Ejemplo n.º 1
0
def _sqrtdenest_rec(expr):
    """Helper that denests the square root of three or more surds.

    It returns the denested expression; if it cannot be denested it
    throws SqrtdenestStopIteration

    Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
    split expr.base = a + b*sqrt(r_k), where `a` and `b` are on
    Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
    on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
    See [1], section 6.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
    >>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
    -sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
    >>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
    >>> _sqrtdenest_rec(sqrt(w))
    -sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
    """
    from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds

    if not expr.is_Pow:
        return sqrtdenest(expr)
    if expr.base < 0:
        return sqrt(-1) * _sqrtdenest_rec(sqrt(-expr.base))
    g, a, b = split_surds(expr.base)
    a = a * sqrt(g)
    if a < b:
        a, b = b, a
    c2 = _mexpand(a ** 2 - b ** 2)
    if len(c2.args) > 2:
        g, a1, b1 = split_surds(c2)
        a1 = a1 * sqrt(g)
        if a1 < b1:
            a1, b1 = b1, a1
        c2_1 = _mexpand(a1 ** 2 - b1 ** 2)
        c_1 = _sqrtdenest_rec(sqrt(c2_1))
        d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
        num, den = rad_rationalize(b1, d_1)
        c = _mexpand(d_1 / sqrt(2) + num / (den * sqrt(2)))
    else:
        c = _sqrtdenest1(sqrt(c2))

    if sqrt_depth(c) > 1:
        raise SqrtdenestStopIteration
    ac = a + c
    if len(ac.args) >= len(expr.args):
        if count_ops(ac) >= count_ops(expr.base):
            raise SqrtdenestStopIteration
    d = sqrtdenest(sqrt(ac))
    if sqrt_depth(d) > 1:
        raise SqrtdenestStopIteration
    num, den = rad_rationalize(b, d)
    r = d / sqrt(2) + num / (den * sqrt(2))
    r = radsimp(r)
    return _mexpand(r)
Ejemplo n.º 2
0
def _sqrtdenest_rec(expr):
    """Helper that denests the square root of three or more surds.

    It returns the denested expression; if it cannot be denested it
    throws SqrtdenestStopIteration

    Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
    split expr.base = a + b*sqrt(r_k), where `a` and `b` are on
    Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
    on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
    See [1], section 6.

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
    >>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
    -sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
    >>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
    >>> _sqrtdenest_rec(sqrt(w))
    -sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
    """
    from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds
    if not expr.is_Pow:
        return sqrtdenest(expr)
    if expr.base < 0:
        return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base))
    g, a, b = split_surds(expr.base)
    a = a*sqrt(g)
    if a < b:
        a, b = b, a
    c2 = _mexpand(a**2 - b**2)
    if len(c2.args) > 2:
        g, a1, b1 = split_surds(c2)
        a1 = a1*sqrt(g)
        if a1 < b1:
            a1, b1 = b1, a1
        c2_1 = _mexpand(a1**2 - b1**2)
        c_1 = _sqrtdenest_rec(sqrt(c2_1))
        d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
        num, den = rad_rationalize(b1, d_1)
        c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2)))
    else:
        c = _sqrtdenest1(sqrt(c2))

    if sqrt_depth(c) > 1:
        raise SqrtdenestStopIteration
    ac = a + c
    if len(ac.args) >= len(expr.args):
        if count_ops(ac) >= count_ops(expr.base):
            raise SqrtdenestStopIteration
    d = sqrtdenest(sqrt(ac))
    if sqrt_depth(d) > 1:
        raise SqrtdenestStopIteration
    num, den = rad_rationalize(b, d)
    r = d/sqrt(2) + num/(den*sqrt(2))
    r = radsimp(r)
    return _mexpand(r)
Ejemplo n.º 3
0
def _sqrtdenest1(expr, denester=True):
    """Return denested expr after denesting with simpler methods or, that
    failing, using the denester."""

