Ejemplo n.º 1
0
    def __xor__(self, other):
        """For a cross product in the form: Dyadic x Vector.

        Parameters
        ==========

        other : Vector
            The Vector that we are crossing this Dyadic with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer, cross
        >>> N = ReferenceFrame('N')
        >>> d = outer(N.x, N.x)
        >>> cross(d, N.y)
        (N.x|N.z)

        """

        from sympy.physics.vector.vector import _check_vector
        other = _check_vector(other)
        ol = Dyadic(0)
        for i, v in enumerate(self.args):
            ol += v[0] * (v[1] | (v[2] ^ other))
        return ol
Ejemplo n.º 2
0
    def set_pos(self, otherpoint, value):
        """Used to set the position of this point w.r.t. another point.

        Parameters
        ==========

        value : Vector
            The vector which defines the location of this point
        point : Point
            The other point which this point's location is defined relative to

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p2 = Point('p2')
        >>> p1.set_pos(p2, 10 * N.x)
        >>> p1.pos_from(p2)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        self._check_point(otherpoint)
        self._pos_dict.update({otherpoint: value})
        otherpoint._pos_dict.update({self: -value})
Ejemplo n.º 3
0
    def set_vel(self, frame, value):
        """Sets the velocity Vector of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's velocity in the frame
        frame : ReferenceFrame
            The frame in which this point's velocity is defined

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_vel(N, 10 * N.x)
        >>> p1.vel(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(frame)
        self._vel_dict.update({frame: value})
Ejemplo n.º 4
0
    def set_acc(self, frame, value):
        """Used to set the acceleration of this Point in a ReferenceFrame.

        Parameters
        ==========

        value : Vector
            The vector value of this point's acceleration in the frame
        frame : ReferenceFrame
            The frame in which this point's acceleration is defined

        Examples
        ========

        >>> from sympy.physics.vector import Point, ReferenceFrame
        >>> N = ReferenceFrame('N')
        >>> p1 = Point('p1')
        >>> p1.set_acc(N, 10 * N.x)
        >>> p1.acc(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(frame)
        self._acc_dict.update({frame: value})
Ejemplo n.º 5
0
    def locatenew(self, name, value):
        """Creates a new point with a position defined from this point.

        Parameters
        ==========

        name : str
            The name for the new point
        value : Vector
            The position of the new point relative to this point

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, Point
        >>> N = ReferenceFrame('N')
        >>> P1 = Point('P1')
        >>> P2 = P1.locatenew('P2', 10 * N.x)

        """

        if not isinstance(name, str):
            raise TypeError('Must supply a valid name')
        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        p = Point(name)
        p.set_pos(self, value)
        self.set_pos(p, -value)
        return p
Ejemplo n.º 6
0
    def __and__(self, other):
        """The inner product operator for a Dyadic and a Dyadic or Vector.

        Parameters
        ==========

        other : Dyadic or Vector
            The other Dyadic or Vector to take the inner product with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer
        >>> N = ReferenceFrame('N')
        >>> D1 = outer(N.x, N.y)
        >>> D2 = outer(N.y, N.y)
        >>> D1.dot(D2)
        (N.x|N.y)
        >>> D1.dot(N.y)
        N.x

        """
        from sympy.physics.vector.vector import Vector, _check_vector
        if isinstance(other, Dyadic):
            other = _check_dyadic(other)
            ol = Dyadic(0)
            for i, v in enumerate(self.args):
                for i2, v2 in enumerate(other.args):
                    ol += v[0] * v2[0] * (v[2] & v2[1]) * (v[1] | v2[2])
        else:
            other = _check_vector(other)
            ol = Vector(0)
            for i, v in enumerate(self.args):
                ol += v[0] * v[1] * (v[2] & other)
        return ol
Ejemplo n.º 7
0
    def __rand__(self, other):
        """The inner product operator for a Vector or Dyadic, and a Dyadic

        This is for: Vector dot Dyadic

        Parameters
        ==========

        other : Vector
            The vector we are dotting with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, dot, outer
        >>> N = ReferenceFrame('N')
        >>> d = outer(N.x, N.x)
        >>> dot(N.x, d)
        N.x

        """

        from sympy.physics.vector.vector import Vector, _check_vector
        other = _check_vector(other)
        ol = Vector(0)
        for i, v in enumerate(self.args):
            ol += v[0] * v[2] * (v[1] & other)
        return ol
Ejemplo n.º 8
0
    def set_ang_vel(self, otherframe, value):
        """Define the angular velocity vector in a ReferenceFrame.

        Defines the angular velocity of this ReferenceFrame, in another.
        Angular velocity can be defined with respect to multiple different
        ReferenceFrames. Care must be taken to not create loops which are
        inconsistent.

        Parameters
        ==========

        otherframe : ReferenceFrame
            A ReferenceFrame to define the angular velocity in
        value : Vector
            The Vector representing angular velocity

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, Vector
        >>> N = ReferenceFrame('N')
        >>> A = ReferenceFrame('A')
        >>> V = 10 * N.x
        >>> A.set_ang_vel(N, V)
        >>> A.ang_vel_in(N)
        10*N.x

        """

        if value == 0:
            value = Vector(0)
        value = _check_vector(value)
        _check_frame(otherframe)
        self._ang_vel_dict.update({otherframe: value})
        otherframe._ang_vel_dict.update({self: -value})
Ejemplo n.º 9
0
def curl(vect, frame):
    """
    Returns the curl of a vector field computed wrt the coordinate
    symbols of the given frame.

    Parameters
    ==========

    vect : Vector
        The vector operand

    frame : ReferenceFrame
        The reference frame to calculate the curl in

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame
    >>> from sympy.physics.vector import curl
    >>> R = ReferenceFrame('R')
    >>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z
    >>> curl(v1, R)
    0
    >>> v2 = R[0]*R[1]*R[2]*R.x
    >>> curl(v2, R)
    R_x*R_y*R.y - R_x*R_z*R.z

    """

    _check_vector(vect)
    if vect == 0:
        return Vector(0)
    vect = express(vect, frame, variables=True)
    #A mechanical approach to avoid looping overheads
    vectx = vect.dot(frame.x)
    vecty = vect.dot(frame.y)
    vectz = vect.dot(frame.z)
    outvec = Vector(0)
    outvec += (diff(vectz, frame[1]) - diff(vecty, frame[2])) * frame.x
    outvec += (diff(vectx, frame[2]) - diff(vectz, frame[0])) * frame.y
    outvec += (diff(vecty, frame[0]) - diff(vectx, frame[1])) * frame.z
    return outvec
Ejemplo n.º 10
0
def divergence(vect, frame):
    """
    Returns the divergence of a vector field computed wrt the coordinate
    symbols of the given frame.

