map = solve(kde, [q1d, q2d, q3d])
    for k, v in list(kde_map.items()):
        kde_map[k.diff(t)] = v.diff(t)

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    ## --- use kanes method ---
    km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3])

    forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
    bodies = [rbA, rbB, rbC]

    # Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2)
    # -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2
    fr_expected = Matrix([
            f*Q3 + M*g*e*sin(theta)*cos(q1),
            Q2 + M*g*sin(theta)*sin(q1),
            e*M*g*cos(theta) - Q1*f - Q2*R])
             #Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))])
    fr_star_expected = Matrix([
            -(IA + 2*J*b**2/R**2 + 2*K +
              mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
            -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
            0])

    fr, fr_star = km.kanes_equations(forces, bodies)
    assert (fr.expand() == fr_expected.expand())
    assert (trigsimp(fr_star).expand() == fr_star_expected.expand())
Ejemplo n.º 7
0
def test_linearize_pendulum_kane_nonminimal():
    # Create generalized coordinates and speeds for this non-minimal realization
    # q1, q2 = N.x and N.y coordinates of pendulum
    # u1, u2 = N.x and N.y velocities of pendulum
    q1, q2 = dynamicsymbols('q1:3')
    q1d, q2d = dynamicsymbols('q1:3', level=1)
    u1, u2 = dynamicsymbols('u1:3')
    u1d, u2d = dynamicsymbols('u1:3', level=1)
    L, m, t = symbols('L, m, t')
    g = 9.8

    # Compose world frame
    N = ReferenceFrame('N')
    pN = Point('N*')
    pN.set_vel(N, 0)

    # A.x is along the pendulum
    theta1 = atan(q2 / q1)
    A = N.orientnew('A', 'axis', [theta1, N.z])

    # Locate the pendulum mass
    P = pN.locatenew('P1', q1 * N.x + q2 * N.y)
    pP = Particle('pP', P, m)

    # Calculate the kinematic differential equations
    kde = Matrix([q1d - u1, q2d - u2])
    dq_dict = solve(kde, [q1d, q2d])

    # Set velocity of point P
    P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict))

    # Configuration constraint is length of pendulum
    f_c = Matrix([P.pos_from(pN).magnitude() - L])

    # Velocity constraint is that the velocity in the A.x direction is
    # always zero (the pendulum is never getting longer).
    f_v = Matrix([P.vel(N).express(A).dot(A.x)])
    f_v.simplify()

    # Acceleration constraints is the time derivative of the velocity constraint
    f_a = f_v.diff(t)
    f_a.simplify()

    # Input the force resultant at P
    R = m * g * N.x

    # Derive the equations of motion using the KanesMethod class.
    KM = KanesMethod(N,
                     q_ind=[q2],
                     u_ind=[u2],
                     q_dependent=[q1],
                     u_dependent=[u1],
                     configuration_constraints=f_c,
                     velocity_constraints=f_v,
                     acceleration_constraints=f_a,
                     kd_eqs=kde)
    (fr, frstar) = KM.kanes_equations([(P, R)], [pP])

    # Set the operating point to be straight down, and non-moving
    q_op = {q1: L, q2: 0}
    u_op = {u1: 0, u2: 0}
    ud_op = {u1d: 0, u2d: 0}

    A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op],
                                 A_and_B=True,
                                 new_method=True,
                                 simplify=True)

    assert A == Matrix([[0, 1], [-9.8 / L, 0]])
    assert B == Matrix([])
Ejemplo n.º 8
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N,
                  R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N)))

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [q1d - u3 / cos(q2), q2d - u1, q3d - u2 + u3 * tan(q2)]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    assert rhs.expand() == Matrix([
        (10 * u2 * u3 * r - 5 * u3**2 * r * tan(q2) + 4 * g * sin(q2)) /
        (5 * r), -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
Ejemplo n.º 9
0
particles = []
links = []
points = []
com = []
frames = []

sym_pars = [*m_links, *d_links, *m_point, b_cart, b_joint, g, k, l0]
num_pars = [*par.m_links, *par.d_links, *par.m_point, par.b_cart, par.b_joint,
            par.g, par.k, par.l0]
subs_dict = dict(zip(sym_pars, num_pars))

# ----------------------------------------------------------------------------
#                               Reference frames
# ----------------------------------------------------------------------------

N = ReferenceFrame("N")  # Inertial reference frame
(origin := Point("O")).set_vel(N, 0)  # Set velocity to zero

pend_frame = N.orientnew("pend", "axis", (q[1], N.z))
# pend_frame.set_ang_vel(N, dq[1]*N.z)

# Link 1: upper left link
link1_frame = pend_frame.orientnew("link_1", "axis", (q[2], pend_frame.z))
link1_frame.set_ang_vel(pend_frame, dq[2]*pend_frame.z)

# Link 2: upper right link
link2_frame = pend_frame.orientnew("link_2", "axis", (-q[2], pend_frame.z))
link2_frame.set_ang_vel(pend_frame, -dq[2]*pend_frame.z)

# Compute angle between upper and lower links
beta = q[2] + asin(d_links[0]/d_links[1]*sin(q[2]))
Ejemplo n.º 10
0
def test_operator_match():
    """Test that the output of dot, cross, outer functions match
    operator behavior.
    """
    A = ReferenceFrame('A')
    v = A.x + A.y
    d = v | v
    zerov = Vector(0)
    zerod = Dyadic(0)

    # dot products
    assert d & d == dot(d, d)
    assert d & zerod == dot(d, zerod)
    assert zerod & d == dot(zerod, d)
    assert d & v == dot(d, v)
    assert v & d == dot(v, d)
    assert d & zerov == dot(d, zerov)
    assert zerov & d == dot(zerov, d)
    raises(TypeError, lambda: dot(d, S(0)))
    raises(TypeError, lambda: dot(S(0), d))
    raises(TypeError, lambda: dot(d, 0))
    raises(TypeError, lambda: dot(0, d))
    assert v & v == dot(v, v)
    assert v & zerov == dot(v, zerov)
    assert zerov & v == dot(zerov, v)
    raises(TypeError, lambda: dot(v, S(0)))
    raises(TypeError, lambda: dot(S(0), v))
    raises(TypeError, lambda: dot(v, 0))
    raises(TypeError, lambda: dot(0, v))

    # cross products
    raises(TypeError, lambda: cross(d, d))
    raises(TypeError, lambda: cross(d, zerod))
    raises(TypeError, lambda: cross(zerod, d))
    assert d ^ v == cross(d, v)
    assert v ^ d == cross(v, d)
    assert d ^ zerov == cross(d, zerov)
    assert zerov ^ d == cross(zerov, d)
    assert zerov ^ d == cross(zerov, d)
    raises(TypeError, lambda: cross(d, S(0)))
    raises(TypeError, lambda: cross(S(0), d))
    raises(TypeError, lambda: cross(d, 0))
    raises(TypeError, lambda: cross(0, d))
    assert v ^ v == cross(v, v)
    assert v ^ zerov == cross(v, zerov)
    assert zerov ^ v == cross(zerov, v)
    raises(TypeError, lambda: cross(v, S(0)))
    raises(TypeError, lambda: cross(S(0), v))
    raises(TypeError, lambda: cross(v, 0))
    raises(TypeError, lambda: cross(0, v))

    # outer products
    raises(TypeError, lambda: outer(d, d))
    raises(TypeError, lambda: outer(d, zerod))
    raises(TypeError, lambda: outer(zerod, d))
    raises(TypeError, lambda: outer(d, v))
    raises(TypeError, lambda: outer(v, d))
    raises(TypeError, lambda: outer(d, zerov))
    raises(TypeError, lambda: outer(zerov, d))
    raises(TypeError, lambda: outer(zerov, d))
    raises(TypeError, lambda: outer(d, S(0)))
    raises(TypeError, lambda: outer(S(0), d))
    raises(TypeError, lambda: outer(d, 0))
    raises(TypeError, lambda: outer(0, d))
    assert v | v == outer(v, v)
    assert v | zerov == outer(v, zerov)
    assert zerov | v == outer(zerov, v)
    raises(TypeError, lambda: outer(v, S(0)))
    raises(TypeError, lambda: outer(S(0), v))
    raises(TypeError, lambda: outer(v, 0))
    raises(TypeError, lambda: outer(0, v))
from pydy.viz.scene import Scene
# import dill
# import pickle
import cloudpickle
import os
import inspect