    from sympy.simplify.simplify import radsimp

    if not is_sqrt(expr):
        return expr

    a = expr.base
    if a.is_Atom:
        return expr
    val = _sqrt_match(a)
    if not val:
        return expr

    a, b, r = val
    # try a quick numeric denesting
    d2 = _mexpand(a**2 - b**2 * r)
    if d2.is_Rational:
        if d2.is_positive:
            z = _sqrt_numeric_denest(a, b, r, d2)
            if z is not None:
                return z
        else:
            # fourth root case
            # sqrtdenest(sqrt(3 + 2*sqrt(3))) =
            # sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
            dr2 = _mexpand(-d2 * r)
            dr = sqrt(dr2)
            if dr.is_Rational:
                z = _sqrt_numeric_denest(_mexpand(b * r), a, r, dr2)
                if z is not None:
                    return z / root(r, 4)

    else:
        z = _sqrt_symbolic_denest(a, b, r)
        if z is not None:
            return z

    if not denester or not is_algebraic(expr):
        return expr

    res = sqrt_biquadratic_denest(expr, a, b, r, d2)
    if res:
        return res

    # now call to the denester
    av0 = [a, b, r, d2]
    z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
    if av0[1] is None:
        return expr
    if z is not None:
        if sqrt_depth(z) == sqrt_depth(
                expr) and count_ops(z) > count_ops(expr):
            return expr
        return z
    return expr
Ejemplo n.º 4
0
def _sqrtdenest1(expr, denester=True):
    """Return denested expr after denesting with simpler methods or, that
    failing, using the denester."""

    from sympy.simplify.simplify import radsimp

    if not is_sqrt(expr):
        return expr

    a = expr.base
    if a.is_Atom:
        return expr
    val = _sqrt_match(a)
    if not val:
        return expr

    a, b, r = val
    # try a quick numeric denesting
    d2 = _mexpand(a**2 - b**2*r)
    if d2.is_Rational:
        if d2.is_positive:
            z = _sqrt_numeric_denest(a, b, r, d2)
            if z is not None:
                return z
        else:
            # fourth root case
            # sqrtdenest(sqrt(3 + 2*sqrt(3))) =
            # sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
            dr2 = _mexpand(-d2*r)
            dr = sqrt(dr2)
            if dr.is_Rational:
                z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2)
                if z is not None:
                    return z/root(r, 4)

    else:
        z = _sqrt_symbolic_denest(a, b, r)
        if z is not None:
            return z

    if not denester or not is_algebraic(expr):
        return expr

    res = sqrt_biquadratic_denest(expr, a, b, r, d2)
    if res:
        return res

    # now call to the denester
    av0 = [a, b, r, d2]
    z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
    if av0[1] is None:
        return expr
    if z is not None:
        if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr):
            return expr
        return z
    return expr
Ejemplo n.º 5
0
def _sqrt_numeric_denest(a, b, r, d2):
    """Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0
    or returns None if not denested.
    """
    from sympy.simplify.simplify import radsimp
    depthr = sqrt_depth(r)
    d = sqrt(d2)
    vad = a + d
    # sqrt_depth(res) <= sqrt_depth(vad) + 1
    # sqrt_depth(expr) = depthr + 2
    # there is denesting if sqrt_depth(vad)+1 < depthr + 2
    # if vad**2 is Number there is a fourth root
    if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational:
        vad1 = radsimp(1/vad)
        return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand()
Ejemplo n.º 6
0
def _sqrt_numeric_denest(a, b, r, d2):
    """Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0
    or returns None if not denested.
    """
    from sympy.simplify.simplify import radsimp
    depthr = sqrt_depth(r)
    d = sqrt(d2)
    vad = a + d
    # sqrt_depth(res) <= sqrt_depth(vad) + 1
    # sqrt_depth(expr) = depthr + 2
    # there is denesting if sqrt_depth(vad)+1 < depthr + 2
    # if vad**2 is Number there is a fourth root
    if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational:
        vad1 = radsimp(1/vad)
        return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand()
Ejemplo n.º 7
0
def _sqrt_ratcomb(cs, args):
    """Denest rational combinations of radicals.

    Based on section 5 of [1].

