Ejemplo n.º 1
0
    def _build(self) -> None:
        """Build Cayley graph and store it in self.G.
        """
        self._G = nx.MultiDiGraph()

        # Compute solutions to the four squares decomposition problem and
        # retain only the ones eligible for the LPS construction.
        four_squares = set(
            [
                s for x in power_representation(self.p, 2, 4, zeros=True)
                for s in signed_permutations(x) if self.eligible_solution(s)
                ]
            )

        i = self.find_square_root(-1)

        # One extra vertex for the infinity point
        for x in range(self.q+1):
            self._G.add_node(x)

        for x in range(self.q):
            for (a, b, c, d) in four_squares:
                num = ((a + i*b) * x + c + i*d) % self.q
                den = ((i*d - c) * x + a - i*b) % self.q
                if den == 0:
                    self._G.add_edge(x, self.infinity_point)
                else:
                    self._G.add_edge(x, num * self.modular_inv(den))

        # Finally add the links from the infinity point
        for (a, b, c, d) in four_squares:
            num = (a + i*b) % self.q
            den = (i*d - c) % self.q
            if den == 0:
                self._G.add_edge(
                    self.infinity_point, self.infinity_point
                    )
            else:
                self._G.add_edge(
                    self.infinity_point, num * self.modular_inv(den)
                    )

        if self.remove_parallel_edges:
            self._G = nx.Graph(self._G)
            if self.remove_self_edges:
                self._G.remove_edges_from(self._G.selfloop_edges())
        else:
            self._G = nx.MultiDiGraph(self._G)
Ejemplo n.º 2
0
def test_power_representation():
    tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
             (32760, 2, 3)]

    for test in tests:
        n, p, k = test
        f = power_representation(n, p, k)

        while True:
            try:
                l = next(f)
                assert len(l) == k

                chk_sum = 0
                for l_i in l:
                    chk_sum = chk_sum + l_i**p
                assert chk_sum == n

            except StopIteration:
                break
Ejemplo n.º 3
0
def test_power_representation():
    tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2),
             (12352, 2, 4), (32760, 2, 3)]

    for test in tests:
        n, p, k = test
        f = power_representation(n, p, k)

        while True:
            try:
                l = next(f)
                assert len(l) == k

                chk_sum = 0
                for l_i in l:
                    chk_sum = chk_sum + l_i**p
                assert chk_sum == n

            except StopIteration:
                break
Ejemplo n.º 4
0
def test_power_representation():
    tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2),
             (12352, 2, 4), (32760, 2, 3)]

    for test in tests:
        n, p, k = test
        f = power_representation(n, p, k)

        while True:
            try:
                l = next(f)
                assert len(l) == k

                chk_sum = 0
                for l_i in l:
                    chk_sum = chk_sum + l_i**p
                assert chk_sum == n

            except StopIteration:
                break

    assert list(power_representation(20, 2, 4, True)) == \
        [(1, 1, 3, 3), (0, 0, 2, 4)]
    raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
    raises(ValueError, lambda: list(power_representation(2, 0, 2)))
    raises(ValueError, lambda: list(power_representation(2, 2, 0)))
    assert list(power_representation(-1, 2, 2)) == []
    assert list(power_representation(1, 1, 1)) == [(1, )]
    assert list(power_representation(3, 2, 1)) == []
    assert list(power_representation(4, 2, 1)) == [(2, )]
    assert list(power_representation(3**4, 4, 6, zeros=True)) == \
        [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
    assert list(power_representation(3**4, 4, 5, zeros=False)) == []
    assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
    assert list(power_representation(-2, 4, 2)) == []
    assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
    assert list(power_representation(0, 3, 2, False)) == []
    # when we are dealing with squares, do feasibility checks
    assert len(list(power_representation(4**10 * (8 * 10 + 7), 2, 3))) == 0
    # there will be a recursion error if these aren't recognized
    big = 2**30
    for i in [13, 10, 7, 5, 4, 2, 1]:
        assert list(sum_of_powers(big, 2, big - i)) == []
Ejemplo n.º 5
0
def test_power_representation():
    tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
             (32760, 2, 3)]

    for test in tests:
        n, p, k = test
        f = power_representation(n, p, k)

        while True:
            try:
                l = next(f)
                assert len(l) == k

                chk_sum = 0
                for l_i in l:
                    chk_sum = chk_sum + l_i**p
                assert chk_sum == n

            except StopIteration:
                break

    assert list(power_representation(20, 2, 4, True)) == \
        [(1, 1, 3, 3), (0, 0, 2, 4)]
    raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
    raises(ValueError, lambda: list(power_representation(2, 0, 2)))
    raises(ValueError, lambda: list(power_representation(2, 2, 0)))
    assert list(power_representation(-1, 2, 2)) == []
    assert list(power_representation(1, 1, 1)) == [(1,)]
    assert list(power_representation(3, 2, 1)) == []
    assert list(power_representation(4, 2, 1)) == [(2,)]
    assert list(power_representation(3**4, 4, 6, zeros=True)) == \
        [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
    assert list(power_representation(3**4, 4, 5, zeros=False)) == []
    assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
    assert list(power_representation(-2, 4, 2)) == []
    assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
    assert list(power_representation(0, 3, 2, False)) == []
    # when we are dealing with squares, do feasibility checks
    assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
    # there will be a recursion error if these aren't recognized
    big = 2**30
    for i in [13, 10, 7, 5, 4, 2, 1]:
        assert list(sum_of_powers(big, 2, big - i)) == []