#this file is used to generate a serialized function that can be used to estimate
# next states given current states
#ASSUMES GRAVITY SUFFICIENTLY COMPENSATED BY ROBOT

init_vprinting(use_latex='mathjax', pretty_print=True)

#Kinematics ------------------------------
#init reference frames, assume base attached to floor
inertial_frame = ReferenceFrame('I')
j0_frame = ReferenceFrame('J0')
j1_frame = ReferenceFrame('J1')
j2_frame = ReferenceFrame('J2')

#declare dynamic symbols for the three joints
theta0, theta1, theta2 = dynamicsymbols('theta0, theta1, theta2')

#orient frames
j0_frame.orient(inertial_frame, 'Axis', (theta0, inertial_frame.y))
j1_frame.orient(j0_frame, 'Axis', (theta1, j0_frame.z))
j2_frame.orient(j1_frame, 'Axis', (theta2, j1_frame.z))

#TODO figure out better name for joint points
#init joints
joint0 = Point('j0')
Ejemplo n.º 12
0
Archivo: Ex10.3.py Proyecto: zizai/pydy
q1, q2, q3, q4, q5, q6, q7 = q = dynamicsymbols('q1:8')
u1, u2, u3, u4, u5, u6, u7 = u = dynamicsymbols('q1:8', level=1)

M, J, I11, I22, m, r, b = symbols('M J I11 I22 m r b',
                                  real=True,
                                  positive=True)
omega, t = symbols('ω t')

theta = 30 * pi / 180  # radians
b = r * (1 + sin(theta)) / (cos(theta) - sin(theta))
# Note: using b as found in Ex3.10. Pure rolling between spheres and race R
# is likely a typo and should be between spheres and cone C.

# define reference frames
R = ReferenceFrame('R')  # fixed race rf, let R.z point upwards
A = R.orientnew('A', 'axis', [q7, R.z])  # rf that rotates with S* about R.z
# B.x, B.z are parallel with face of cone, B.y is perpendicular
B = A.orientnew('B', 'axis', [-theta, A.x])
S = ReferenceFrame('S')
S.set_ang_vel(A, u1 * A.x + u2 * A.y + u3 * A.z)
C = ReferenceFrame('C')
C.set_ang_vel(A, u4 * B.x + u5 * B.y + u6 * B.z)
#C.set_ang_vel(A, u4*A.x + u5*A.y + u6*A.z)

# define points
pO = Point('O')
pS_star = pO.locatenew('S*', b * A.y)
pS_hat = pS_star.locatenew('S^', -r * B.y)  # S^ touches the cone
pS1 = pS_star.locatenew('S1',
                        -r * A.z)  # S1 touches horizontal wall of the race
Ejemplo n.º 13
0
def test_replace_qdots_in_force():
    # Test PR 16700 "Replaces qdots with us in force-list in kanes.py"
    # The new functionality allows one to specify forces in qdots which will
    # automatically be replaced with u:s which are defined by the kde supplied
    # to KanesMethod. The test case is the double pendulum with interacting
    # forces in the example of chapter 4.7 "CONTRIBUTING INTERACTION FORCES"
    # in Ref. [1]. Reference list at end test function.

    q1, q2 = dynamicsymbols('q1, q2')
    qd1, qd2 = dynamicsymbols('q1, q2', level=1)
    u1, u2 = dynamicsymbols('u1, u2')

    l, m = symbols('l, m')

    N = ReferenceFrame('N')  # Inertial frame
    A = N.orientnew('A', 'Axis', (q1, N.z))  # Rod A frame
    B = A.orientnew('B', 'Axis', (q2, N.z))  # Rod B frame

    O = Point('O')  # Origo
    O.set_vel(N, 0)

    P = O.locatenew('P', (l * A.x))  # Point @ end of rod A
    P.v2pt_theory(O, N, A)

    Q = P.locatenew('Q', (l * B.x))  # Point @ end of rod B
    Q.v2pt_theory(P, N, B)

    Ap = Particle('Ap', P, m)
    Bp = Particle('Bp', Q, m)

    # The forces are specified below. sigma is the torsional spring stiffness
    # and delta is the viscous damping coefficient acting between the two
    # bodies. Here, we specify the viscous damper as function of qdots prior
    # forming the kde. In more complex systems it not might be obvious which
    # kde is most efficient, why it is convenient to specify viscous forces in
    # qdots independently of the kde.
    sig, delta = symbols('sigma, delta')
    Ta = (sig * q2 + delta * qd2) * N.z
    forces = [(A, Ta), (B, -Ta)]

    # Try different kdes.
    kde1 = [u1 - qd1, u2 - qd2]
    kde2 = [u1 - qd1, u2 - (qd1 + qd2)]

    KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
    fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)

    KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
    fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)

    # Check EOM for KM2:
    # Mass and force matrix from p.6 in Ref. [2] with added forces from
    # example of chapter 4.7 in [1] and without gravity.
    forcing_matrix_expected = Matrix(
        [[m * l**2 * sin(q2) * u2**2 + sig * q2 + delta * (u2 - u1)],
         [m * l**2 * sin(q2) * -u1**2 - sig * q2 - delta * (u2 - u1)]])
    mass_matrix_expected = Matrix([[2 * m * l**2, m * l**2 * cos(q2)],
                                   [m * l**2 * cos(q2), m * l**2]])

    assert (KM2.mass_matrix.expand() == mass_matrix_expected.expand())
    assert (KM2.forcing.expand() == forcing_matrix_expected.expand())

    # Check fr1 with reference fr_expected from [1] with u:s instead of qdots.
    fr1_expected = Matrix([0, -(sig * q2 + delta * u2)])
    assert fr1.expand() == fr1_expected.expand()

    # Check fr2
    fr2_expected = Matrix(
        [sig * q2 + delta * (u2 - u1), -sig * q2 - delta * (u2 - u1)])
    assert fr2.expand() == fr2_expected.expand()

    # Specifying forces in u:s should stay the same:
    Ta = (sig * q2 + delta * u2) * N.z
    forces = [(A, Ta), (B, -Ta)]
    KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
    fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)

    assert fr1.expand() == fr1_expected.expand()

    Ta = (sig * q2 + delta * (u2 - u1)) * N.z
    forces = [(A, Ta), (B, -Ta)]
    KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
    fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)

    assert fr2.expand() == fr2_expected.expand()

    # Test if we have a qubic qdot force:
    Ta = (sig * q2 + delta * qd2**3) * N.z
    forces = [(A, Ta), (B, -Ta)]

    KM1 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde1)
    fr1, fstar1 = KM1.kanes_equations([Ap, Bp], forces)

    fr1_cubic_expected = Matrix([0, -(sig * q2 + delta * u2**3)])

    assert fr1.expand() == fr1_cubic_expected.expand()

    KM2 = KanesMethod(N, [q1, q2], [u1, u2], kd_eqs=kde2)
    fr2, fstar2 = KM2.kanes_equations([Ap, Bp], forces)

    fr2_cubic_expected = Matrix(
        [sig * q2 + delta * (u2 - u1)**3, -sig * q2 - delta * (u2 - u1)**3])

    assert fr2.expand() == fr2_cubic_expected.expand()
Ejemplo n.º 14
0
a, a_star, b, b_star, c_star = symbols('a a⁺ b b⁺ c⁺')  # distances
#a, a_star, b, b_star, c_star = symbols('a (a*) b (b*) (c*)') # distances
# torque constants
alpha1, alpha2, alpha3 = symbols('α1:4')  # exerted on A
beta1, beta2, beta3 = symbols('β1:4')  # exerted on C
gamma1, gamma2, gamma3 = symbols('γ1:4')  # exerted on A by B
# force constants
P1, P2, P3 = symbols('P1:4')  # exerted on A*
Q1, Q2, Q3 = symbols('Q1:4')  # exerted on C*
R1, R2, R3 = symbols('R1:4')  # exerted on A at P by B
# inertia variables
A1, A3, B1, B3 = symbols('A1 A3 B1 B3')
C1, C2, C3 = symbols('C1:4')

# reference frames
N = ReferenceFrame('N')  # also equal to reference frame of cylinder D
A = N.orientnew('A', 'Axis', [q1, N.y])  # counter-weighted crank
B = N.orientnew('B', 'Axis', [q2, -N.y])  # connected rod
C = N.orientnew('C', 'Axis', [0, N.x])  # piston