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.simplify.sqrtdenest import sqrtdenest
    >>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
    >>> sqrtdenest(z)
    0
    """
    from sympy.simplify.radsimp import radsimp

    # check if there exists a pair of sqrt that can be denested
    def find(a):
        n = len(a)
        for i in range(n - 1):
            for j in range(i + 1, n):
                s1 = a[i].base
                s2 = a[j].base
                p = _mexpand(s1 * s2)
                s = sqrtdenest(sqrt(p))
                if s != sqrt(p):
                    return s, i, j

    indices = find(args)
    if indices is None:
        return Add(*[c * arg for c, arg in zip(cs, args)])

    s, i1, i2 = indices

    c2 = cs.pop(i2)
    args.pop(i2)
    a1 = args[i1]

    # replace a2 by s/a1
    cs[i1] += radsimp(c2 * s / a1.base)

    return _sqrt_ratcomb(cs, args)
Ejemplo n.º 8
0
def _sqrt_ratcomb(cs, args):
    """Denest rational combinations of radicals.

    Based on section 5 of [1].

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.simplify.sqrtdenest import sqrtdenest
    >>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
    >>> sqrtdenest(z)
    0
    """
    from sympy.simplify.radsimp import radsimp

    # check if there exists a pair of sqrt that can be denested
    def find(a):
        n = len(a)
        for i in range(n - 1):
            for j in range(i + 1, n):
                s1 = a[i].base
                s2 = a[j].base
                p = _mexpand(s1 * s2)
                s = sqrtdenest(sqrt(p))
                if s != sqrt(p):
                    return s, i, j

    indices = find(args)
    if indices is None:
        return Add(*[c * arg for c, arg in zip(cs, args)])

    s, i1, i2 = indices

    c2 = cs.pop(i2)
    args.pop(i2)
    a1 = args[i1]

