Ejemplo n.º 1
0
def test_x():
    assert X.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
    assert Commutator(X, Px).doit() == I * hbar
    assert qapply(X * XKet(x)) == x * XKet(x)
    assert XKet(x).dual_class() == XBra
    assert XBra(x).dual_class() == XKet
    assert (Dagger(XKet(y)) * XKet(x)).doit() == DiracDelta(x - y)
    assert (PxBra(px)*XKet(x)).doit() == \
        exp(-I*x*px/hbar)/sqrt(2*pi*hbar)
    assert represent(XKet(x)) == DiracDelta(x - x_1)
    assert represent(XBra(x)) == DiracDelta(-x + x_1)
    assert XBra(x).position == x
    assert represent(XOp() * XKet()) == x * DiracDelta(x - x_2)
    assert represent(XOp()*XKet()*XBra('y')) == \
        x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
    assert represent(XBra("y") * XKet()) == DiracDelta(x - y)
    assert represent(XKet() *
                     XBra()) == DiracDelta(x - x_2) * DiracDelta(x_1 - x)

    rep_p = represent(XOp(), basis=PxOp)
    assert rep_p == hbar * I * DiracDelta(px_1 -
                                          px_2) * DifferentialOperator(px_1)
    assert rep_p == represent(XOp(), basis=PxOp())
    assert rep_p == represent(XOp(), basis=PxKet)
    assert rep_p == represent(XOp(), basis=PxKet())

    assert represent(XOp()*PxKet(), basis=PxKet) == \
        hbar*I*DiracDelta(px - px_2)*DifferentialOperator(px)
Ejemplo n.º 2
0
def test_op_to_state():
    assert operators_to_state(XOp) == XKet()
    assert operators_to_state(PxOp) == PxKet()
    assert operators_to_state(Operator) == Ket()

    assert state_to_operators(operators_to_state(XOp("Q"))) == XOp("Q")
    assert state_to_operators(operators_to_state(XOp())) == XOp()

    raises(NotImplementedError, lambda: operators_to_state(XKet))
Ejemplo n.º 3
0
def test_p():
    assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
    assert apply_operators(Px*PxKet(px)) == px*PxKet(px)
    assert PxKet(px).dual_class == PxBra
    assert PxBra(x).dual_class == PxKet
    assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px-py)
    assert (XBra(x)*PxKet(px)).doit() ==\
        exp(I*x*px/hbar)/sqrt(2*pi*hbar)
    assert represent(PxKet(px)) == px
Ejemplo n.º 4
0
def test_represent():
    x, y = symbols('x y')
    d = Density([XKet(), 0.5], [PxKet(), 0.5])
    assert (represent(0.5 * (PxKet() * Dagger(PxKet()))) +
            represent(0.5 * (XKet() * Dagger(XKet())))) == represent(d)

    # check for kets with expr in them
    d_with_sym = Density([XKet(x * y), 0.5], [PxKet(x * y), 0.5])
    assert (represent(0.5*(PxKet(x*y)*Dagger(PxKet(x*y)))) +
            represent(0.5*(XKet(x*y)*Dagger(XKet(x*y))))) == \
        represent(d_with_sym)

    # check when given explicit basis
    assert (represent(0.5*(XKet()*Dagger(XKet())), basis=PxOp()) +
            represent(0.5*(PxKet()*Dagger(PxKet())), basis=PxOp())) == \
        represent(d, basis=PxOp())
Ejemplo n.º 5
0
def test_doit():
    x, y = symbols('x y')
    d = Density([XKet(), 0.5], [PxKet(), 0.5])
    assert (0.5 * (PxKet() * Dagger(PxKet())) + 0.5 *
            (XKet() * Dagger(XKet()))) == d.doit()

    # check for kets with expr in them
    d_with_sym = Density([XKet(x * y), 0.5], [PxKet(x * y), 0.5])
    assert (0.5 * (PxKet(x * y) * Dagger(PxKet(x * y))) + 0.5 *
            (XKet(x * y) * Dagger(XKet(x * y)))) == d_with_sym.doit()
Ejemplo n.º 6
0
def test_op_to_state():
    assert operators_to_state(XOp) == XKet()
    assert operators_to_state(PxOp) == PxKet()
    assert operators_to_state(Operator) == Ket()

    assert operators_to_state(set([J2Op, JxOp])) == JxKet()
    assert operators_to_state(set([J2Op, JyOp])) == JyKet()
    assert operators_to_state(set([J2Op, JzOp])) == JzKet()
    assert operators_to_state(set([J2Op(), JxOp()])) ==  JxKet()
    assert operators_to_state(set([J2Op(), JyOp()])) ==  JyKet()
    assert operators_to_state(set([J2Op(), JzOp()])) ==  JzKet()

    assert state_to_operators(operators_to_state(XOp("Q"))) == XOp("Q")
    assert state_to_operators(operators_to_state(XOp())) == XOp()

    raises(NotImplementedError, 'operators_to_state(XKet)')
Ejemplo n.º 7
0
def test_p():
    assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
    assert qapply(Px*PxKet(px)) == px*PxKet(px)
    assert PxKet(px).dual_class() == PxBra
    assert PxBra(x).dual_class() == PxKet
    assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px-py)
    assert (XBra(x)*PxKet(px)).doit() ==\
        exp(I*x*px/hbar)/sqrt(2*pi*hbar)
    assert represent(PxKet(px)) == DiracDelta(px-px_1)