# points, velocities
pO = Point('O')
pO.set_vel(N, 0)

pA_star = pO.locatenew('A*', -a_star * A.z)
pA_star.v2pt_theory(pO, N, A)

pP = pO.locatenew('P', a * A.z)
pP.v2pt_theory(pO, N, A)

pB_star = pP.locatenew('B*', (b - b_star) * B.z)
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    rhs.simplify()
    assert rhs.expand() == Matrix([
        (6 * u2 * u3 * r - u3**2 * r * tan(q2) + 4 * g * sin(q2)) / (5 * r),
        -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        6, 1)

    # This code tests our output vs. benchmark values. When r=g=m=1, the
    # critical speed (where all eigenvalues of the linearized equations are 0)
    # is 1 / sqrt(3) for the upright case.
    A = KM.linearize(A_and_B=True)[0]
    A_upright = A.subs({
        r: 1,
        g: 1,
        m: 1
    }).subs({
        q1: 0,
        q2: 0,
        q3: 0,
        u1: 0,
        u3: 0
    })
    import sympy
    assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {
        S(0): 6
    }
Ejemplo n.º 16
0
Vector.simp = False  # Prevent the use of trigsimp and simplify
t, g = symbols('t g')  # Time and gravitational constant
a, b, c = symbols('a b c')  # semi diameters of ellipsoid
d, e, f = symbols('d e f')  # mass center location parameters

# Mass and Inertia scalars
m, Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('m Ixx Iyy Izz Ixy Iyz Ixz')

q = dynamicsymbols('q:3')  # Generalized coordinates
qd = [qi.diff(t) for qi in q]  # Generalized coordinate time derivatives
wx, wy, wz = symbols('wx wy wz')
rx, ry, rz = symbols('rx ry rz')  # Coordinates, in R frame, from O to P
Fx, Fy, Fz = symbols('Fx Fy Fz')
mu_x, mu_y, mu_z = symbols('mu_x mu_y mu_z')

N = ReferenceFrame('N')  # Inertial Reference Frame
Y = N.orientnew('Y', 'Axis', [q[0], N.z])  # Yaw Frame
L = Y.orientnew('L', 'Axis', [q[1], Y.x])  # Lean Frame
R = L.orientnew('R', 'Axis', [q[2], L.y])  # Rattleback body fixed frame

print R.dcm(Y)

I = inertia(R, Ixx, Iyy, Izz, Ixy, Iyz, Ixz)  # Inertia dyadic
print I.express(Y)
stop
# Rattleback ground contact point
P = Point('P')

# Rattleback ellipsoid center location, see:
# "Realistic mathematical modeling of the rattleback", Kane, Thomas R. and
# David A. Levinson, 1982, International Journal of Non-Linear Mechanics
Ejemplo n.º 17
0
def test_non_central_inertia():
    # This tests that the calculation of Fr* does not depend the point
    # about which the inertia of a rigid body is defined. This test solves
    # exercises 8.12, 8.17 from Kane 1985.

    # Declare symbols
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')

    # Reference Frames
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1*A.x + u3*A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])
    B.set_ang_vel(A, u4 * A.z)
    C.set_ang_vel(A, u5 * A.z)

    # define points D, S*, Q on frame A and their velocities
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll without slip.
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e*A.y)
    pQ = pD.locatenew('Q', f*A.y - R*A.x)
    for p in [pS_star, pQ]:
        p.v2pt_theory(pD, F, A)

    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a*A.y)
    pB_star = pD.locatenew('B*', b*A.z)
    pC_star = pD.locatenew('C*', -b*A.z)
    for p in [pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R*A.x)
    pC_hat = pC_star.locatenew('C^', -R*A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # the velocities of B^, C^ are zero since B, C are assumed to roll without slip
    kde = [q1d - u1, q2d - u4, q3d - u5]
    vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde,
                     u_dependent=[u4, u5], velocity_constraints=vc,
                     u_auxiliary=[u3])

    forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)]
    bodies = [rbA, rbB, rbC]
    fr, fr_star = km.kanes_equations(forces, bodies)
    vc_map = solve(vc, [u4, u5])

    # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
    fr_star_expected = Matrix([
            -(IA + 2*J*b**2/R**2 + 2*K +
              mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2,
            -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2,
            0])
    assert (trigsimp(fr_star.subs(vc_map).subs(u3, 0)).doit().expand() ==
            fr_star_expected.expand())

    # define inertias of rigid bodies A, B, C about point D
    # I_S/O = I_S/S* + I_S*/O
    bodies2 = []
    for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
        I = I_star + inertia_of_point_mass(rb.mass,
                                           rb.masscenter.pos_from(pD),
                                           rb.frame)
        bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
                                 (I, pD)))
    fr2, fr_star2 = km.kanes_equations(forces, bodies2)
    assert (trigsimp(fr_star2.subs(vc_map).subs(u3, 0)).doit().expand() ==
            fr_star_expected.expand())
Ejemplo n.º 18
0
from sympy import symbols, simplify, latex
from sympy.physics.mechanics import (inertia, inertia_of_point_mass, mprint,
                                     mlatex, Point, ReferenceFrame)

Ixx, Iyy, Izz, Ixz, I, J = symbols("I_xx I_yy I_zz I_xz I J")
mA, mB, lx, lz = symbols("m_A m_B l_x l_z")

A = ReferenceFrame("A")
IA_AO = inertia(A, Ixx, Iyy, Izz, 0, 0, Ixz)
IB_BO = inertia(A, I, J, I)

BO = Point('BO')
AO = BO.locatenew('AO', lx * A.x + lz * A.z)
CO = BO.locatenew('CO', mA / (mA + mB) * AO.pos_from(BO))
print(mlatex(CO.pos_from(BO)))

IC_CO = IA_AO + IB_BO +\
        inertia_of_point_mass(mA, AO.pos_from(CO), A) +\
        inertia_of_point_mass(mB, BO.pos_from(CO), A)

mprint((A.x & IC_CO & A.x).expand())
mprint((A.y & IC_CO & A.y).expand())
mprint((A.z & IC_CO & A.z).expand())
mprint((A.x & IC_CO & A.z).expand())
Ejemplo n.º 19
0
def test_aux_dep():
    # This test is about rolling disc dynamics, comparing the results found
    # with KanesMethod to those found when deriving the equations "manually"
    # with SymPy.
    # The terms Fr, Fr*, and Fr*_steady are all compared between the two
    # methods. Here, Fr*_steady refers to the generalized inertia forces for an
    # equilibrium configuration.
    # Note: comparing to the test of test_rolling_disc() in test_kane.py, this
    # test also tests auxiliary speeds and configuration and motion constraints
    #, seen in  the generalized dependent coordinates q[3], and depend speeds
    # u[3], u[4] and u[5].


    # First, mannual derivation of Fr, Fr_star, Fr_star_steady.

    # Symbols for time and constant parameters.
    # Symbols for contact forces: Fx, Fy, Fz.
    t, r, m, g, I, J = symbols('t r m g I J')
    Fx, Fy, Fz = symbols('Fx Fy Fz')

    # Configuration variables and their time derivatives:
    # q[0] -- yaw
    # q[1] -- lean
    # q[2] -- spin
    # q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in
    #         A.z direction
    # Generalized speeds and their time derivatives:
    # u[0] -- disc angular velocity component, disc fixed x direction
    # u[1] -- disc angular velocity component, disc fixed y direction
    # u[2] -- disc angular velocity component, disc fixed z direction
    # u[3] -- disc velocity component, A.x direction
    # u[4] -- disc velocity component, A.y direction
    # u[5] -- disc velocity component, A.z direction
    # Auxiliary generalized speeds:
    # ua[0] -- contact point auxiliary generalized speed, A.x direction
    # ua[1] -- contact point auxiliary generalized speed, A.y direction
    # ua[2] -- contact point auxiliary generalized speed, A.z direction
    q = dynamicsymbols('q:4')
    qd = [qi.diff(t) for qi in q]
    u = dynamicsymbols('u:6')
    ud = [ui.diff(t) for ui in u]
    ud_zero = dict(zip(ud, [0.]*len(ud)))
    ua = dynamicsymbols('ua:3')
    ua_zero = dict(zip(ua, [0.]*len(ua)))

    # Reference frames:
    # Yaw intermediate frame: A.
    # Lean intermediate frame: B.
    # Disc fixed frame: C.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q[0], N.z])
    B = A.orientnew('B', 'Axis', [q[1], A.x])
    C = B.orientnew('C', 'Axis', [q[2], B.y])