    Parameters
    ==========

    vect : Vector
        The vector operand

    frame : ReferenceFrame
        The reference frame to calculate the divergence in

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame
    >>> from sympy.physics.vector import divergence
    >>> R = ReferenceFrame('R')
    >>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z)
    >>> divergence(v1, R)
    R_x*R_y + R_x*R_z + R_y*R_z
    >>> v2 = 2*R[1]*R[2]*R.y
    >>> divergence(v2, R)
    2*R_z

    """

    _check_vector(vect)
    if vect == 0:
        return S(0)
    vect = express(vect, frame, variables=True)
    vectx = vect.dot(frame.x)
    vecty = vect.dot(frame.y)
    vectz = vect.dot(frame.z)
    out = S(0)
    out += diff(vectx, frame[0])
    out += diff(vecty, frame[1])
    out += diff(vectz, frame[2])
    return out
Ejemplo n.º 11
0
def divergence(vect, frame):
    """
    Returns the divergence of a vector field computed wrt the coordinate
    symbols of the given frame.

    Parameters
    ==========

    vect : Vector
        The vector operand

    frame : ReferenceFrame
        The reference frame to calculate the divergence in

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame
    >>> from sympy.physics.vector import divergence
    >>> R = ReferenceFrame('R')
    >>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z)
    >>> divergence(v1, R)
    R_x*R_y + R_x*R_z + R_y*R_z
    >>> v2 = 2*R[1]*R[2]*R.y
    >>> divergence(v2, R)
    2*R_z

    """

    _check_vector(vect)
    if vect == 0:
        return S.Zero
    vect = express(vect, frame, variables=True)
    vectx = vect.dot(frame.x)
    vecty = vect.dot(frame.y)
    vectz = vect.dot(frame.z)
    out = S.Zero
    out += diff(vectx, frame[0])
    out += diff(vecty, frame[1])
    out += diff(vectz, frame[2])
    return out
Ejemplo n.º 12
0
    def __and__(self, other):
        """The inner product operator for a Dyadic and a Dyadic or Vector.

        Parameters
        ==========

        other : Dyadic or Vector
            The other Dyadic or Vector to take the inner product with

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, outer
        >>> N = ReferenceFrame('N')
        >>> D1 = outer(N.x, N.y)
        >>> D2 = outer(N.y, N.y)
        >>> D1.dot(D2)
        (N.x|N.y)
        >>> D1.dot(N.y)
        N.x

        """
        from sympy.physics.vector.vector import Vector, _check_vector

        if isinstance(other, Dyadic):
            other = _check_dyadic(other)
            ol = Dyadic(0)
            for i, v in enumerate(self.args):
                for i2, v2 in enumerate(other.args):
                    ol += v[0] * v2[0] * (v[2] & v2[1]) * (v[1] | v2[2])
        else:
            other = _check_vector(other)
            ol = Vector(0)
            for i, v in enumerate(self.args):
                ol += v[0] * v[1] * (v[2] & other)
        return ol
Ejemplo n.º 13
0
    def orient(self, parent, rot_type, amounts, rot_order=''):
        """Defines the orientation of this frame relative to a parent frame.

        Parameters
        ==========

        parent : ReferenceFrame
            The frame that this ReferenceFrame will have its orientation matrix
            defined in relation to.
        rot_type : str
            The type of orientation matrix that is being created. Supported
            types are 'Body', 'Space', 'Quaternion', and 'Axis'. See examples
            for correct usage.
        amounts : list OR value
            The quantities that the orientation matrix will be defined by.
        rot_order : str
            If applicable, the order of a series of rotations.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, Vector
        >>> from sympy import symbols
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')

        Now we have a choice of how to implement the orientation. First is
        Body. Body orientation takes this reference frame through three
        successive simple rotations. Acceptable rotation orders are of length
        3, expressed in XYZ or 123, and cannot have a rotation about about an
        axis twice in a row.

        >>> B.orient(N, 'Body', [q1, q2, q3], '123')
        >>> B.orient(N, 'Body', [q1, q2, 0], 'ZXZ')
        >>> B.orient(N, 'Body', [0, 0, 0], 'XYX')

        Next is Space. Space is like Body, but the rotations are applied in the
        opposite order.

        >>> B.orient(N, 'Space', [q1, q2, q3], '312')

        Next is Quaternion. This orients the new ReferenceFrame with
        Quaternions, defined as a finite rotation about lambda, a unit vector,
        by some amount theta.
        This orientation is described by four parameters:
        q0 = cos(theta/2)
        q1 = lambda_x sin(theta/2)
        q2 = lambda_y sin(theta/2)
        q3 = lambda_z sin(theta/2)
        Quaternion does not take in a rotation order.

        >>> B.orient(N, 'Quaternion', [q0, q1, q2, q3])

        Last is Axis. This is a rotation about an arbitrary, non-time-varying
        axis by some angle. The axis is supplied as a Vector. This is how
        simple rotations are defined.

        >>> B.orient(N, 'Axis', [q1, N.x + 2 * N.y])

        """

        from sympy.physics.vector.functions import dynamicsymbols
        _check_frame(parent)
        amounts = list(amounts)
        for i, v in enumerate(amounts):
            if not isinstance(v, Vector):
                amounts[i] = sympify(v)

        def _rot(axis, angle):
            """DCM for simple axis 1,2,or 3 rotations. """
            if axis == 1:
                return Matrix([[1, 0, 0],
                    [0, cos(angle), -sin(angle)],
                    [0, sin(angle), cos(angle)]])
            elif axis == 2:
                return Matrix([[cos(angle), 0, sin(angle)],
                    [0, 1, 0],
                    [-sin(angle), 0, cos(angle)]])
            elif axis == 3:
                return Matrix([[cos(angle), -sin(angle), 0],
                    [sin(angle), cos(angle), 0],
                    [0, 0, 1]])

