Ejemplo n.º 1
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Ejemplo n.º 2
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densetools import dup_revert

    >>> f = [-QQ(1,720), QQ(0), QQ(1,24), QQ(0), -QQ(1,2), QQ(0), QQ(1)]

    >>> dup_revert(f, 8, QQ)
    [61/720, 0/1, 5/24, 0/1, 1/2, 0/1, 1/1]

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in xrange(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Ejemplo n.º 3
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1

    >>> R.dup_revert(f, 8)
    61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in range(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Ejemplo n.º 4
0
def dup_revert(f, n, K):
    """
    Compute ``f**(-1)`` mod ``x**n`` using Newton iteration.

    This function computes first ``2**n`` terms of a polynomial that
    is a result of inversion of a polynomial modulo ``x**n``. This is
    useful to efficiently compute series expansion of ``1/f``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.densetools import dup_revert

    >>> f = [-QQ(1,720), QQ(0), QQ(1,24), QQ(0), -QQ(1,2), QQ(0), QQ(1)]

    >>> dup_revert(f, 8, QQ)
    [61/720, 0/1, 5/24, 0/1, 1/2, 0/1, 1/1]

    """
    g = [K.revert(dup_TC(f, K))]
    h = [K.one, K.zero, K.zero]

    N = int(_ceil(_log(n, 2)))

    for i in xrange(1, N + 1):
        a = dup_mul_ground(g, K(2), K)
        b = dup_mul(f, dup_sqr(g, K), K)
        g = dup_rem(dup_sub(a, b, K), h, K)
        h = dup_lshift(h, dup_degree(h), K)

    return g
Ejemplo n.º 5
0
def test_dmp_sqr():
    assert dmp_sqr([ZZ(1), ZZ(2)], 0, ZZ) == dup_sqr([ZZ(1), ZZ(2)], ZZ)

    assert dmp_sqr([[[]]], 2, ZZ) == [[[]]]
    assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]]

    assert dmp_sqr([[[]]], 2, QQ) == [[[]]]
    assert dmp_sqr([[[QQ(2, 3)]]], 2, QQ) == [[[QQ(4, 9)]]]
Ejemplo n.º 6
0
def test_dmp_sqr():
    assert dmp_sqr([ZZ(1),ZZ(2)], 0, ZZ) == \
           dup_sqr([ZZ(1),ZZ(2)], ZZ)

    assert dmp_sqr([[[]]], 2, ZZ) == [[[]]]
    assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]]

    assert dmp_sqr([[[]]], 2, QQ) == [[[]]]
    assert dmp_sqr([[[QQ(2,3)]]], 2, QQ) == [[[QQ(4,9)]]]
Ejemplo n.º 7
0
def test_dmp_sqr():
    assert dmp_sqr([ZZ(1),ZZ(2)], 0, ZZ) == \
           dup_sqr([ZZ(1),ZZ(2)], ZZ)

    assert dmp_sqr([[[]]], 2, ZZ) == [[[]]]
    assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]]

    assert dmp_sqr([[[]]], 2, QQ) == [[[]]]
    assert dmp_sqr([[[QQ(2,3)]]], 2, QQ) == [[[QQ(4,9)]]]

    K = FF(9)

    assert dmp_sqr([[K(3)],[K(4)]], 1, K) == [[K(6)],[K(7)]]
Ejemplo n.º 8
0
def test_dup_sqr():
    assert dup_sqr([], ZZ) == []
    assert dup_sqr([ZZ(2)], ZZ) == [ZZ(4)]
    assert dup_sqr([ZZ(1),ZZ(2)], ZZ) == [ZZ(1),ZZ(4),ZZ(4)]

    assert dup_sqr([], QQ) == []
    assert dup_sqr([QQ(2,3)], QQ) == [QQ(4,9)]
    assert dup_sqr([QQ(1,3),QQ(2,3)], QQ) == [QQ(1,9),QQ(4,9),QQ(4,9)]

    f = dup_normal([2,0,0,1,7], ZZ)

    assert dup_sqr(f, ZZ) == dup_normal([4,0,0,4,28,0,1,14,49], ZZ)
Ejemplo n.º 9
0
def test_dup_sqr():
    assert dup_sqr([], ZZ) == []
    assert dup_sqr([ZZ(2)], ZZ) == [ZZ(4)]
    assert dup_sqr([ZZ(1),ZZ(2)], ZZ) == [ZZ(1),ZZ(4),ZZ(4)]