    # Angular velocity and angular acceleration of disc fixed frame
    # u[0], u[1] and u[2] are generalized independent speeds.
    C.set_ang_vel(N, u[0]*B.x + u[1]*B.y + u[2]*B.z)
    C.set_ang_acc(N, C.ang_vel_in(N).diff(t, B)
                   + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Velocity and acceleration of points:
    # Disc-ground contact point: P.
    # Center of disc: O, defined from point P with depend coordinate: q[3]
    # u[3], u[4] and u[5] are generalized dependent speeds.
    P = Point('P')
    P.set_vel(N, ua[0]*A.x + ua[1]*A.y + ua[2]*A.z)
    O = P.locatenew('O', q[3]*A.z + r*sin(q[1])*A.y)
    O.set_vel(N, u[3]*A.x + u[4]*A.y + u[5]*A.z)
    O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N)))

    # Kinematic differential equations:
    # Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates
    #                 directions of B, for qd0, qd1 and qd2.
    #                 the other is v_o_n_qd = O.vel(N) in A.z direction for qd3.
    # Then, solve for dq/dt's in terms of u's: qd_kd.
    w_c_n_qd = qd[0]*A.z + qd[1]*B.x + qd[2]*B.y
    v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P))
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
                      [dot(v_o_n_qd - O.vel(N), A.z)])
    qd_kd = solve(kindiffs, qd)

    # Values of generalized speeds during a steady turn for later substitution
    # into the Fr_star_steady.
    steady_conditions = solve(kindiffs.subs({qd[1] : 0, qd[3] : 0}), u)
    steady_conditions.update({qd[1] : 0, qd[3] : 0})

    # Partial angular velocities and velocities.
    partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua]
    partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua]
    partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua]

    # Configuration constraint: f_c, the projection of radius r in A.z direction
    #                                is q[3].
    # Velocity constraints: f_v, for u3, u4 and u5.
    # Acceleration constraints: f_a.
    f_c = Matrix([dot(-r*B.z, A.z) - q[3]])
    f_v = Matrix([dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N),
        O.pos_from(P))), ai).expand() for ai in A])
    v_o_n = cross(C.ang_vel_in(N), O.pos_from(P))
    a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n)
    f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A])

    # Solve for constraint equations in the form of
    #                           u_dependent = A_rs * [u_i; u_aux].
    # First, obtain constraint coefficient matrix:  M_v * [u; ua] = 0;
    # Second, taking u[0], u[1], u[2] as independent,
    #         taking u[3], u[4], u[5] as dependent,
    #         rearranging the matrix of M_v to be A_rs for u_dependent.
    # Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict.
    M_v = zeros(3, 9)
    for i in range(3):
        for j, ui in enumerate(u + ua):
            M_v[i, j] = f_v[i].diff(ui)

    M_v_i = M_v[:, :3]
    M_v_d = M_v[:, 3:6]
    M_v_aux = M_v[:, 6:]
    M_v_i_aux = M_v_i.row_join(M_v_aux)
    A_rs = - M_v_d.inv() * M_v_i_aux

    u_dep = A_rs[:, :3] * Matrix(u[:3])
    u_dep_dict = dict(zip(u[3:], u_dep))

    # Active forces: F_O acting on point O; F_P acting on point P.
    # Generalized active forces (unconstrained): Fr_u = F_point * pv_point.
    F_O = m*g*A.z
    F_P = Fx * A.x + Fy * A.y + Fz * A.z
    Fr_u = Matrix([dot(F_O, pv_o) + dot(F_P, pv_p) for pv_o, pv_p in
            zip(partial_v_O, partial_v_P)])

    # Inertia force: R_star_O.
    # Inertia of disc: I_C_O, where J is a inertia component about principal axis.
    # Inertia torque: T_star_C.
    # Generalized inertia forces (unconstrained): Fr_star_u.
    R_star_O = -m*O.acc(N)
    I_C_O = inertia(B, I, J, I)
    T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \
                 + cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N))))
    Fr_star_u = Matrix([dot(R_star_O, pv) + dot(T_star_C, pav) for pv, pav in
                        zip(partial_v_O, partial_w_C)])

    # Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c.
    # Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady.
    Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :]
    Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\
                + A_rs.T * Fr_star_u[3:6, :]
    Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\
            .subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand()


    # Second, using KaneMethod in mechanics for fr, frstar and frstar_steady.

    # Rigid Bodies: disc, with inertia I_C_O.
    iner_tuple = (I_C_O, O)
    disc = RigidBody('disc', O, C, m, iner_tuple)
    bodyList = [disc]

    # Generalized forces: Gravity: F_o; Auxiliary forces: F_p.
    F_o = (O, F_O)
    F_p = (P, F_P)
    forceList = [F_o,  F_p]

    # KanesMethod.
    kane = KanesMethod(
        N, q_ind= q[:3], u_ind= u[:3], kd_eqs=kindiffs,
        q_dependent=q[3:], configuration_constraints = f_c,
        u_dependent=u[3:], velocity_constraints= f_v,
        u_auxiliary=ua
        )

    # fr, frstar, frstar_steady and kdd(kinematic differential equations).
    (fr, frstar)= kane.kanes_equations(forceList, bodyList)
    frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\
                    .subs({q[3]: -r*cos(q[1])}).expand()
    kdd = kane.kindiffdict()

    assert Matrix(Fr_c).expand() == fr.expand()
    assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand()
    assert (simplify(Matrix(Fr_star_steady).expand()) ==
            simplify(frstar_steady.expand()))
Ejemplo n.º 20
0
                                     LagrangesMethod)
from sympy.physics.mechanics.functions import inertia
init_vprinting()

# Variáveis Simbólicas
THETA_1, THETA_2 = dynamicsymbols('theta_1 theta_2')
DTHETA_1, DTHETA_2 = dynamicsymbols('theta_1 theta_2', 1)
TAU_1, TAU_2 = symbols('tau_1 tau_2')
L_1, L_2 = symbols('l_1 l_2', positive=True)
R_1, R_2 = symbols('r_1 r_2', positive=True)
M_1, M_2, G = symbols('m_1 m_2 g')
I_1_ZZ, I_2_ZZ = symbols('I_{1zz}, I_{2zz}')

# Referenciais
# Referencial Inercial
B0 = ReferenceFrame('B0')
# Referencial móvel: theta_1 em relação a B0.z
B1 = ReferenceFrame('B1')
B1.orient(B0, 'Axis', [THETA_1, B0.z])
# Referencial móvel: theta_2 em relação a B1.z
B2 = ReferenceFrame('B2')
B2.orient(B1, 'Axis', [THETA_2, B1.z])

# Pontos e Centros de Massa
O = Point('O')
O.set_vel(B0, 0)
A = Point('A')
A.set_pos(O, L_1 * B1.x)
A.v2pt_theory(O, B0, B1)
CM_1 = Point('CM_1')
CM_1.set_pos(O, R_1 * B1.x)
Ejemplo n.º 21
0
def test_linearize_rolling_disc_kane():
    # Symbols for time and constant parameters
    t, r, m, g, v = symbols('t r m g v')

    # Configuration variables and their time derivatives
    q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
    q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]

    # Generalized speeds and their time derivatives
    u = dynamicsymbols('u:6')
    u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
    u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]

    # Reference frames
    N = ReferenceFrame('N')  # Inertial frame
    NO = Point('NO')  # Inertial origin
    A = N.orientnew('A', 'Axis', [q1, N.z])  # Yaw intermediate frame
    B = A.orientnew('B', 'Axis', [q2, A.x])  # Lean intermediate frame
    C = B.orientnew('C', 'Axis', [q3, B.y])  # Disc fixed frame
    CO = NO.locatenew('CO', q4 * N.x + q5 * N.y + q6 * N.z)  # Disc center

    # Disc angular velocity in N expressed using time derivatives of coordinates
    w_c_n_qd = C.ang_vel_in(N)
    w_b_n_qd = B.ang_vel_in(N)

    # Inertial angular velocity and angular acceleration of disc fixed frame
    C.set_ang_vel(N, u1 * B.x + u2 * B.y + u3 * B.z)