    # replace a2 by s/a1
    cs[i1] += radsimp(c2 * s / a1.base)

    return _sqrt_ratcomb(cs, args)
Ejemplo n.º 9
0
def test_issue_5933():
    from sympy.geometry.polygon import (Polygon, RegularPolygon)
    from sympy.simplify.radsimp import denom
    x = Polygon(*RegularPolygon((0, 0), 1, 5).vertices).centroid.x
    assert abs(denom(x).n()) > 1e-12
    assert abs(denom(radsimp(x))) > 1e-12  # in case simplify didn't handle it
Ejemplo n.º 10
0
def test_radsimp():
    r2 = sqrt(2)
    r3 = sqrt(3)
    r5 = sqrt(5)
    r7 = sqrt(7)
    assert fraction(radsimp(1 / r2)) == (sqrt(2), 2)
    assert radsimp(1/(1 + r2)) == \
        -1 + sqrt(2)
    assert radsimp(1/(r2 + r3)) == \
        -sqrt(2) + sqrt(3)
    assert fraction(radsimp(1/(1 + r2 + r3))) == \
        (-sqrt(6) + sqrt(2) + 2, 4)
    assert fraction(radsimp(1/(r2 + r3 + r5))) == \
        (-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
    assert fraction(radsimp(
        1 /
        (1 + r2 + r3 + r5))) == ((-34 * sqrt(10) - 26 * sqrt(15) -
                                  55 * sqrt(3) - 61 * sqrt(2) + 14 * sqrt(30) +
                                  93 + 46 * sqrt(6) + 53 * sqrt(5), 71))
    assert fraction(radsimp(
        1 / (r2 + r3 + r5 + r7))) == ((-50 * sqrt(42) - 133 * sqrt(5) -
                                       34 * sqrt(70) - 145 * sqrt(3) +
                                       22 * sqrt(105) + 185 * sqrt(2) +
                                       62 * sqrt(30) + 135 * sqrt(7), 215))
    z = radsimp(1 / (1 + r2 / 3 + r3 / 5 + r5 + r7))
    assert len((3616791619821680643598 * z).args) == 16
    assert radsimp(1 / z) == 1 / z
    assert radsimp(1 / z,
                   max_terms=20).expand() == 1 + r2 / 3 + r3 / 5 + r5 + r7
    assert radsimp(1/(r2*3)) == \
        sqrt(2)/6
    assert radsimp(1 / (r2 * a + r3 + r5 + r7)) == (
        (8 * sqrt(2) * a**7 - 8 * sqrt(7) * a**6 - 8 * sqrt(5) * a**6 -
         8 * sqrt(3) * a**6 - 180 * sqrt(2) * a**5 + 8 * sqrt(30) * a**5 +
         8 * sqrt(42) * a**5 + 8 * sqrt(70) * a**5 - 24 * sqrt(105) * a**4 +
         84 * sqrt(3) * a**4 + 100 * sqrt(5) * a**4 + 116 * sqrt(7) * a**4 -
         72 * sqrt(70) * a**3 - 40 * sqrt(42) * a**3 - 8 * sqrt(30) * a**3 +
         782 * sqrt(2) * a**3 - 462 * sqrt(3) * a**2 - 302 * sqrt(7) * a**2 -
         254 * sqrt(5) * a**2 + 120 * sqrt(105) * a**2 - 795 * sqrt(2) * a -
         62 * sqrt(30) * a + 82 * sqrt(42) * a + 98 * sqrt(70) * a -
         118 * sqrt(105) + 59 * sqrt(7) + 295 * sqrt(5) + 531 * sqrt(3)) /
        (16 * a**8 - 480 * a**6 + 3128 * a**4 - 6360 * a**2 + 3481))
    assert radsimp(1 / (r2 * a + r2 * b + r3 + r7)) == (
        (sqrt(2) * a *
         (a + b)**2 - 5 * sqrt(2) * a + sqrt(42) * a + sqrt(2) * b *
         (a + b)**2 - 5 * sqrt(2) * b + sqrt(42) * b - sqrt(7) *
         (a + b)**2 - sqrt(3) * (a + b)**2 - 2 * sqrt(3) + 2 * sqrt(7)) /
        (2 * a**4 + 8 * a**3 * b + 12 * a**2 * b**2 - 20 * a**2 +
         8 * a * b**3 - 40 * a * b + 2 * b**4 - 20 * b**2 + 8))
    assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
        sqrt(2)/(2*a + 2*b + 2*c + 2*d)
    assert radsimp(1 / (1 + r2 * a + r2 * b + r2 * c + r2 * d)) == (
        (sqrt(2) * a + sqrt(2) * b + sqrt(2) * c + sqrt(2) * d - 1) /
        (2 * a**2 + 4 * a * b + 4 * a * c + 4 * a * d + 2 * b**2 + 4 * b * c +
         4 * b * d + 2 * c**2 + 4 * c * d + 2 * d**2 - 1))
    assert radsimp((y**2 - x)/(y - sqrt(x))) == \
        sqrt(x) + y
    assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
        -(sqrt(x) + y)
    assert radsimp(1/(1 - I + a*I)) == \
        (-I*a + 1 + I)/(a**2 - 2*a + 2)
    assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \
        (-x - sqrt(y))/((x - y)*(x**2 - y))
    e = (3 + 3 * sqrt(2)) * x * (3 * x - 3 * sqrt(y))
    assert radsimp(e) == x * (3 + 3 * sqrt(2)) * (3 * x - 3 * sqrt(y))
    assert radsimp(1 / e) == (
        (-9 * x + 9 * sqrt(2) * x - 9 * sqrt(y) + 9 * sqrt(2) * sqrt(y)) /
        (9 * x * (9 * x**2 - 9 * y)))
    assert radsimp(1 + 1/(1 + sqrt(3))) == \
        Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1
    A = symbols("A", commutative=False)
    assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \
        x**2 + sqrt(2)*x**2 - sqrt(2)*x*A
    assert radsimp(1 / sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
    assert radsimp(1 / sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3

    # issue 6532
    assert fraction(radsimp(1 / sqrt(x))) == (sqrt(x), x)
    assert fraction(radsimp(1 / sqrt(2 * x + 3))) == (sqrt(2 * x + 3),
                                                      2 * x + 3)
    assert fraction(radsimp(1 / sqrt(2 * (x + 3)))) == (sqrt(2 * x + 6),
                                                        2 * x + 6)

    # issue 5994
    e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/'
          '(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))')
    assert radsimp(e).expand(
    ) == -2 * 2**Rational(3, 4) - 2 * 2**Rational(1, 4) + 2 + 2 * sqrt(2)

    # issue 5986 (modifications to radimp didn't initially recognize this so
    # the test is included here)
    assert radsimp(1 / (-sqrt(5) / 2 - S.Half +
                        (-sqrt(5) / 2 - S.Half)**2)) == 1