        approved_orders = ('123', '231', '312', '132', '213', '321', '121',
                           '131', '212', '232', '313', '323', '')
        rot_order = str(
            rot_order).upper()  # Now we need to make sure XYZ = 123
        rot_type = rot_type.upper()
        rot_order = [i.replace('X', '1') for i in rot_order]
        rot_order = [i.replace('Y', '2') for i in rot_order]
        rot_order = [i.replace('Z', '3') for i in rot_order]
        rot_order = ''.join(rot_order)
        if not rot_order in approved_orders:
            raise TypeError('The supplied order is not an approved type')
        parent_orient = []
        if rot_type == 'AXIS':
            if not rot_order == '':
                raise TypeError('Axis orientation takes no rotation order')
            if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 2)):
                raise TypeError('Amounts are a list or tuple of length 2')
            theta = amounts[0]
            axis = amounts[1]
            axis = _check_vector(axis)
            if not axis.dt(parent) == 0:
                raise ValueError('Axis cannot be time-varying')
            axis = axis.express(parent).normalize()
            axis = axis.args[0][0]
            parent_orient = ((eye(3) - axis * axis.T) * cos(theta) +
                    Matrix([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]],
                        [-axis[1], axis[0], 0]]) * sin(theta) + axis * axis.T)
        elif rot_type == 'QUATERNION':
            if not rot_order == '':
                raise TypeError(
                    'Quaternion orientation takes no rotation order')
            if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 4)):
                raise TypeError('Amounts are a list or tuple of length 4')
            q0, q1, q2, q3 = amounts
            parent_orient = (Matrix([[q0 ** 2 + q1 ** 2 - q2 ** 2 - q3 **
                2, 2 * (q1 * q2 - q0 * q3), 2 * (q0 * q2 + q1 * q3)],
                [2 * (q1 * q2 + q0 * q3), q0 ** 2 - q1 ** 2 + q2 ** 2 - q3 ** 2,
                2 * (q2 * q3 - q0 * q1)], [2 * (q1 * q3 - q0 * q2), 2 * (q0 *
                q1 + q2 * q3), q0 ** 2 - q1 ** 2 - q2 ** 2 + q3 ** 2]]))
        elif rot_type == 'BODY':
            if not (len(amounts) == 3 & len(rot_order) == 3):
                raise TypeError('Body orientation takes 3 values & 3 orders')
            a1 = int(rot_order[0])
            a2 = int(rot_order[1])
            a3 = int(rot_order[2])
            parent_orient = (_rot(a1, amounts[0]) * _rot(a2, amounts[1])
                    * _rot(a3, amounts[2]))
        elif rot_type == 'SPACE':
            if not (len(amounts) == 3 & len(rot_order) == 3):
                raise TypeError('Space orientation takes 3 values & 3 orders')
            a1 = int(rot_order[0])
            a2 = int(rot_order[1])
            a3 = int(rot_order[2])
            parent_orient = (_rot(a3, amounts[2]) * _rot(a2, amounts[1])
                    * _rot(a1, amounts[0]))
        else:
            raise NotImplementedError('That is not an implemented rotation')
        #Reset the _dcm_cache of this frame, and remove it from the _dcm_caches
        #of the frames it is linked to. Also remove it from the _dcm_dict of
        #its parent
        frames = self._dcm_cache.keys()
        dcm_dict_del = []
        dcm_cache_del = []
        for frame in frames:
            if frame in self._dcm_dict:
                dcm_dict_del += [frame]
            dcm_cache_del += [frame]
        for frame in dcm_dict_del:
            del frame._dcm_dict[self]
        for frame in dcm_cache_del:
            del frame._dcm_cache[self]
        #Add the dcm relationship to _dcm_dict
        self._dcm_dict = self._dlist[0] = {}
        self._dcm_dict.update({parent: parent_orient.T})
        parent._dcm_dict.update({self: parent_orient})
        #Also update the dcm cache after resetting it
        self._dcm_cache = {}
        self._dcm_cache.update({parent: parent_orient.T})
        parent._dcm_cache.update({self: parent_orient})
        if rot_type == 'QUATERNION':
            t = dynamicsymbols._t
            q0, q1, q2, q3 = amounts
            q0d = diff(q0, t)
            q1d = diff(q1, t)
            q2d = diff(q2, t)
            q3d = diff(q3, t)
            w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1)
            w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2)
            w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3)
            wvec = Vector([(Matrix([w1, w2, w3]), self)])
        elif rot_type == 'AXIS':
            thetad = (amounts[0]).diff(dynamicsymbols._t)
            wvec = thetad * amounts[1].express(parent).normalize()
        else:
            try:
                from sympy.polys.polyerrors import CoercionFailed
                from sympy.physics.vector.functions import kinematic_equations
                q1, q2, q3 = amounts
                u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy)
                templist = kinematic_equations([u1, u2, u3], [q1, q2, q3],
                                               rot_type, rot_order)
                templist = [expand(i) for i in templist]
                td = solve(templist, [u1, u2, u3])
                u1 = expand(td[u1])
                u2 = expand(td[u2])
                u3 = expand(td[u3])
                wvec = u1 * self.x + u2 * self.y + u3 * self.z
            except (CoercionFailed, AssertionError):
                wvec = self._w_diff_dcm(parent)
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}
Ejemplo n.º 14
0
def get_motion_params(frame, **kwargs):
    """
    Returns the three motion parameters - (acceleration, velocity, and
    position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order
    functions are used as boundary conditions. For example, given the
    acceleration, the velocity and position parameters are taken as
    boundary conditions.

    The values of time at which the boundary conditions are specified
    are taken from timevalue1(for position boundary condition) and
    timevalue2(for velocity boundary condition).

    If any of the boundary conditions are not provided, they are taken
    to be zero by default (zero vectors, in case of vectorial inputs). If
    the boundary conditions are also functions of time, they are converted
    to constants by substituting the time values in the dynamicsymbols._t
    time Symbol.