    # Disc center velocity in N expressed using time derivatives of coordinates
    v_co_n_qd = CO.pos_from(NO).dt(N)

    # Disc center velocity in N expressed using generalized speeds
    CO.set_vel(N, u4 * C.x + u5 * C.y + u6 * C.z)

    # Disc Ground Contact Point
    P = CO.locatenew('P', r * B.z)
    P.v2pt_theory(CO, N, C)

    # Configuration constraint
    f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])

    # Velocity level constraints
    f_v = Matrix([dot(P.vel(N), uv) for uv in C])

    # Kinematic differential equations
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
                      [dot(v_co_n_qd - CO.vel(N), uv) for uv in N])
    qdots = solve(kindiffs, qd)

    # Set angular velocity of remaining frames
    B.set_ang_vel(N, w_b_n_qd.subs(qdots))
    C.set_ang_acc(
        N,
        C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Active forces
    F_CO = m * g * A.z

    # Create inertia dyadic of disc C about point CO
    I = (m * r**2) / 4
    J = (m * r**2) / 2
    I_C_CO = inertia(C, I, J, I)

    Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO))
    BL = [Disc]
    FL = [(CO, F_CO)]
    KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3],
                     kd_eqs=kindiffs,
                     q_dependent=[q6],
                     configuration_constraints=f_c,
                     u_dependent=[u4, u5, u6],
                     velocity_constraints=f_v)
    (fr, fr_star) = KM.kanes_equations(FL, BL)

    # Test generalized form equations
    linearizer = KM.to_linearizer()
    assert linearizer.f_c == f_c
    assert linearizer.f_v == f_v
    assert linearizer.f_a == f_v.diff(t)
    sol = solve(linearizer.f_0 + linearizer.f_1, qd)
    for qi in qd:
        assert sol[qi] == qdots[qi]
    assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix(
        [0, 0, 0])

    # Perform the linearization
    # Precomputed operating point
    q_op = {q6: -r * cos(q2)}
    u_op = {
        u1: 0,
        u2: sin(q2) * q1d + q3d,
        u3: cos(q2) * q1d,
        u4: -r * (sin(q2) * q1d + q3d) * cos(q3),
        u5: 0,
        u6: -r * (sin(q2) * q1d + q3d) * sin(q3)
    }
    qd_op = {
        q2d: 0,
        q4d: -r * (sin(q2) * q1d + q3d) * cos(q1),
        q5d: -r * (sin(q2) * q1d + q3d) * sin(q1),
        q6d: 0
    }
    ud_op = {
        u1d:
        4 * g * sin(q2) / (5 * r) + sin(2 * q2) * q1d**2 / 2 +
        6 * cos(q2) * q1d * q3d / 5,
        u2d:
        0,
        u3d:
        0,
        u4d:
        r * (sin(q2) * sin(q3) * q1d * q3d + sin(q3) * q3d**2),
        u5d:
        r * (4 * g * sin(q2) /
             (5 * r) + sin(2 * q2) * q1d**2 / 2 + 6 * cos(q2) * q1d * q3d / 5),
        u6d:
        -r * (sin(q2) * cos(q3) * q1d * q3d + cos(q3) * q3d**2)
    }

    A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op],
                                A_and_B=True,
                                simplify=True)

    upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1}

    # Precomputed solution
    A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0],
                    [0, 0, 0, 0, 0, 0, 1, 0],
                    [sin(q1) * q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0],
                    [-cos(q1) * q3d, 0, 0, 0, 0,
                     cos(q1), -sin(q1), 0],
                    [0, 4 / 5, 0, 0, 0, 0, 0, 6 * q3d / 5],
                    [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2 * q3d, 0, 0]])
    B_sol = Matrix([])

    # Check that linearization is correct
    assert A.subs(upright_nominal) == A_sol
    assert B.subs(upright_nominal) == B_sol

    # Check eigenvalues at critical speed are all zero:
    assert A.subs(upright_nominal).subs(q3d, 1 / sqrt(3)).eigenvals() == {0: 8}
Ejemplo n.º 22
0
def test_bicycle():
    if ON_TRAVIS:
        skip("Too slow for travis.")
    # Code to get equations of motion for a bicycle modeled as in:
    # J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized
    # dynamics equations for the balance and steer of a bicycle: a benchmark
    # and review. Proceedings of The Royal Society (2007) 463, 1955-1982
    # doi: 10.1098/rspa.2007.1857

    # Note that this code has been crudely ported from Autolev, which is the
    # reason for some of the unusual naming conventions. It was purposefully as
    # similar as possible in order to aide debugging.

    # Declare Coordinates & Speeds
    # Simple definitions for qdots - qd = u
    # Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame
    # ang.  rate (spinning motion), frame ang. rate (pitching motion), steering
    # frame ang. rate, and front wheel ang. rate (spinning motion).
    # Wheel positions are ignorable coordinates, so they are not introduced.
    q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5')
    q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1)
    u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6')
    u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1)

    # Declare System's Parameters
    WFrad, WRrad, htangle, forkoffset = symbols(
        'WFrad WRrad htangle forkoffset')
    forklength, framelength, forkcg1 = symbols(
        'forklength framelength forkcg1')
    forkcg3, framecg1, framecg3, Iwr11 = symbols(
        'forkcg3 framecg1 framecg3 Iwr11')
    Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11')
    Iframe22, Iframe33, Iframe31, Ifork11 = symbols(
        'Iframe22 Iframe33 Iframe31 Ifork11')
    Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g')
    mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr')

    # Set up reference frames for the system
    # N - inertial
    # Y - yaw
    # R - roll
    # WR - rear wheel, rotation angle is ignorable coordinate so not oriented
    # Frame - bicycle frame
    # TempFrame - statically rotated frame for easier reference inertia definition
    # Fork - bicycle fork
    # TempFork - statically rotated frame for easier reference inertia definition
    # WF - front wheel, again posses a ignorable coordinate
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    R = Y.orientnew('R', 'Axis', [q2, Y.x])
    Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y])
    WR = ReferenceFrame('WR')
    TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y])
    Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x])
    TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y])
    WF = ReferenceFrame('WF')

    # Kinematics of the Bicycle First block of code is forming the positions of
    # the relevant points
    # rear wheel contact -> rear wheel mass center -> frame mass center +
    # frame/fork connection -> fork mass center + front wheel mass center ->
    # front wheel contact point
    WR_cont = Point('WR_cont')
    WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z)
    Steer = WR_mc.locatenew('Steer', framelength * Frame.z)
    Frame_mc = WR_mc.locatenew('Frame_mc',
                               -framecg1 * Frame.x + framecg3 * Frame.z)
    Fork_mc = Steer.locatenew('Fork_mc', -forkcg1 * Fork.x + forkcg3 * Fork.z)
    WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z)
    WF_cont = WF_mc.locatenew(
        'WF_cont',
        WFrad * (dot(Fork.y, Y.z) * Fork.y - Y.z).normalize())

    # Set the angular velocity of each frame.
    # Angular accelerations end up being calculated automatically by
    # differentiating the angular velocities when first needed.
    # u1 is yaw rate
    # u2 is roll rate
    # u3 is rear wheel rate
    # u4 is frame pitch rate
    # u5 is fork steer rate
    # u6 is front wheel rate
    Y.set_ang_vel(N, u1 * Y.z)
    R.set_ang_vel(Y, u2 * R.x)
    WR.set_ang_vel(Frame, u3 * Frame.y)
    Frame.set_ang_vel(R, u4 * Frame.y)
    Fork.set_ang_vel(Frame, u5 * Fork.x)
    WF.set_ang_vel(Fork, u6 * Fork.y)

    # Form the velocities of the previously defined points, using the 2 - point
    # theorem (written out by hand here).  Accelerations again are calculated
    # automatically when first needed.
    WR_cont.set_vel(N, 0)
    WR_mc.v2pt_theory(WR_cont, N, WR)
    Steer.v2pt_theory(WR_mc, N, Frame)
    Frame_mc.v2pt_theory(WR_mc, N, Frame)
    Fork_mc.v2pt_theory(Steer, N, Fork)
    WF_mc.v2pt_theory(Steer, N, Fork)
    WF_cont.v2pt_theory(WF_mc, N, WF)

    # Sets the inertias of each body. Uses the inertia frame to construct the
    # inertia dyadics. Wheel inertias are only defined by principle moments of
    # inertia, and are in fact constant in the frame and fork reference frames;
    # it is for this reason that the orientations of the wheels does not need
    # to be defined. The frame and fork inertias are defined in the 'Temp'
    # frames which are fixed to the appropriate body frames; this is to allow
    # easier input of the reference values of the benchmark paper. Note that
    # due to slightly different orientations, the products of inertia need to
    # have their signs flipped; this is done later when entering the numerical
    # value.

    Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0,
                       Iframe31), Frame_mc)
    Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0,
                      Ifork31), Fork_mc)
    WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc)
    WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc)

    # Declaration of the RigidBody containers. ::

    BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I)
    BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I)
    BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I)
    BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I)

    # The kinematic differential equations; they are defined quite simply. Each
    # entry in this list is equal to zero.
    kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5]

    # The nonholonomic constraints are the velocity of the front wheel contact
    # point dotted into the X, Y, and Z directions; the yaw frame is used as it
    # is "closer" to the front wheel (1 less DCM connecting them). These
    # constraints force the velocity of the front wheel contact point to be 0
    # in the inertial frame; the X and Y direction constraints enforce a
    # "no-slip" condition, and the Z direction constraint forces the front
    # wheel contact point to not move away from the ground frame, essentially
    # replicating the holonomic constraint which does not allow the frame pitch
    # to change in an invalid fashion.

    conlist_speed = [
        WF_cont.vel(N) & Y.x,
        WF_cont.vel(N) & Y.y,
        WF_cont.vel(N) & Y.z
    ]

    # The holonomic constraint is that the position from the rear wheel contact
    # point to the front wheel contact point when dotted into the
    # normal-to-ground plane direction must be zero; effectively that the front
    # and rear wheel contact points are always touching the ground plane. This
    # is actually not part of the dynamic equations, but instead is necessary
    # for the lineraization process.

    conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z]

    # The force list; each body has the appropriate gravitational force applied
    # at its mass center.
    FL = [(Frame_mc, -mframe * g * Y.z), (Fork_mc, -mfork * g * Y.z),
          (WF_mc, -mwf * g * Y.z), (WR_mc, -mwr * g * Y.z)]
    BL = [BodyFrame, BodyFork, BodyWR, BodyWF]

    # The N frame is the inertial frame, coordinates are supplied in the order
    # of independent, dependent coordinates, as are the speeds. The kinematic
    # differential equation are also entered here.  Here the dependent speeds
    # are specified, in the same order they were provided in earlier, along
    # with the non-holonomic constraints.  The dependent coordinate is also
    # provided, with the holonomic constraint.  Again, this is only provided
    # for the linearization process.

    KM = KanesMethod(N,
                     q_ind=[q1, q2, q5],
                     q_dependent=[q4],
                     configuration_constraints=conlist_coord,
                     u_ind=[u2, u3, u5],
                     u_dependent=[u1, u4, u6],
                     velocity_constraints=conlist_speed,
                     kd_eqs=kd)
    with warns_deprecated_sympy():
        (fr, frstar) = KM.kanes_equations(FL, BL)

    # This is the start of entering in the numerical values from the benchmark
    # paper to validate the eigen values of the linearized equations from this
    # model to the reference eigen values. Look at the aforementioned paper for
    # more information. Some of these are intermediate values, used to
    # transform values from the paper into the coordinate systems used in this
    # model.
    PaperRadRear = 0.3
    PaperRadFront = 0.35
    HTA = evalf.N(pi / 2 - pi / 10)
    TrailPaper = 0.08
    rake = evalf.N(-(TrailPaper * sin(HTA) - (PaperRadFront * cos(HTA))))
    PaperWb = 1.02
    PaperFrameCgX = 0.3
    PaperFrameCgZ = 0.9
    PaperForkCgX = 0.9
    PaperForkCgZ = 0.7
    FrameLength = evalf.N(PaperWb * sin(HTA) -
                          (rake - (PaperRadFront - PaperRadRear) * cos(HTA)))
    FrameCGNorm = evalf.N((PaperFrameCgZ - PaperRadRear -
                           (PaperFrameCgX / sin(HTA)) * cos(HTA)) * sin(HTA))
    FrameCGPar = evalf.N(PaperFrameCgX / sin(HTA) +
                         (PaperFrameCgZ - PaperRadRear -
                          PaperFrameCgX / sin(HTA) * cos(HTA)) * cos(HTA))
    tempa = evalf.N(PaperForkCgZ - PaperRadFront)
    tempb = evalf.N(PaperWb - PaperForkCgX)
    tempc = evalf.N(sqrt(tempa**2 + tempb**2))
    PaperForkL = evalf.N(PaperWb * cos(HTA) -
                         (PaperRadFront - PaperRadRear) * sin(HTA))
    ForkCGNorm = evalf.N(rake +
                         (tempc * sin(pi / 2 - HTA - acos(tempa / tempc))))
    ForkCGPar = evalf.N(tempc * cos((pi / 2 - HTA) - acos(tempa / tempc)) -
                        PaperForkL)

    # Here is the final assembly of the numerical values. The symbol 'v' is the
    # forward speed of the bicycle (a concept which only makes sense in the
    # upright, static equilibrium case?). These are in a dictionary which will
    # later be substituted in. Again the sign on the *product* of inertia
    # values is flipped here, due to different orientations of coordinate
    # systems.
    v = symbols('v')
    val_dict = {
        WFrad: PaperRadFront,
        WRrad: PaperRadRear,
        htangle: HTA,
        forkoffset: rake,
        forklength: PaperForkL,
        framelength: FrameLength,
        forkcg1: ForkCGPar,
        forkcg3: ForkCGNorm,
        framecg1: FrameCGNorm,
        framecg3: FrameCGPar,
        Iwr11: 0.0603,
        Iwr22: 0.12,
        Iwf11: 0.1405,
        Iwf22: 0.28,
        Ifork11: 0.05892,
        Ifork22: 0.06,
        Ifork33: 0.00708,
        Ifork31: 0.00756,
        Iframe11: 9.2,
        Iframe22: 11,
        Iframe33: 2.8,
        Iframe31: -2.4,
        mfork: 4,
        mframe: 85,
        mwf: 3,
        mwr: 2,
        g: 9.81,
        q1: 0,
        q2: 0,
        q4: 0,
        q5: 0,
        u1: 0,
        u2: 0,
        u3: v / PaperRadRear,
        u4: 0,
        u5: 0,
        u6: v / PaperRadFront
    }

    # Linearizes the forcing vector; the equations are set up as MM udot =
    # forcing, where MM is the mass matrix, udot is the vector representing the
    # time derivatives of the generalized speeds, and forcing is a vector which
    # contains both external forcing terms and internal forcing terms, such as
    # centripital or coriolis forces.  This actually returns a matrix with as
    # many rows as *total* coordinates and speeds, but only as many columns as
    # independent coordinates and speeds.

    forcing_lin = KM.linearize()[0]

    # As mentioned above, the size of the linearized forcing terms is expanded
    # to include both q's and u's, so the mass matrix must have this done as
    # well.  This will likely be changed to be part of the linearized process,
    # for future reference.
    MM_full = KM.mass_matrix_full

    MM_full_s = msubs(MM_full, val_dict)
    forcing_lin_s = msubs(forcing_lin, KM.kindiffdict(), val_dict)

    MM_full_s = MM_full_s.evalf()
    forcing_lin_s = forcing_lin_s.evalf()

    # Finally, we construct an "A" matrix for the form xdot = A x (x being the
    # state vector, although in this case, the sizes are a little off). The
    # following line extracts only the minimum entries required for eigenvalue
    # analysis, which correspond to rows and columns for lean, steer, lean
    # rate, and steer rate.
    Amat = MM_full_s.inv() * forcing_lin_s
    A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5])

    # Precomputed for comparison
    Res = Matrix([[0, 0, 1.0, 0], [0, 0, 0, 1.0],
                  [
                      9.48977444677355,
                      -0.891197738059089 * v**2 - 0.571523173729245,
                      -0.105522449805691 * v, -0.330515398992311 * v
                  ],
                  [
                      11.7194768719633,
                      -1.97171508499972 * v**2 + 30.9087533932407,
                      3.67680523332152 * v, -3.08486552743311 * v
                  ]])