    assert dup_sqr([], QQ) == []
    assert dup_sqr([QQ(2,3)], QQ) == [QQ(4,9)]
    assert dup_sqr([QQ(1,3),QQ(2,3)], QQ) == [QQ(1,9),QQ(4,9),QQ(4,9)]

    f = dup_normal([2,0,0,1,7], ZZ)

    assert dup_sqr(f, ZZ) == dup_normal([4,0,0,4,28,0,1,14,49], ZZ)
Ejemplo n.º 10
0
def dup_cyclotomic_p(f, K, irreducible=False):
    """
    Efficiently test if ``f`` is a cyclotomic polnomial.

    Examples
    ========

    >>> from sympy.polys.factortools import dup_cyclotomic_p
    >>> from sympy.polys.domains import ZZ

    >>> f = [1, 0, 1, 0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_cyclotomic_p(f, ZZ)
    False

    >>> g = [1, 0, 1, 0, 0, 0,-1, 0,-1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_cyclotomic_p(g, ZZ)
    True

    """
    if K.is_QQ:
        try:
            K0, K = K, K.get_ring()
            f = dup_convert(f, K0, K)
        except CoercionFailed:
            return False
    elif not K.is_ZZ:
        return False

    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    if lc != 1 or (tc != -1 and tc != 1):
        return False

    if not irreducible:
        coeff, factors = dup_factor_list(f, K)

        if coeff != K.one or factors != [(f, 1)]:
            return False

    n = dup_degree(f)
    g, h = [], []

    for i in xrange(n, -1, -2):
        g.insert(0, f[i])

    for i in xrange(n - 1, -1, -2):
        h.insert(0, f[i])

    g = dup_sqr(dup_strip(g), K)
    h = dup_sqr(dup_strip(h), K)

    F = dup_sub(g, dup_lshift(h, 1, K), K)

    if K.is_negative(dup_LC(F, K)):
        F = dup_neg(F, K)

    if F == f:
        return True

    g = dup_mirror(f, K)

    if K.is_negative(dup_LC(g, K)):
        g = dup_neg(g, K)

    if F == g and dup_cyclotomic_p(g, K):
        return True

    G = dup_sqf_part(F, K)

    if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K):
        return True

    return False
Ejemplo n.º 11
0
def dup_zz_cyclotomic_p(f, K, irreducible=False):
    """
    Efficiently test if ``f`` is a cyclotomic polnomial.

    **Examples**

    >>> from sympy.polys.factortools import dup_zz_cyclotomic_p
    >>> from sympy.polys.domains import ZZ

    >>> f = [1, 0, 1, 0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_zz_cyclotomic_p(f, ZZ)
    False

    >>> g = [1, 0, 1, 0, 0, 0,-1, 0,-1, 0,-1, 0, 0, 0, 1, 0, 1]
    >>> dup_zz_cyclotomic_p(g, ZZ)
    True

    """
    if K.is_QQ:
        try:
            K0, K = K, K.get_ring()
            f = dup_convert(f, K0, K)
        except CoercionFailed:
            return False
    elif not K.is_ZZ:
        return False

    lc = dup_LC(f, K)
    tc = dup_TC(f, K)

    if lc != 1 or (tc != -1 and tc != 1):
        return False

    if not irreducible:
        coeff, factors = dup_factor_list(f, K)

        if coeff != K.one or factors != [(f, 1)]:
            return False

    n = dup_degree(f)
    g, h = [], []

    for i in xrange(n, -1, -2):
        g.insert(0, f[i])

    for i in xrange(n-1, -1, -2):
        h.insert(0, f[i])

    g = dup_sqr(dup_strip(g), K)
    h = dup_sqr(dup_strip(h), K)

    F = dup_sub(g, dup_lshift(h, 1, K), K)

    if K.is_negative(dup_LC(F, K)):
        F = dup_neg(F, K)

    if F == f:
        return True

    g = dup_mirror(f, K)

    if K.is_negative(dup_LC(g, K)):
        g = dup_neg(g, K)

    if F == g and dup_zz_cyclotomic_p(g, K):
        return True

    G = dup_sqf_part(F, K)

    if dup_sqr(G, K) == F and dup_zz_cyclotomic_p(G, K):
        return True

    return False