    This function can also be used for calculating rotational motion
    parameters. Have a look at the Parameters and Examples for more clarity.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame to express the motion parameters in

    acceleration : Vector
        Acceleration of the object/frame as a function of time

    velocity : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    position : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    timevalue1 : sympyfiable
        Value of time for position boundary condition

    timevalue2 : sympyfiable
        Value of time for velocity boundary condition

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
    >>> from sympy import symbols
    >>> R = ReferenceFrame('R')
    >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
    >>> v = v1*R.x + v2*R.y + v3*R.z
    >>> get_motion_params(R, position = v)
    (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
    >>> a, b, c = symbols('a b c')
    >>> v = a*R.x + b*R.y + c*R.z
    >>> get_motion_params(R, velocity = v)
    (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
    >>> parameters = get_motion_params(R, acceleration = v)
    >>> parameters[1]
    a*t*R.x + b*t*R.y + c*t*R.z
    >>> parameters[2]
    a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z

    """

    ##Helper functions

    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = express(condition, frame, variables=True)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = express(vectdiff, frame)
        #Find derivative of vectdiff
        vectdiff2 = time_derivative(vectdiff, frame)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable: ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa) * dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)

    ##Function body

    _check_frame(frame)
    #Decide mode of operation based on user's input
    if 'acceleration' in kwargs:
        mode = 2
    elif 'velocity' in kwargs:
        mode = 1
    else:
        mode = 0
    #All the possible parameters in kwargs
    #Not all are required for every case
    #If not specified, set to default values(may or may not be used in
    #calculations)
    conditions = [
        'acceleration', 'velocity', 'position', 'timevalue', 'timevalue1',
        'timevalue2'
    ]
    for i, x in enumerate(conditions):
        if x not in kwargs:
            if i < 3:
                kwargs[x] = Vector(0)
            else:
                kwargs[x] = S(0)
        elif i < 3:
            _check_vector(kwargs[x])
        else:
            kwargs[x] = sympify(kwargs[x])
    if mode == 2:
        vel = _process_vector_differential(kwargs['acceleration'],
                                           kwargs['velocity'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue2'], frame)[2]
        pos = _process_vector_differential(vel, kwargs['position'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue1'], frame)[2]
        return (kwargs['acceleration'], vel, pos)
    elif mode == 1:
        return _process_vector_differential(kwargs['velocity'],
                                            kwargs['position'],
                                            dynamicsymbols._t,
                                            kwargs['timevalue1'], frame)
    else:
        vel = time_derivative(kwargs['position'], frame)
        acc = time_derivative(vel, frame)
        return (acc, vel, kwargs['position'])
Ejemplo n.º 15
0
    def orient_axis(self, parent, axis, angle):
        """Sets the orientation of this reference frame with respect to a
        parent reference frame by rotating through an angle about an axis fixed
        in the parent reference frame.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        axis : Vector
            Vector fixed in the parent frame about about which this frame is
            rotated. It need not be a unit vector and the rotation follows the
            right hand rule.
        angle : sympifiable
            Angle in radians by which it the frame is to be rotated.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q1 = symbols('q1')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B.orient_axis(N, N.x, q1)

        The ``orient_axis()`` method generates a direction cosine matrix and
        its transpose which defines the orientation of B relative to N and vice
        versa. Once orient is called, ``dcm()`` outputs the appropriate
        direction cosine matrix:

        >>> B.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])
        >>> N.dcm(B)
        Matrix([
        [1,       0,        0],
        [0, cos(q1), -sin(q1)],
        [0, sin(q1),  cos(q1)]])

        The following two lines show that the sense of the rotation can be
        defined by negating the vector direction or the angle. Both lines
        produce the same result.

        >>> B.orient_axis(N, -N.x, q1)
        >>> B.orient_axis(N, N.x, -q1)

        """

        from sympy.physics.vector.functions import dynamicsymbols
        _check_frame(parent)

        amount = sympify(angle)
        theta = amount
        axis = _check_vector(axis)
        parent_orient_axis = []

        if not axis.dt(parent) == 0:
            raise ValueError('Axis cannot be time-varying.')
        unit_axis = axis.express(parent).normalize()
        unit_col = unit_axis.args[0][0]
        parent_orient_axis = (
            (eye(3) - unit_col * unit_col.T) * cos(theta) +
            Matrix([[0, -unit_col[2], unit_col[1]],
                    [unit_col[2], 0, -unit_col[0]],
                    [-unit_col[1], unit_col[0], 0]]) *
            sin(theta) + unit_col * unit_col.T)

        self._dcm(parent, parent_orient_axis)

        thetad = (amount).diff(dynamicsymbols._t)
        wvec = thetad*axis.express(parent).normalize()
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}
Ejemplo n.º 16
0
    def orient(self, parent, rot_type, amounts, rot_order=''):
        """Defines the orientation of this frame relative to a parent frame.

        Parameters
        ==========

        parent : ReferenceFrame
            The frame that this ReferenceFrame will have its orientation matrix
            defined in relation to.
        rot_type : str
            The type of orientation matrix that is being created. Supported
            types are 'Body', 'Space', 'Quaternion', 'Axis', and 'DCM'.
            See examples for correct usage.
        amounts : list OR value
            The quantities that the orientation matrix will be defined by.
            In case of rot_type='DCM', value must be a
            sympy.matrices.MatrixBase object (or subclasses of it).
        rot_order : str or int
            If applicable, the order of a series of rotations.

        Examples
        ========

        >>> from sympy.physics.vector import ReferenceFrame, Vector
        >>> from sympy import symbols, eye, ImmutableMatrix
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')

        Now we have a choice of how to implement the orientation. First is
        Body. Body orientation takes this reference frame through three
        successive simple rotations. Acceptable rotation orders are of length
        3, expressed in XYZ or 123, and cannot have a rotation about about an
        axis twice in a row.

        >>> B.orient(N, 'Body', [q1, q2, q3], 123)
        >>> B.orient(N, 'Body', [q1, q2, 0], 'ZXZ')
        >>> B.orient(N, 'Body', [0, 0, 0], 'XYX')

        Next is Space. Space is like Body, but the rotations are applied in the
        opposite order.

        >>> B.orient(N, 'Space', [q1, q2, q3], '312')

        Next is Quaternion. This orients the new ReferenceFrame with
        Quaternions, defined as a finite rotation about lambda, a unit vector,
        by some amount theta.
        This orientation is described by four parameters:
        q0 = cos(theta/2)
        q1 = lambda_x sin(theta/2)
        q2 = lambda_y sin(theta/2)
        q3 = lambda_z sin(theta/2)
        Quaternion does not take in a rotation order.

        >>> B.orient(N, 'Quaternion', [q0, q1, q2, q3])

        Next is Axis. This is a rotation about an arbitrary, non-time-varying
        axis by some angle. The axis is supplied as a Vector. This is how
        simple rotations are defined.

        >>> B.orient(N, 'Axis', [q1, N.x + 2 * N.y])

        Last is DCM (Direction Cosine Matrix). This is a rotation matrix
        given manually.