    # Actual eigenvalue comparison
    eps = 1.e-12
    for i in range(6):
        error = Res.subs(v, i) - A.subs(v, i)
        assert all(abs(x) < eps for x in error)
Ejemplo n.º 23
0
from __future__ import print_function, division
from sympy import symbols, simplify
from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point

from sympy.physics.vector import init_vprinting
init_vprinting(use_latex='mathjax', pretty_print=False)

inertial_frame = ReferenceFrame('I')
lower_leg_frame = ReferenceFrame('L')
theta1, theta2, theta3 = dynamicsymbols('theta1, theta2, theta3')
lower_leg_frame.orient(inertial_frame, 'Axis', (theta1, inertial_frame.z))

lower_leg_frame.dcm(inertial_frame)
omega1, omega2, omega3 = dynamicsymbols('omega1, omega2, omega3')

lower_leg_frame.set_ang_vel(inertial_frame, omega1 * inertial_frame.z)
print(lower_leg_frame.ang_vel_in(inertial_frame))
    def __init__(self):

        self.coords = dynamicsymbols('q:3')
        self.speeds = dynamicsymbols('p:3')

        self.dynamic = list(self.coords) + list(self.speeds)
        self.states = ([radians(45) for x in self.coords] +
                       [radians(30) for x in self.speeds])

        self.inertial_ref_frame = ReferenceFrame('I')
        self.A = self.inertial_ref_frame.orientnew('A', 'space', self.coords,
                                                   'XYZ')
        self.B = self.A.orientnew('B', 'space', self.speeds, 'XYZ')
        self.camera_ref_frame = \
            self.inertial_ref_frame.orientnew('C', 'space', (pi / 2, 0, 0),
                                              'XYZ')

        self.origin = Point('O')
        self.P1 = self.origin.locatenew(
            'P1', 10 * self.inertial_ref_frame.x +
            10 * self.inertial_ref_frame.y + 10 * self.inertial_ref_frame.z)
        self.P2 = self.P1.locatenew(
            'P2', 10 * self.inertial_ref_frame.x +
            10 * self.inertial_ref_frame.y + 10 * self.inertial_ref_frame.z)

        self.point_list1 = [[2, 3, 1], [4, 6, 2], [5, 3, 1], [5, 3, 6]]
        self.point_list2 = [[3, 1, 4], [3, 8, 2], [2, 1, 6], [2, 1, 1]]

        self.shape1 = Cylinder(1.0, 1.0)
        self.shape2 = Cylinder(1.0, 1.0)

        self.Ixx, self.Iyy, self.Izz = symbols('Ixx, Iyy, Izz')
        self.mass = symbols('m')
        self.parameters = [self.Ixx, self.Iyy, self.Izz, self.mass]
        self.param_vals = [2.0, 3.0, 4.0, 5.0]
        self.inertia = inertia(self.A, self.Ixx, self.Iyy, self.Izz)

        self.rigid_body = RigidBody('rigid_body1', self.P1, self.A, self.mass,
                                    (self.inertia, self.P1))

        self.global_frame1 = VisualizationFrame('global_frame1', self.A,
                                                self.P1, self.shape1)

        self.global_frame2 = VisualizationFrame('global_frame2', self.B,
                                                self.P2, self.shape2)

        self.scene1 = Scene(self.inertial_ref_frame,
                            self.origin,
                            (self.global_frame1, self.global_frame2),
                            name='scene')

        self.particle = Particle('particle1', self.P1, self.mass)

        q = self.coords
        c = cos
        s = sin
        # Here is the dragon ..
        self.transformation_matrix = [
            [c(q[1]) * c(q[2]),
             s(q[2]) * c(q[1]), -s(q[1]), 0],
            [
                s(q[0]) * s(q[1]) * c(q[2]) - s(q[2]) * c(q[0]),
                s(q[0]) * s(q[1]) * s(q[2]) + c(q[0]) * c(q[2]),
                s(q[0]) * c(q[1]), 0
            ],
            [
                s(q[0]) * s(q[2]) + s(q[1]) * c(q[0]) * c(q[2]),
                -s(q[0]) * c(q[2]) + s(q[1]) * s(q[2]) * c(q[0]),
                c(q[0]) * c(q[1]), 0
            ], [10, 10, 10, 1]
        ]
Ejemplo n.º 25
0
from sympy import cos, Matrix, sin, symbols, pi
from sympy.abc import x, y, z
from sympy.physics.mechanics import Vector, ReferenceFrame, dot, dynamicsymbols

Vector.simp = True
A = ReferenceFrame('A')


def test_dyadic():
    d1 = A.x | A.x
    d2 = A.y | A.y
    d3 = A.x | A.y
    assert d1 * 0 == 0
    assert d1 != 0
    assert d1 * 2 == 2 * A.x | A.x
    assert d1 / 2. == 0.5 * d1
    assert d1 & (0 * d1) == 0
    assert d1 & d2 == 0
    assert d1 & A.x == A.x
    assert d1 ^ A.x == 0
    assert d1 ^ A.y == A.x | A.z
    assert d1 ^ A.z == - A.x | A.y
    assert d2 ^ A.x == - A.y | A.z
    assert A.x ^ d1 == 0
    assert A.y ^ d1 == - A.z | A.x
    assert A.z ^ d1 == A.y | A.x
    assert A.x & d1 == A.x
    assert A.y & d1 == 0
    assert A.y & d2 == A.y
    assert d1 & d3 == A.x | A.y
    assert d3 & d1 == 0
Ejemplo n.º 26
0
"""
from sympy import symbols
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point,
                                     Particle, KanesMethod)
# from sympy.printing.pycode import NumPyPrinter, pycode
n = 1

q = dynamicsymbols('q:' + str(n + 1))  # Generalized coordinates
u = dynamicsymbols('u:' + str(n + 1))  # Generalized speeds
f = dynamicsymbols('f')  # Force applied to the cart

m = symbols('m:' + str(n + 1))  # Mass of each bob
length = symbols('l:' + str(n))  # Length of each link
g, t = symbols('g t')  # Gravity and time

ref_frame = ReferenceFrame('I')  # Inertial reference frame
origin = Point('O')  # Origin point
origin.set_vel(ref_frame, 0)  # Origin's velocity is zero

P0 = Point('P0')  # Hinge point of top link
P0.set_pos(origin, q[0] * ref_frame.x)  # Set the position of P0
P0.set_vel(ref_frame, u[0] * ref_frame.x)  # Set the velocity of P0
Pa0 = Particle('Pa0', P0, m[0])  # Define a particle at P0

# List to hold the n + 1 frames
frames = [ref_frame]
points = [P0]  # List to hold the n + 1 points
particles = [Pa0]  # List to hold the n + 1 particles

# List to hold the n + 1 applied forces, including the input force, f
forces = [
Ejemplo n.º 27
0
def test_ang_vel():
    q1, q2, q3, q4 = dynamicsymbols('q1 q2 q3 q4')
    q1d, q2d, q3d, q4d = dynamicsymbols('q1 q2 q3 q4', 1)
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q1, N.z])
    B = A.orientnew('B', 'Axis', [q2, A.x])
    C = B.orientnew('C', 'Axis', [q3, B.y])
    D = N.orientnew('D', 'Axis', [q4, N.y])
    u1, u2, u3 = dynamicsymbols('u1 u2 u3')
    assert A.ang_vel_in(N) == (q1d)*A.z
    assert B.ang_vel_in(N) == (q2d)*B.x + (q1d)*A.z
    assert C.ang_vel_in(N) == (q3d)*C.y + (q2d)*B.x + (q1d)*A.z

    A2 = N.orientnew('A2', 'Axis', [q4, N.y])
    assert N.ang_vel_in(N) == 0
    assert N.ang_vel_in(A) == -q1d*N.z
    assert N.ang_vel_in(B) == -q1d*A.z - q2d*B.x
    assert N.ang_vel_in(C) == -q1d*A.z - q2d*B.x - q3d*B.y
    assert N.ang_vel_in(A2) == -q4d*N.y

    assert A.ang_vel_in(N) == q1d*N.z
    assert A.ang_vel_in(A) == 0
    assert A.ang_vel_in(B) == - q2d*B.x
    assert A.ang_vel_in(C) == - q2d*B.x - q3d*B.y
    assert A.ang_vel_in(A2) == q1d*N.z - q4d*N.y

    assert B.ang_vel_in(N) == q1d*A.z + q2d*A.x
    assert B.ang_vel_in(A) == q2d*A.x
    assert B.ang_vel_in(B) == 0
    assert B.ang_vel_in(C) == -q3d*B.y
    assert B.ang_vel_in(A2) == q1d*A.z + q2d*A.x - q4d*N.y

    assert C.ang_vel_in(N) == q1d*A.z + q2d*A.x + q3d*B.y
    assert C.ang_vel_in(A) == q2d*A.x + q3d*C.y
    assert C.ang_vel_in(B) == q3d*B.y
    assert C.ang_vel_in(C) == 0
    assert C.ang_vel_in(A2) == q1d*A.z + q2d*A.x + q3d*B.y - q4d*N.y

    assert A2.ang_vel_in(N) == q4d*A2.y
    assert A2.ang_vel_in(A) == q4d*A2.y - q1d*N.z
    assert A2.ang_vel_in(B) == q4d*N.y - q1d*A.z - q2d*A.x
    assert A2.ang_vel_in(C) == q4d*N.y - q1d*A.z - q2d*A.x - q3d*B.y
    assert A2.ang_vel_in(A2) == 0

