Ejemplo n.º 1
0
    def get_matrix(self):
        """
        Returns
        =======

        macaulay_matrix: Matrix
            The Macaulay numerator matrix
        """
        rows = []
        row_coefficients = self.get_row_coefficients()
        for i in range(self.n):
            for multiplier in row_coefficients[i]:
                coefficients = []
                poly = Poly(self.polynomials[i] * multiplier, *self.variables)

                for mono in self.monomial_set:
                    coefficients.append(poly.coeff_monomial(mono))
                rows.append(coefficients)

        macaulay_matrix = Matrix(rows)
        return macaulay_matrix
Ejemplo n.º 2
0
def bivariate_type(f, x, y, **kwargs):
    """Given an expression, f, 3 tests will be done to see what type
    of composite bivariate it might be, options for u(x, y) are::

        x*y
        x+y
        x*y+x
        x*y+y

    If it matches one of these types, ``u(x, y)``, ``P(u)`` and dummy
    variable ``u`` will be returned. Solving ``P(u)`` for ``u`` and
    equating the solutions to ``u(x, y)`` and then solving for ``x`` or
    ``y`` is equivalent to solving the original expression for ``x`` or
    ``y``. If ``x`` and ``y`` represent two functions in the same
    variable, e.g. ``x = g(t)`` and ``y = h(t)``, then if ``u(x, y) - p``
    can be solved for ``t`` then these represent the solutions to
    ``P(u) = 0`` when ``p`` are the solutions of ``P(u) = 0``.

    Only positive values of ``u`` are considered.

    Examples
    ========

    >>> from sympy.solvers.solvers import solve
    >>> from sympy.solvers.bivariate import bivariate_type
    >>> from sympy.abc import x, y
    >>> eq = (x**2 - 3).subs(x, x + y)
    >>> bivariate_type(eq, x, y)
    (x + y, _u**2 - 3, _u)
    >>> uxy, pu, u = _
    >>> usol = solve(pu, u); usol
    [sqrt(3)]
    >>> [solve(uxy - s) for s in solve(pu, u)]
    [[{x: -y + sqrt(3)}]]
    >>> all(eq.subs(s).equals(0) for sol in _ for s in sol)
    True

    """

    u = Dummy('u', positive=True)

    if kwargs.pop('first', True):
        p = Poly(f, x, y)
        f = p.as_expr()
        _x = Dummy()
        _y = Dummy()
        rv = bivariate_type(Poly(f.subs({x: _x, y: _y}), _x, _y), _x, _y, first=False)
        if rv:
            reps = {_x: x, _y: y}
            return rv[0].xreplace(reps), rv[1].xreplace(reps), rv[2]
        return

    p = f
    f = p.as_expr()

    # f(x*y)
    args = Add.make_args(p.as_expr())
    new = []
    for a in args:
        a = _mexpand(a.subs(x, u/y))
        free = a.free_symbols
        if x in free or y in free:
            break
        new.append(a)
    else:
        return x*y, Add(*new), u

    def ok(f, v, c):
        new = _mexpand(f.subs(v, c))
        free = new.free_symbols
        return None if (x in free or y in free) else new

    # f(a*x + b*y)
    new = []
    d = p.degree(x)
    if p.degree(y) == d:
        a = root(p.coeff_monomial(x**d), d)
        b = root(p.coeff_monomial(y**d), d)
        new = ok(f, x, (u - b*y)/a)
        if new is not None:
            return a*x + b*y, new, u

    # f(a*x*y + b*y)
    new = []
    d = p.degree(x)
    if p.degree(y) == d:
        for itry in range(2):
            a = root(p.coeff_monomial(x**d*y**d), d)
            b = root(p.coeff_monomial(y**d), d)
            new = ok(f, x, (u - b*y)/a/y)
            if new is not None:
                return a*x*y + b*y, new, u
            x, y = y, x