        >>> B.orient(N, 'DCM', eye(3))
        >>> B.orient(N, 'DCM', ImmutableMatrix([[0, 1, 0], [0, 0, -1], [-1, 0, 0]]))

        """

        from sympy.physics.vector.functions import dynamicsymbols
        _check_frame(parent)

        # Allow passing a rotation matrix manually.
        if rot_type == 'DCM':
            # When rot_type == 'DCM', then amounts must be a Matrix type object
            # (e.g. sympy.matrices.dense.MutableDenseMatrix).
            if not isinstance(amounts, MatrixBase):
                raise TypeError("Amounts must be a sympy Matrix type object.")
        else:
            amounts = list(amounts)
            for i, v in enumerate(amounts):
                if not isinstance(v, Vector):
                    amounts[i] = sympify(v)

        def _rot(axis, angle):
            """DCM for simple axis 1,2,or 3 rotations. """
            if axis == 1:
                return Matrix([[1, 0, 0], [0, cos(angle), -sin(angle)],
                               [0, sin(angle), cos(angle)]])
            elif axis == 2:
                return Matrix([[cos(angle), 0, sin(angle)], [0, 1, 0],
                               [-sin(angle), 0, cos(angle)]])
            elif axis == 3:
                return Matrix([[cos(angle), -sin(angle), 0],
                               [sin(angle), cos(angle), 0], [0, 0, 1]])

        approved_orders = ('123', '231', '312', '132', '213', '321', '121',
                           '131', '212', '232', '313', '323', '')
        # make sure XYZ => 123 and rot_type is in upper case
        rot_order = translate(str(rot_order), 'XYZxyz', '123123')
        rot_type = rot_type.upper()
        if not rot_order in approved_orders:
            raise TypeError('The supplied order is not an approved type')
        parent_orient = []
        if rot_type == 'AXIS':
            if not rot_order == '':
                raise TypeError('Axis orientation takes no rotation order')
            if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 2)):
                raise TypeError('Amounts are a list or tuple of length 2')
            theta = amounts[0]
            axis = amounts[1]
            axis = _check_vector(axis)
            if not axis.dt(parent) == 0:
                raise ValueError('Axis cannot be time-varying')
            axis = axis.express(parent).normalize()
            axis = axis.args[0][0]
            parent_orient = (
                (eye(3) - axis * axis.T) * cos(theta) +
                Matrix([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]],
                        [-axis[1], axis[0], 0]]) * sin(theta) + axis * axis.T)
        elif rot_type == 'QUATERNION':
            if not rot_order == '':
                raise TypeError(
                    'Quaternion orientation takes no rotation order')
            if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 4)):
                raise TypeError('Amounts are a list or tuple of length 4')
            q0, q1, q2, q3 = amounts
            parent_orient = (Matrix([[
                q0**2 + q1**2 - q2**2 - q3**2, 2 * (q1 * q2 - q0 * q3),
                2 * (q0 * q2 + q1 * q3)
            ],
                                     [
                                         2 * (q1 * q2 + q0 * q3),
                                         q0**2 - q1**2 + q2**2 - q3**2,
                                         2 * (q2 * q3 - q0 * q1)
                                     ],
                                     [
                                         2 * (q1 * q3 - q0 * q2),
                                         2 * (q0 * q1 + q2 * q3),
                                         q0**2 - q1**2 - q2**2 + q3**2
                                     ]]))
        elif rot_type == 'BODY':
            if not (len(amounts) == 3 & len(rot_order) == 3):
                raise TypeError('Body orientation takes 3 values & 3 orders')
            a1 = int(rot_order[0])
            a2 = int(rot_order[1])
            a3 = int(rot_order[2])
            parent_orient = (_rot(a1, amounts[0]) * _rot(a2, amounts[1]) *
                             _rot(a3, amounts[2]))
        elif rot_type == 'SPACE':
            if not (len(amounts) == 3 & len(rot_order) == 3):
                raise TypeError('Space orientation takes 3 values & 3 orders')
            a1 = int(rot_order[0])
            a2 = int(rot_order[1])
            a3 = int(rot_order[2])
            parent_orient = (_rot(a3, amounts[2]) * _rot(a2, amounts[1]) *
                             _rot(a1, amounts[0]))
        elif rot_type == 'DCM':
            parent_orient = amounts
        else:
            raise NotImplementedError('That is not an implemented rotation')
        #Reset the _dcm_cache of this frame, and remove it from the _dcm_caches
        #of the frames it is linked to. Also remove it from the _dcm_dict of
        #its parent
        frames = self._dcm_cache.keys()
        dcm_dict_del = []
        dcm_cache_del = []
        for frame in frames:
            if frame in self._dcm_dict:
                dcm_dict_del += [frame]
            dcm_cache_del += [frame]
        for frame in dcm_dict_del:
            del frame._dcm_dict[self]
        for frame in dcm_cache_del:
            del frame._dcm_cache[self]
        #Add the dcm relationship to _dcm_dict
        self._dcm_dict = self._dlist[0] = {}
        self._dcm_dict.update({parent: parent_orient.T})
        parent._dcm_dict.update({self: parent_orient})
        #Also update the dcm cache after resetting it
        self._dcm_cache = {}
        self._dcm_cache.update({parent: parent_orient.T})
        parent._dcm_cache.update({self: parent_orient})
        if rot_type == 'QUATERNION':
            t = dynamicsymbols._t
            q0, q1, q2, q3 = amounts
            q0d = diff(q0, t)
            q1d = diff(q1, t)
            q2d = diff(q2, t)
            q3d = diff(q3, t)
            w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1)
            w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2)
            w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3)
            wvec = Vector([(Matrix([w1, w2, w3]), self)])
        elif rot_type == 'AXIS':
            thetad = (amounts[0]).diff(dynamicsymbols._t)
            wvec = thetad * amounts[1].express(parent).normalize()
        elif rot_type == 'DCM':
            wvec = self._w_diff_dcm(parent)
        else:
            try:
                from sympy.polys.polyerrors import CoercionFailed
                from sympy.physics.vector.functions import kinematic_equations
                q1, q2, q3 = amounts
                u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy)
                templist = kinematic_equations([u1, u2, u3], [q1, q2, q3],
                                               rot_type, rot_order)
                templist = [expand(i) for i in templist]
                td = solve(templist, [u1, u2, u3])
                u1 = expand(td[u1])
                u2 = expand(td[u2])
                u3 = expand(td[u3])
                wvec = u1 * self.x + u2 * self.y + u3 * self.z
            except (CoercionFailed, AssertionError):
                wvec = self._w_diff_dcm(parent)
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}
Ejemplo n.º 17
0
def get_motion_params(frame, **kwargs):
    """
    Returns the three motion parameters - (acceleration, velocity, and
    position) as vectorial functions of time in the given frame.