    # from issue 5934
    eq = ((-240 * sqrt(2) * sqrt(sqrt(5) + 5) * sqrt(8 * sqrt(5) + 40) -
           360 * sqrt(2) * sqrt(-8 * sqrt(5) + 40) * sqrt(-sqrt(5) + 5) -
           120 * sqrt(10) * sqrt(-8 * sqrt(5) + 40) * sqrt(-sqrt(5) + 5) +
           120 * sqrt(2) * sqrt(-sqrt(5) + 5) * sqrt(8 * sqrt(5) + 40) +
           120 * sqrt(2) * sqrt(-8 * sqrt(5) + 40) * sqrt(sqrt(5) + 5) +
           120 * sqrt(10) * sqrt(-sqrt(5) + 5) * sqrt(8 * sqrt(5) + 40) +
           120 * sqrt(10) * sqrt(-8 * sqrt(5) + 40) * sqrt(sqrt(5) + 5)) /
          (-36000 - 7200 * sqrt(5) + (12 * sqrt(10) * sqrt(sqrt(5) + 5) +
                                      24 * sqrt(10) * sqrt(-sqrt(5) + 5))**2))
    assert radsimp(eq) is S.NaN  # it's 0/0

    # work with normal form
    e = 1 / sqrt(sqrt(7) / 7 + 2 * sqrt(2) + 3 * sqrt(3) + 5 * sqrt(5)) + 3
    assert radsimp(e) == (
        -sqrt(sqrt(7) + 14 * sqrt(2) + 21 * sqrt(3) + 35 * sqrt(5)) *
        (-11654899 * sqrt(35) - 1577436 * sqrt(210) - 1278438 * sqrt(15) -
         1346996 * sqrt(10) + 1635060 * sqrt(6) + 5709765 +
         7539830 * sqrt(14) + 8291415 * sqrt(21)) / 1300423175 + 3)

    # obey power rules
    base = sqrt(3) - sqrt(2)
    assert radsimp(1 / base**3) == (sqrt(3) + sqrt(2))**3
    assert radsimp(1 / (-base)**3) == -(sqrt(2) + sqrt(3))**3
    assert radsimp(1 / (-base)**x) == (-base)**(-x)
    assert radsimp(1 / base**x) == (sqrt(2) + sqrt(3))**x
    assert radsimp(root(1 / (-1 - sqrt(2)),
                        -x)) == (-1)**(-1 / x) * (1 + sqrt(2))**(1 / x)

    # recurse
    e = cos(1 / (1 + sqrt(2)))
    assert radsimp(e) == cos(-sqrt(2) + 1)
    assert radsimp(e / 2) == cos(-sqrt(2) + 1) / 2
    assert radsimp(1 / e) == 1 / cos(-sqrt(2) + 1)
    assert radsimp(2 / e) == 2 / cos(-sqrt(2) + 1)
    assert fraction(radsimp(e / sqrt(x))) == (sqrt(x) * cos(-sqrt(2) + 1), x)

    # test that symbolic denominators are not processed
    r = 1 + sqrt(2)
    assert radsimp(x / r, symbolic=False) == -x * (-sqrt(2) + 1)
    assert radsimp(x / (y + r), symbolic=False) == x / (y + 1 + sqrt(2))
    assert radsimp(x/(y + r)/r, symbolic=False) == \
        -x*(-sqrt(2) + 1)/(y + 1 + sqrt(2))

    # issue 7408
    eq = sqrt(x) / sqrt(y)
    assert radsimp(eq) == umul(sqrt(x), sqrt(y), 1 / y)
    assert radsimp(eq, symbolic=False) == eq

    # issue 7498
    assert radsimp(sqrt(x) / sqrt(y)**3) == umul(sqrt(x), sqrt(y**3), 1 / y**3)

    # for coverage
    eq = sqrt(x) / y**2
    assert radsimp(eq) == eq
Ejemplo n.º 11
0
def test_radsimp_issue_3214():
    c, p = symbols('c p', positive=True)
    s = sqrt(c**2 - p**2)
    b = (c + I * p - s) / (c + I * p + s)
    assert radsimp(b) == -I * (c + I * p - sqrt(c**2 - p**2))**2 / (2 * c * p)
Ejemplo n.º 12
0
def simplify(expr, ratio=1.7, measure=count_ops, rational=False):
    # type: (object, object, object, object) -> object
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.