    rep_x = represent(PxOp(), basis = XOp)
    assert rep_x == -hbar*I*DiracDelta(x_1 - x_2)*DifferentialOperator(x_1)
    assert rep_x == represent(PxOp(), basis = XOp())
    assert rep_x == represent(PxOp(), basis = XKet)
    assert rep_x == represent(PxOp(), basis = XKet())

    assert represent(PxOp()*XKet(), basis=XKet) == \
           -hbar*I*DiracDelta(x - x_2)*DifferentialOperator(x)
    assert represent(XBra("y")*PxOp()*XKet(), basis=XKet) == \
           -hbar*I*DiracDelta(x-y)*DifferentialOperator(x)
Ejemplo n.º 8
0
def test_doit():

    x, y = symbols('x y')
    A, B, C, D, E, F = symbols('A B C D E F', commutative=False)
    d = Density([XKet(), 0.5], [PxKet(), 0.5])
    assert (0.5 * (PxKet() * Dagger(PxKet())) + 0.5 *
            (XKet() * Dagger(XKet()))) == d.doit()

    # check for kets with expr in them
    d_with_sym = Density([XKet(x * y), 0.5], [PxKet(x * y), 0.5])
    assert (0.5 * (PxKet(x * y) * Dagger(PxKet(x * y))) + 0.5 *
            (XKet(x * y) * Dagger(XKet(x * y)))) == d_with_sym.doit()

    d = Density([(A + B) * C, 1.0])
    assert d.doit() == (1.0 * A * C * Dagger(C) * Dagger(A) +
                        1.0 * A * C * Dagger(C) * Dagger(B) +
                        1.0 * B * C * Dagger(C) * Dagger(A) +
                        1.0 * B * C * Dagger(C) * Dagger(B))

    #  With TensorProducts as args
    # Density with simple tensor products as args
    t = TensorProduct(A, B, C)
    d = Density([t, 1.0])
    assert d.doit() == \
        1.0 * TensorProduct(A*Dagger(A), B*Dagger(B), C*Dagger(C))

    # Density with multiple Tensorproducts as states
    t2 = TensorProduct(A, B)
    t3 = TensorProduct(C, D)

    d = Density([t2, 0.5], [t3, 0.5])
    assert d.doit() == (0.5 * TensorProduct(A * Dagger(A), B * Dagger(B)) +
                        0.5 * TensorProduct(C * Dagger(C), D * Dagger(D)))

    #Density with mixed states
    d = Density([t2 + t3, 1.0])
    assert d.doit() == (1.0 * TensorProduct(A * Dagger(A), B * Dagger(B)) +
                        1.0 * TensorProduct(A * Dagger(C), B * Dagger(D)) +
                        1.0 * TensorProduct(C * Dagger(A), D * Dagger(B)) +
                        1.0 * TensorProduct(C * Dagger(C), D * Dagger(D)))

    #Density operators with spin states
    tp1 = TensorProduct(JzKet(1, 1), JzKet(1, -1))
    d = Density([tp1, 1])

    # full trace
    t = Tr(d)
    assert t.doit() == 1

    #Partial trace on density operators with spin states
    t = Tr(d, [0])
    assert t.doit() == JzKet(1, -1) * Dagger(JzKet(1, -1))
    t = Tr(d, [1])
    assert t.doit() == JzKet(1, 1) * Dagger(JzKet(1, 1))

    # with another spin state
    tp2 = TensorProduct(JzKet(S(1) / 2, S(1) / 2), JzKet(S(1) / 2, -S(1) / 2))
    d = Density([tp2, 1])

    #full trace
    t = Tr(d)
    assert t.doit() == 1

    #Partial trace on density operators with spin states
    t = Tr(d, [0])
    assert t.doit() == JzKet(S(1) / 2, -S(1) / 2) * Dagger(
        JzKet(S(1) / 2, -S(1) / 2))
    t = Tr(d, [1])
    assert t.doit() == JzKet(S(1) / 2,
                             S(1) / 2) * Dagger(JzKet(S(1) / 2,
                                                      S(1) / 2))
Ejemplo n.º 9
0
def test_sympy__physics__quantum__cartesian__PxKet():
    from sympy.physics.quantum.cartesian import PxKet
    assert _test_args(PxKet(x, y, z))
Ejemplo n.º 10
0
from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
from sympy.physics.quantum.operatorset import operators_to_state
from sympy.physics.quantum.represent import rep_expectation
from sympy.physics.quantum.operator import Operator
operators_to_state(XOp)
#|x>
operators_to_state(XOp())
#|x>
operators_to_state(PxOp)
#|px>
operators_to_state(PxOp())
#|px>
operators_to_state(Operator)
#|psi>
operators_to_state(Operator())
#|psi>

rep_expectation(XOp())
#x_1*DiracDelta(x_1 - x_2)
rep_expectation(XOp(), basis=PxOp())
#<px_2|*X*|px_1>
rep_expectation(XOp(), basis=PxKet())
#<px_2|*X*|px_1>