    If a higher order differential function is provided, the lower order
    functions are used as boundary conditions. For example, given the
    acceleration, the velocity and position parameters are taken as
    boundary conditions.

    The values of time at which the boundary conditions are specified
    are taken from timevalue1(for position boundary condition) and
    timevalue2(for velocity boundary condition).

    If any of the boundary conditions are not provided, they are taken
    to be zero by default (zero vectors, in case of vectorial inputs). If
    the boundary conditions are also functions of time, they are converted
    to constants by substituting the time values in the dynamicsymbols._t
    time Symbol.

    This function can also be used for calculating rotational motion
    parameters. Have a look at the Parameters and Examples for more clarity.

    Parameters
    ==========

    frame : ReferenceFrame
        The frame to express the motion parameters in

    acceleration : Vector
        Acceleration of the object/frame as a function of time

    velocity : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    position : Vector
        Velocity as function of time or as boundary condition
        of velocity at time = timevalue1

    timevalue1 : sympyfiable
        Value of time for position boundary condition

    timevalue2 : sympyfiable
        Value of time for velocity boundary condition

    Examples
    ========

    >>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols
    >>> from sympy import symbols
    >>> R = ReferenceFrame('R')
    >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3')
    >>> v = v1*R.x + v2*R.y + v3*R.z
    >>> get_motion_params(R, position = v)
    (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z)
    >>> a, b, c = symbols('a b c')
    >>> v = a*R.x + b*R.y + c*R.z
    >>> get_motion_params(R, velocity = v)
    (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z)
    >>> parameters = get_motion_params(R, acceleration = v)
    >>> parameters[1]
    a*t*R.x + b*t*R.y + c*t*R.z
    >>> parameters[2]
    a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z

    """

    ##Helper functions

    def _process_vector_differential(vectdiff, condition, \
                                     variable, ordinate, frame):
        """
        Helper function for get_motion methods. Finds derivative of vectdiff wrt
        variable, and its integral using the specified boundary condition at
        value of variable = ordinate.
        Returns a tuple of - (derivative, function and integral) wrt vectdiff

        """

        #Make sure boundary condition is independent of 'variable'
        if condition != 0:
            condition = express(condition, frame, variables=True)
        #Special case of vectdiff == 0
        if vectdiff == Vector(0):
            return (0, 0, condition)
        #Express vectdiff completely in condition's frame to give vectdiff1
        vectdiff1 = express(vectdiff, frame)
        #Find derivative of vectdiff
        vectdiff2 = time_derivative(vectdiff, frame)
        #Integrate and use boundary condition
        vectdiff0 = Vector(0)
        lims = (variable, ordinate, variable)
        for dim in frame:
            function1 = vectdiff1.dot(dim)
            abscissa = dim.dot(condition).subs({variable : ordinate})
            # Indefinite integral of 'function1' wrt 'variable', using
            # the given initial condition (ordinate, abscissa).
            vectdiff0 += (integrate(function1, lims) + abscissa) * dim
        #Return tuple
        return (vectdiff2, vectdiff, vectdiff0)

    ##Function body

    _check_frame(frame)
    #Decide mode of operation based on user's input
    if 'acceleration' in kwargs:
        mode = 2
    elif 'velocity' in kwargs:
        mode = 1
    else:
        mode = 0
    #All the possible parameters in kwargs
    #Not all are required for every case
    #If not specified, set to default values(may or may not be used in
    #calculations)
    conditions = ['acceleration', 'velocity', 'position',
                  'timevalue', 'timevalue1', 'timevalue2']
    for i, x in enumerate(conditions):
        if x not in kwargs:
            if i < 3:
                kwargs[x] = Vector(0)
            else:
                kwargs[x] = S(0)
        elif i < 3:
            _check_vector(kwargs[x])
        else:
            kwargs[x] = sympify(kwargs[x])
    if mode == 2:
        vel = _process_vector_differential(kwargs['acceleration'],
                                           kwargs['velocity'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue2'], frame)[2]
        pos = _process_vector_differential(vel, kwargs['position'],
                                           dynamicsymbols._t,
                                           kwargs['timevalue1'], frame)[2]
        return (kwargs['acceleration'], vel, pos)
    elif mode == 1:
        return _process_vector_differential(kwargs['velocity'],
                                            kwargs['position'],
                                            dynamicsymbols._t,
                                            kwargs['timevalue1'], frame)
    else:
        vel = time_derivative(kwargs['position'], frame)
        acc = time_derivative(vel, frame)
        return (acc, vel, kwargs['position'])
Ejemplo n.º 18
0
    def orient(self, parent, rot_type, amounts, rot_order=''):
        """Sets the orientation of this reference frame relative to another
        (parent) reference frame.

        Parameters
        ==========

        parent : ReferenceFrame
            Reference frame that this reference frame will be rotated relative
            to.
        rot_type : str
            The method used to generate the direction cosine matrix. Supported
            methods are:

            - ``'Axis'``: simple rotations about a single common axis
            - ``'DCM'``: for setting the direction cosine matrix directly
            - ``'Body'``: three successive rotations about new intermediate
              axes, also called "Euler and Tait-Bryan angles"
            - ``'Space'``: three successive rotations about the parent
              frames' unit vectors
            - ``'Quaternion'``: rotations defined by four parameters which
              result in a singularity free direction cosine matrix

        amounts :
            Expressions defining the rotation angles or direction cosine
            matrix. These must match the ``rot_type``. See examples below for
            details. The input types are:

            - ``'Axis'``: 2-tuple (expr/sym/func, Vector)
            - ``'DCM'``: Matrix, shape(3,3)
            - ``'Body'``: 3-tuple of expressions, symbols, or functions
            - ``'Space'``: 3-tuple of expressions, symbols, or functions
            - ``'Quaternion'``: 4-tuple of expressions, symbols, or
              functions

        rot_order : str or int, optional
            If applicable, the order of the successive of rotations. The string
            ``'123'`` and integer ``123`` are equivalent, for example. Required
            for ``'Body'`` and ``'Space'``.