    If rational=True, Floats will be recast as Rationals before simplification.
    If rational=None, Floats will be recast as Rationals but the result will
    be recast as Floats. If rational=False(default) then nothing will be done
    to the Floats.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, rational=rational)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, rational=rational)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    # rationalize Floats
    floats = False
    if rational is not False and expr.has(Float):
        floats = True
        expr = nsimplify(expr, rational=True)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction, HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        # expression with gamma functions or non-integer arguments is
        # automatically passed to gammasimp
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, cancel(short))
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    # restore floats
    if floats and rational is None:
        expr = nfloat(expr, exponent=False)

    return expr
Ejemplo n.º 13
0
def _denester(nested, av0, h, max_depth_level):
    """Denests a list of expressions that contain nested square roots.

    Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.

    It is assumed that all of the elements of 'nested' share the same
    bottom-level radicand. (This is stated in the paper, on page 177, in
    the paragraph immediately preceding the algorithm.)

    When evaluating all of the arguments in parallel, the bottom-level
    radicand only needs to be denested once. This means that calling
    _denester with x arguments results in a recursive invocation with x+1
    arguments; hence _denester has polynomial complexity.

    However, if the arguments were evaluated separately, each call would
    result in two recursive invocations, and the algorithm would have
    exponential complexity.

    This is discussed in the paper in the middle paragraph of page 179.
    """
    from sympy.simplify.simplify import radsimp
    if h > max_depth_level:
        return None, None
    if av0[1] is None:
        return None, None
    if (av0[0] is None
            and all(n.is_Number for n in nested)):  # no arguments are nested
        for f in _subsets(len(nested)):  # test subset 'f' of nested
            p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
            if f.count(1) > 1 and f[-1]:
                p = -p
            sqp = sqrt(p)
            if sqp.is_Rational:
                return sqp, f  # got a perfect square so return its square root.
        # Otherwise, return the radicand from the previous invocation.
        return sqrt(nested[-1]), [0] * len(nested)
    else:
        R = None
        if av0[0] is not None:
            values = [av0[:2]]
            R = av0[2]
            nested2 = [av0[3], R]
            av0[0] = None
        else:
            values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
            for v in values:
                if v[2]:  # Since if b=0, r is not defined
                    if R is not None:
                        if R != v[2]:
                            av0[1] = None
                            return None, None
                    else:
                        R = v[2]
            if R is None:
                # return the radicand from the previous invocation
                return sqrt(nested[-1]), [0] * len(nested)
            nested2 = [
                _mexpand(v[0]**2) - _mexpand(R * v[1]**2) for v in values
            ] + [R]
        d, f = _denester(nested2, av0, h + 1, max_depth_level)
        if not f:
            return None, None
        if not any(f[i] for i in range(len(nested))):
            v = values[-1]
            return sqrt(v[0] + _mexpand(v[1] * d)), f
        else:
            p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
            v = _sqrt_match(p)
            if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
                v[0] = -v[0]
                v[1] = -v[1]
            if not f[len(nested)]:  # Solution denests with square roots
                vad = _mexpand(v[0] + d)
                if vad <= 0:
                    # return the radicand from the previous invocation.
                    return sqrt(nested[-1]), [0] * len(nested)
                if not (sqrt_depth(vad) <= sqrt_depth(R) + 1 or
                        (vad**2).is_Number):
                    av0[1] = None
                    return None, None

                sqvad = _sqrtdenest1(sqrt(vad), denester=False)
                if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
                    av0[1] = None
                    return None, None
                sqvad1 = radsimp(1 / sqvad)
                res = _mexpand(sqvad / sqrt(2) +
                               (v[1] * sqrt(R) * sqvad1 / sqrt(2)))
                return res, f

                #          sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
            else:  # Solution requires a fourth root
                s2 = _mexpand(v[1] * R) + d
                if s2 <= 0:
                    return sqrt(nested[-1]), [0] * len(nested)
                FR, s = root(_mexpand(R), 4), sqrt(s2)
                return _mexpand(s / (sqrt(2) * FR) + v[0] * FR /
                                (sqrt(2) * s)), f
Ejemplo n.º 14
0
def sqrt_biquadratic_denest(expr, a, b, r, d2):
    """denest expr = sqrt(a + b*sqrt(r))
    where a, b, r are linear combinations of square roots of
    positive rationals on the rationals (SQRR) and r > 0, b != 0,
    d2 = a**2 - b**2*r > 0

    If it cannot denest it returns None.