    C.set_ang_vel(N, u1*C.x + u2*C.y + u3*C.z)
    assert C.ang_vel_in(N) == (u1)*C.x + (u2)*C.y + (u3)*C.z
    assert N.ang_vel_in(C) == (-u1)*C.x + (-u2)*C.y + (-u3)*C.z
    assert C.ang_vel_in(D) == (u1)*C.x + (u2)*C.y + (u3)*C.z + (-q4d)*D.y
    assert D.ang_vel_in(C) == (-u1)*C.x + (-u2)*C.y + (-u3)*C.z + (q4d)*D.y

    q0 = dynamicsymbols('q0')
    q0d = dynamicsymbols('q0', 1)
    E = N.orientnew('E', 'Quaternion', (q0, q1, q2, q3))
    assert E.ang_vel_in(N) == (
        2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1) * E.x +
        2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2) * E.y +
        2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3) * E.z)

    F = N.orientnew('F', 'Body', (q1, q2, q3), '313')
    assert F.ang_vel_in(N) == ((sin(q2)*sin(q3)*q1d + cos(q3)*q2d)*F.x +
        (sin(q2)*cos(q3)*q1d - sin(q3)*q2d)*F.y + (cos(q2)*q1d + q3d)*F.z)
    G = N.orientnew('G', 'Axis', (q1, N.x + N.y))
    assert G.ang_vel_in(N) == q1d * (N.x + N.y).normalize()
    assert N.ang_vel_in(G) == -q1d * (N.x + N.y).normalize()
Ejemplo n.º 28
0
def test_sub_qdot2():
    # This test solves exercises 8.3 from Kane 1985 and defines
    # all velocities in terms of q, qdot. We check that the generalized active
    # forces are correctly computed if u terms are only defined in the
    # kinematic differential equations.
    #
    # This functionality was added in PR 8948. Without qdot/u substitution, the
    # KanesMethod constructor will fail during the constraint initialization as
    # the B matrix will be poorly formed and inversion of the dependent part
    # will fail.

    g, m, Px, Py, Pz, R, t = symbols('g m Px Py Pz R t')
    q = dynamicsymbols('q:5')
    qd = dynamicsymbols('q:5', level=1)
    u = dynamicsymbols('u:5')

    ## Define inertial, intermediate, and rigid body reference frames
    A = ReferenceFrame('A')
    B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z])
    B = B_prime.orientnew('B', 'Axis', [pi / 2 - q[1], B_prime.x])
    C = B.orientnew('C', 'Axis', [q[2], B.z])

    ## Define points of interest and their velocities
    pO = Point('O')
    pO.set_vel(A, 0)

    # R is the point in plane H that comes into contact with disk C.
    pR = pO.locatenew('R', q[3] * A.x + q[4] * A.y)
    pR.set_vel(A, pR.pos_from(pO).diff(t, A))
    pR.set_vel(B, 0)

    # C^ is the point in disk C that comes into contact with plane H.
    pC_hat = pR.locatenew('C^', 0)
    pC_hat.set_vel(C, 0)

    # C* is the point at the center of disk C.
    pCs = pC_hat.locatenew('C*', R * B.y)
    pCs.set_vel(C, 0)
    pCs.set_vel(B, 0)

    # calculate velocites of points C* and C^ in frame A
    pCs.v2pt_theory(pR, A, B)  # points C* and R are fixed in frame B
    pC_hat.v2pt_theory(pCs, A, C)  # points C* and C^ are fixed in frame C

    ## Define forces on each point of the system
    R_C_hat = Px * A.x + Py * A.y + Pz * A.z
    R_Cs = -m * g * A.z
    forces = [(pC_hat, R_C_hat), (pCs, R_Cs)]

    ## Define kinematic differential equations
    # let ui = omega_C_A & bi (i = 1, 2, 3)
    # u4 = qd4, u5 = qd5
    u_expr = [C.ang_vel_in(A) & uv for uv in B]
    u_expr += qd[3:]
    kde = [ui - e for ui, e in zip(u, u_expr)]
    km1 = KanesMethod(A, q, u, kde)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        fr1, _ = km1.kanes_equations(forces, [])

    ## Calculate generalized active forces if we impose the condition that the
    # disk C is rolling without slipping
    u_indep = u[:3]
    u_dep = list(set(u) - set(u_indep))
    vc = [pC_hat.vel(A) & uv for uv in [A.x, A.y]]
    km2 = KanesMethod(A,
                      q,
                      u_indep,
                      kde,
                      u_dependent=u_dep,
                      velocity_constraints=vc)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
        fr2, _ = km2.kanes_equations(forces, [])

    fr1_expected = Matrix([
        -R * g * m * sin(q[1]),
        -R * (Px * cos(q[0]) + Py * sin(q[0])) * tan(q[1]),
        R * (Px * cos(q[0]) + Py * sin(q[0])), Px, Py
    ])
    fr2_expected = Matrix([-R * g * m * sin(q[1]), 0, 0])
    assert (trigsimp(fr1.expand()) == trigsimp(fr1_expected.expand()))
    assert (trigsimp(fr2.expand()) == trigsimp(fr2_expected.expand()))
Ejemplo n.º 29
0
from __future__ import division
from sympy import diff, solve, simplify, symbols
from sympy.physics.mechanics import ReferenceFrame, Point
from sympy.physics.mechanics import dynamicsymbols
from util import partial_velocities, generalized_active_forces

## --- Declare symbols ---
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', level=1)
u1, u2 = dynamicsymbols('u1 u2')
b, g, m, L, t = symbols('b g m L t')
E, I = symbols('E I')

# --- ReferenceFrames ---
N = ReferenceFrame('N')
B = N.orientnew('B', 'Axis',
                [-(q2 - q1) / (2 * b), N.y])  # small angle approx.

# --- Define Points and set their velocities ---
pO = Point('O')  # Point O is where B* would be with zero displacement.
pO.set_vel(N, 0)

# small angle approx.
pB_star = pO.locatenew('B*', -(q1 + q2) / 2 * N.x)
pP1 = pO.locatenew('P1', -q1 * N.x - b * N.z)
pP2 = pO.locatenew('P2', -q2 * N.x + b * N.z)
for p in [pB_star, pP1, pP2]:
    p.set_vel(N, p.pos_from(pO).diff(t, N))

## --- Define kinematic differential equations/pseudo-generalized speeds ---
Ejemplo n.º 30
0
from pydy.viz.visualization_frame import VisualizationFrame
from pydy.viz.scene import Scene
from utils import controllable
from scipy.linalg import solve_continuous_are
import control
import sympy
from sympy import symbols, simplify, trigsimp
from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point, inertia, RigidBody, KanesMethod
from sympy.physics.vector import init_vprinting, vlatex
#from matplotlib.pyplot import plot, legend, xlabel, ylabel, rcParams

init_vprinting(use_latex='mathjax', pretty_print=True)

#Kinematics ---------------------------------------------------------------------------
#Init reference frames, assume foot is fixed to floor
inertial_frame = ReferenceFrame('I')
lower_leg_frame = ReferenceFrame('L')
upper_leg_frame = ReferenceFrame('U')
torso_frame = ReferenceFrame('T')

#declare dynamic symbols for three joints- dynamic symbols allow derivative notation
theta1, theta2, theta3 = dynamicsymbols('theta1, theta2, theta3')

#Reference frames - rotation only
#orient lower leg frame with respect to inertial (base) frame
lower_leg_frame.orient(inertial_frame, 'Axis', (theta1, inertial_frame.z))
#command below displays direction cosine matrix (DCM)
#pretty_print(lower_leg_frame.dcm(inertial_frame))

#orient upper leg frame with respect to lower leg frame
upper_leg_frame.orient(lower_leg_frame, 'Axis',(theta2,lower_leg_frame.z))