        Examples
        ========

        Setup variables for the examples:

        >>> from sympy import symbols
        >>> from sympy.physics.vector import ReferenceFrame
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = ReferenceFrame('N')
        >>> B = ReferenceFrame('B')
        >>> B1 = ReferenceFrame('B')
        >>> B2 = ReferenceFrame('B2')

        Axis
        ----

        ``rot_type='Axis'`` creates a direction cosine matrix defined by a
        simple rotation about a single axis fixed in both reference frames.
        This is a rotation about an arbitrary, non-time-varying
        axis by some angle. The axis is supplied as a Vector. This is how
        simple rotations are defined.

        >>> B.orient(N, 'Axis', (q1, N.x))

        The ``orient()`` method generates a direction cosine matrix and its
        transpose which defines the orientation of B relative to N and vice
        versa. Once orient is called, ``dcm()`` outputs the appropriate
        direction cosine matrix.

        >>> B.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        The following two lines show how the sense of the rotation can be
        defined. Both lines produce the same result.

        >>> B.orient(N, 'Axis', (q1, -N.x))
        >>> B.orient(N, 'Axis', (-q1, N.x))

        The axis does not have to be defined by a unit vector, it can be any
        vector in the parent frame.

        >>> B.orient(N, 'Axis', (q1, N.x + 2 * N.y))

        DCM
        ---

        The direction cosine matrix can be set directly. The orientation of a
        frame A can be set to be the same as the frame B above like so:

        >>> B.orient(N, 'Axis', (q1, N.x))
        >>> A = ReferenceFrame('A')
        >>> A.orient(N, 'DCM', N.dcm(B))
        >>> A.dcm(N)
        Matrix([
        [1,       0,      0],
        [0,  cos(q1), sin(q1)],
        [0, -sin(q1), cos(q1)]])

        **Note carefully that** ``N.dcm(B)`` **was passed into** ``orient()``
        **for** ``A.dcm(N)`` **to match** ``B.dcm(N)``.

        Body
        ----

        ``rot_type='Body'`` rotates this reference frame relative to the
        provided reference frame by rotating through three successive simple
        rotations.  Each subsequent axis of rotation is about the "body fixed"
        unit vectors of the new intermediate reference frame. This type of
        rotation is also referred to rotating through the `Euler and Tait-Bryan
        Angles <https://en.wikipedia.org/wiki/Euler_angles>`_.

        For example, the classic Euler Angle rotation can be done by:

        >>> B.orient(N, 'Body', (q1, q2, q3), 'XYX')
        >>> B.dcm(N)
        Matrix([
        [        cos(q2),                            sin(q1)*sin(q2),                           -sin(q2)*cos(q1)],
        [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3),  sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
        [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])

        This rotates B relative to N through ``q1`` about ``N.x``, then rotates
        B again through q2 about B.y, and finally through q3 about B.x. It is
        equivalent to:

        >>> B1.orient(N, 'Axis', (q1, N.x))
        >>> B2.orient(B1, 'Axis', (q2, B1.y))
        >>> B.orient(B2, 'Axis', (q3, B2.x))
        >>> B.dcm(N)
        Matrix([
        [        cos(q2),                            sin(q1)*sin(q2),                           -sin(q2)*cos(q1)],
        [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3),  sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
        [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])

        Acceptable rotation orders are of length 3, expressed in as a string
        ``'XYZ'`` or ``'123'`` or integer ``123``. Rotations about an axis
        twice in a row are prohibited.

        >>> B.orient(N, 'Body', (q1, q2, 0), 'ZXZ')
        >>> B.orient(N, 'Body', (q1, q2, 0), '121')
        >>> B.orient(N, 'Body', (q1, q2, q3), 123)

        Space
        -----

        ``rot_type='Space'`` also rotates the reference frame in three
        successive simple rotations but the axes of rotation are the
        "Space-fixed" axes. For example:

        >>> B.orient(N, 'Space', (q1, q2, q3), '312')
        >>> B.dcm(N)
        Matrix([
        [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)],
        [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)],
        [                           sin(q3)*cos(q2),        -sin(q2),                           cos(q2)*cos(q3)]])

        is equivalent to:

        >>> B1.orient(N, 'Axis', (q1, N.z))
        >>> B2.orient(B1, 'Axis', (q2, N.x))
        >>> B.orient(B2, 'Axis', (q3, N.y))
        >>> B.dcm(N).simplify()  # doctest: +SKIP
        Matrix([
        [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)],
        [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)],
        [                           sin(q3)*cos(q2),        -sin(q2),                           cos(q2)*cos(q3)]])

        It is worth noting that space-fixed and body-fixed rotations are
        related by the order of the rotations, i.e. the reverse order of body
        fixed will give space fixed and vice versa.

        >>> B.orient(N, 'Space', (q1, q2, q3), '231')
        >>> B.dcm(N)
        Matrix([
        [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
        [       -sin(q2),                           cos(q2)*cos(q3),                            sin(q3)*cos(q2)],
        [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1),  sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])

        >>> B.orient(N, 'Body', (q3, q2, q1), '132')
        >>> B.dcm(N)
        Matrix([
        [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
        [       -sin(q2),                           cos(q2)*cos(q3),                            sin(q3)*cos(q2)],
        [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1),  sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])

        Quaternion
        ----------

        ``rot_type='Quaternion'`` orients the reference frame using
        quaternions. Quaternion rotation is defined as a finite rotation about
        lambda, a unit vector, by an amount theta. This orientation is
        described by four parameters:

        - ``q0 = cos(theta/2)``
        - ``q1 = lambda_x sin(theta/2)``
        - ``q2 = lambda_y sin(theta/2)``
        - ``q3 = lambda_z sin(theta/2)``

        This type does not need a ``rot_order``.