    ALGORITHM
    Search for a solution A of type SQRR of the biquadratic equation
    4*A**4 - 4*a*A**2 + b**2*r = 0                               (1)
    sqd = sqrt(a**2 - b**2*r)
    Choosing the sqrt to be positive, the possible solutions are
    A = sqrt(a/2 +/- sqd/2)
    Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
    so if sqd can be denested, it is done by
    _sqrtdenest_rec, and the result is a SQRR.
    Similarly for A.
    Examples of solutions (in both cases a and sqd are positive):

      Example of expr with solution sqrt(a/2 + sqd/2) but not
      solution sqrt(a/2 - sqd/2):
      expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
      a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)

      Example of expr with solution sqrt(a/2 - sqd/2) but not
      solution sqrt(a/2 + sqd/2):
      w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
      expr = sqrt((w**2).expand())
      a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
      sqd = 29 + 20*sqrt(3)

    Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
    expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
    >>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
    >>> a, b, r = _sqrt_match(z**2)
    >>> d2 = a**2 - b**2*r
    >>> sqrt_biquadratic_denest(z, a, b, r, d2)
    sqrt(2) + sqrt(sqrt(2) + 2) + 2
    """
    from sympy.simplify.radsimp import radsimp, rad_rationalize
    if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
        return None
    for x in (a, b, r):
        for y in x.args:
            y2 = y**2
            if not y2.is_Integer or not y2.is_positive:
                return None
    sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
    if sqrt_depth(sqd) > 1:
        return None
    x1, x2 = [a / 2 + sqd / 2, a / 2 - sqd / 2]
    # look for a solution A with depth 1
    for x in (x1, x2):
        A = sqrtdenest(sqrt(x))
        if sqrt_depth(A) > 1:
            continue
        Bn, Bd = rad_rationalize(b, _mexpand(2 * A))
        B = Bn / Bd
        z = A + B * sqrt(r)
        if z < 0:
            z = -z
        return _mexpand(z)
    return None
Ejemplo n.º 15
0
def test_issue_21355():
    assert radsimp(1 / (x + sqrt(x**2))) == 1 / (x + sqrt(x**2))
    assert radsimp(1 / (x - sqrt(x**2))) == 1 / (x - sqrt(x**2))
Ejemplo n.º 16
0
def _denester(nested, av0, h, max_depth_level):
    """Denests a list of expressions that contain nested square roots.

    Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.

    It is assumed that all of the elements of 'nested' share the same
    bottom-level radicand. (This is stated in the paper, on page 177, in
    the paragraph immediately preceding the algorithm.)

    When evaluating all of the arguments in parallel, the bottom-level
    radicand only needs to be denested once. This means that calling
    _denester with x arguments results in a recursive invocation with x+1
    arguments; hence _denester has polynomial complexity.

    However, if the arguments were evaluated separately, each call would
    result in two recursive invocations, and the algorithm would have
    exponential complexity.

    This is discussed in the paper in the middle paragraph of page 179.
    """
    from sympy.simplify.simplify import radsimp
    if h > max_depth_level:
        return None, None
    if av0[1] is None:
        return None, None
    if (av0[0] is None and
            all(n.is_Number for n in nested)):  # no arguments are nested
        for f in _subsets(len(nested)):  # test subset 'f' of nested
            p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
            if f.count(1) > 1 and f[-1]:
                p = -p
            sqp = sqrt(p)
            if sqp.is_Rational:
                return sqp, f  # got a perfect square so return its square root.
        # Otherwise, return the radicand from the previous invocation.
        return sqrt(nested[-1]), [0]*len(nested)
    else:
        R = None
        if av0[0] is not None:
            values = [av0[:2]]
            R = av0[2]
            nested2 = [av0[3], R]
            av0[0] = None
        else:
            values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
            for v in values:
                if v[2]:  # Since if b=0, r is not defined
                    if R is not None:
                        if R != v[2]:
                            av0[1] = None
                            return None, None
                    else:
                        R = v[2]
            if R is None:
                # return the radicand from the previous invocation
                return sqrt(nested[-1]), [0]*len(nested)
            nested2 = [_mexpand(v[0]**2) -
                       _mexpand(R*v[1]**2) for v in values] + [R]
        d, f = _denester(nested2, av0, h + 1, max_depth_level)
        if not f:
            return None, None
        if not any(f[i] for i in range(len(nested))):
            v = values[-1]
            return sqrt(v[0] + _mexpand(v[1]*d)), f
        else:
            p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
            v = _sqrt_match(p)
            if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
                v[0] = -v[0]
                v[1] = -v[1]
            if not f[len(nested)]:  # Solution denests with square roots
                vad = _mexpand(v[0] + d)
                if vad <= 0:
                    # return the radicand from the previous invocation.
                    return sqrt(nested[-1]), [0]*len(nested)
                if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or
                       (vad**2).is_Number):
                    av0[1] = None
                    return None, None

                sqvad = _sqrtdenest1(sqrt(vad), denester=False)
                if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
                    av0[1] = None
                    return None, None
                sqvad1 = radsimp(1/sqvad)
                res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2)))
                return res, f

                      #          sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
            else:  # Solution requires a fourth root
                s2 = _mexpand(v[1]*R) + d
                if s2 <= 0:
                    return sqrt(nested[-1]), [0]*len(nested)
                FR, s = root(_mexpand(R), 4), sqrt(s2)
                return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f
Ejemplo n.º 17
0
def sqrt_biquadratic_denest(expr, a, b, r, d2):
    """denest expr = sqrt(a + b*sqrt(r))
    where a, b, r are linear combinations of square roots of
    positive rationals on the rationals (SQRR) and r > 0, b != 0,
    d2 = a**2 - b**2*r > 0

    If it cannot denest it returns None.

    ALGORITHM
    Search for a solution A of type SQRR of the biquadratic equation
    4*A**4 - 4*a*A**2 + b**2*r = 0                               (1)
    sqd = sqrt(a**2 - b**2*r)
    Choosing the sqrt to be positive, the possible solutions are
    A = sqrt(a/2 +/- sqd/2)
    Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
    so if sqd can be denested, it is done by
    _sqrtdenest_rec, and the result is a SQRR.
    Similarly for A.
    Examples of solutions (in both cases a and sqd are positive):

      Example of expr with solution sqrt(a/2 + sqd/2) but not
      solution sqrt(a/2 - sqd/2):
      expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
      a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)

      Example of expr with solution sqrt(a/2 - sqd/2) but not
      solution sqrt(a/2 + sqd/2):
      w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
      expr = sqrt((w**2).expand())
      a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
      sqd = 29 + 20*sqrt(3)

    Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
    expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2

    Examples
    ========

    >>> from sympy import sqrt
    >>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
    >>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
    >>> a, b, r = _sqrt_match(z**2)
    >>> d2 = a**2 - b**2*r
    >>> sqrt_biquadratic_denest(z, a, b, r, d2)
    sqrt(2) + sqrt(sqrt(2) + 2) + 2
    """
    from sympy.simplify.radsimp import radsimp, rad_rationalize
    if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
        return None
    for x in (a, b, r):
        for y in x.args:
            y2 = y**2
            if not y2.is_Integer or not y2.is_positive:
                return None
    sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
    if sqrt_depth(sqd) > 1:
        return None
    x1, x2 = [a/2 + sqd/2, a/2 - sqd/2]
    # look for a solution A with depth 1
    for x in (x1, x2):
        A = sqrtdenest(sqrt(x))
        if sqrt_depth(A) > 1:
            continue
        Bn, Bd = rad_rationalize(b, _mexpand(2*A))
        B = Bn/Bd
        z = A + B*sqrt(r)
        if z < 0:
            z = -z
        return _mexpand(z)
    return None
def simplify(expr, ratio=1.7, measure=count_ops, fu=False):
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, fu=fu)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, fu=fu)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction) and not fu or expr.has(
            HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short, simplify=False)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    return expr
Ejemplo n.º 19
0
def test_radsimp():
    assert radsimp(A*B - B*A) == A*B - B*A