        >>> B.orient(N, 'Quaternion', (q0, q1, q2, q3))
        >>> B.dcm(N)
        Matrix([
        [q0**2 + q1**2 - q2**2 - q3**2,             2*q0*q3 + 2*q1*q2,            -2*q0*q2 + 2*q1*q3],
        [           -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2,             2*q0*q1 + 2*q2*q3],
        [            2*q0*q2 + 2*q1*q3,            -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]])

        """

        from sympy.physics.vector.functions import dynamicsymbols
        _check_frame(parent)

        # Allow passing a rotation matrix manually.
        if rot_type == 'DCM':
            # When rot_type == 'DCM', then amounts must be a Matrix type object
            # (e.g. sympy.matrices.dense.MutableDenseMatrix).
            if not isinstance(amounts, MatrixBase):
                raise TypeError("Amounts must be a sympy Matrix type object.")
        else:
            amounts = list(amounts)
            for i, v in enumerate(amounts):
                if not isinstance(v, Vector):
                    amounts[i] = sympify(v)

        def _rot(axis, angle):
            """DCM for simple axis 1,2,or 3 rotations. """
            if axis == 1:
                return Matrix([[1, 0, 0], [0, cos(angle), -sin(angle)],
                               [0, sin(angle), cos(angle)]])
            elif axis == 2:
                return Matrix([[cos(angle), 0, sin(angle)], [0, 1, 0],
                               [-sin(angle), 0, cos(angle)]])
            elif axis == 3:
                return Matrix([[cos(angle), -sin(angle), 0],
                               [sin(angle), cos(angle), 0], [0, 0, 1]])

        approved_orders = ('123', '231', '312', '132', '213', '321', '121',
                           '131', '212', '232', '313', '323', '')
        # make sure XYZ => 123 and rot_type is in upper case
        rot_order = translate(str(rot_order), 'XYZxyz', '123123')
        rot_type = rot_type.upper()
        if rot_order not in approved_orders:
            raise TypeError('The supplied order is not an approved type')
        parent_orient = []
        if rot_type == 'AXIS':
            if not rot_order == '':
                raise TypeError('Axis orientation takes no rotation order')
            if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 2)):
                raise TypeError('Amounts are a list or tuple of length 2')
            theta = amounts[0]
            axis = amounts[1]
            axis = _check_vector(axis)
            if not axis.dt(parent) == 0:
                raise ValueError('Axis cannot be time-varying')
            axis = axis.express(parent).normalize()
            axis = axis.args[0][0]
            parent_orient = (
                (eye(3) - axis * axis.T) * cos(theta) +
                Matrix([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]],
                        [-axis[1], axis[0], 0]]) * sin(theta) + axis * axis.T)
        elif rot_type == 'QUATERNION':
            if not rot_order == '':
                raise TypeError(
                    'Quaternion orientation takes no rotation order')
            if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 4)):
                raise TypeError('Amounts are a list or tuple of length 4')
            q0, q1, q2, q3 = amounts
            parent_orient = (Matrix([[
                q0**2 + q1**2 - q2**2 - q3**2, 2 * (q1 * q2 - q0 * q3),
                2 * (q0 * q2 + q1 * q3)
            ],
                                     [
                                         2 * (q1 * q2 + q0 * q3),
                                         q0**2 - q1**2 + q2**2 - q3**2,
                                         2 * (q2 * q3 - q0 * q1)
                                     ],
                                     [
                                         2 * (q1 * q3 - q0 * q2),
                                         2 * (q0 * q1 + q2 * q3),
                                         q0**2 - q1**2 - q2**2 + q3**2
                                     ]]))
        elif rot_type == 'BODY':
            if not (len(amounts) == 3 & len(rot_order) == 3):
                raise TypeError('Body orientation takes 3 values & 3 orders')
            a1 = int(rot_order[0])
            a2 = int(rot_order[1])
            a3 = int(rot_order[2])
            parent_orient = (_rot(a1, amounts[0]) * _rot(a2, amounts[1]) *
                             _rot(a3, amounts[2]))
        elif rot_type == 'SPACE':
            if not (len(amounts) == 3 & len(rot_order) == 3):
                raise TypeError('Space orientation takes 3 values & 3 orders')
            a1 = int(rot_order[0])
            a2 = int(rot_order[1])
            a3 = int(rot_order[2])
            parent_orient = (_rot(a3, amounts[2]) * _rot(a2, amounts[1]) *
                             _rot(a1, amounts[0]))
        elif rot_type == 'DCM':
            parent_orient = amounts
        else:
            raise NotImplementedError('That is not an implemented rotation')
        # Reset the _dcm_cache of this frame, and remove it from the
        # _dcm_caches of the frames it is linked to. Also remove it from the
        # _dcm_dict of its parent
        frames = self._dcm_cache.keys()
        dcm_dict_del = []
        dcm_cache_del = []
        for frame in frames:
            if frame in self._dcm_dict:
                dcm_dict_del += [frame]
            dcm_cache_del += [frame]
        for frame in dcm_dict_del:
            del frame._dcm_dict[self]
        for frame in dcm_cache_del:
            del frame._dcm_cache[self]
        # Add the dcm relationship to _dcm_dict
        self._dcm_dict = self._dlist[0] = {}
        self._dcm_dict.update({parent: parent_orient.T})
        parent._dcm_dict.update({self: parent_orient})
        # Also update the dcm cache after resetting it
        self._dcm_cache = {}
        self._dcm_cache.update({parent: parent_orient.T})
        parent._dcm_cache.update({self: parent_orient})
        if rot_type == 'QUATERNION':
            t = dynamicsymbols._t
            q0, q1, q2, q3 = amounts
            q0d = diff(q0, t)
            q1d = diff(q1, t)
            q2d = diff(q2, t)
            q3d = diff(q3, t)
            w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1)
            w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2)
            w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3)
            wvec = Vector([(Matrix([w1, w2, w3]), self)])
        elif rot_type == 'AXIS':
            thetad = (amounts[0]).diff(dynamicsymbols._t)
            wvec = thetad * amounts[1].express(parent).normalize()
        elif rot_type == 'DCM':
            wvec = self._w_diff_dcm(parent)
        else:
            try:
                from sympy.polys.polyerrors import CoercionFailed
                from sympy.physics.vector.functions import kinematic_equations
                q1, q2, q3 = amounts
                u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy)
                templist = kinematic_equations([u1, u2, u3], [q1, q2, q3],
                                               rot_type, rot_order)
                templist = [expand(i) for i in templist]
                td = solve(templist, [u1, u2, u3])
                u1 = expand(td[u1])
                u2 = expand(td[u2])
                u3 = expand(td[u3])
                wvec = u1 * self.x + u2 * self.y + u3 * self.z
            except (CoercionFailed, AssertionError):
                wvec = self._w_diff_dcm(parent)
        self._ang_vel_dict.update({parent: wvec})
        parent._ang_vel_dict.update({self: -wvec})
        self._var_dict = {}