Ejemplo n.º 1
0
def test_contraction_structure_Mul_and_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')

    i_ji = x[i]**(y[j]*x[i])
    assert get_contraction_structure(i_ji) == {None: {i_ji}}
    ij_i = (x[i]*y[j])**(y[i])
    assert get_contraction_structure(ij_i) == {None: {ij_i}}
    j_ij_i = x[j]*(x[i]*y[j])**(y[i])
    assert get_contraction_structure(j_ij_i) == {(j,): {j_ij_i}}
    j_i_ji = x[j]*x[i]**(y[j]*x[i])
    assert get_contraction_structure(j_i_ji) == {(j,): {j_i_ji}}
    ij_exp_kki = x[i]*y[j]*exp(y[i]*y[k, k])
    result = get_contraction_structure(ij_exp_kki)
    expected = {
        (i,): {ij_exp_kki},
        ij_exp_kki: [{
                     None: {exp(y[i]*y[k, k])},
                exp(y[i]*y[k, k]): [{
                    None: {y[i]*y[k, k]},
                    y[i]*y[k, k]: [{(k,): {y[k, k]}}]
                }]}
        ]
    }
    assert result == expected
Ejemplo n.º 2
0
def test_get_contraction_structure_basic():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    assert get_contraction_structure(x[i]*y[j]) == {None: {x[i]*y[j]}}
    assert get_contraction_structure(x[i] + y[j]) == {None: {x[i], y[j]}}
    assert get_contraction_structure(x[i]*y[i]) == {(i,): {x[i]*y[i]}}
    assert get_contraction_structure(
        1 + x[i]*y[i]) == {None: {S.One}, (i,): {x[i]*y[i]}}
    assert get_contraction_structure(x[i]**y[i]) == {None: {x[i]**y[i]}}
Ejemplo n.º 3
0
def test_get_contraction_structure_complex():
    x = IndexedBase('x')
    y = IndexedBase('y')
    A = IndexedBase('A')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    expr1 = y[i] + A[i, j]*x[j]
    d1 = {None: {y[i]}, (j,): {A[i, j]*x[j]}}
    assert get_contraction_structure(expr1) == d1
    expr2 = expr1*A[k, i] + x[k]
    d2 = {None: {x[k]}, (i,): {expr1*A[k, i]}, expr1*A[k, i]: [d1]}
    assert get_contraction_structure(expr2) == d2
Ejemplo n.º 4
0
def test_contraction_structure_simple_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    ii_jj = x[i, i]**y[j, j]
    assert get_contraction_structure(ii_jj) == {
        None: {ii_jj},
        ii_jj: [
            {(i,): {x[i, i]}},
            {(j,): {y[j, j]}}
        ]
    }

    ii_jk = x[i, i]**y[j, k]
    assert get_contraction_structure(ii_jk) == {
        None: {x[i, i]**y[j, k]},
        x[i, i]**y[j, k]: [
            {(i,): {x[i, i]}}
        ]
    }
Ejemplo n.º 5
0
def test_ufunc_support():
    f = Function('f')
    g = Function('g')
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j = Idx('i'), Idx('j')
    a = symbols('a')

    assert get_indices(f(x[i])) == ({i}, {})
    assert get_indices(f(x[i], y[j])) == ({i, j}, {})
    assert get_indices(f(y[i])*g(x[i])) == (set(), {})
    assert get_indices(f(a, x[i])) == ({i}, {})
    assert get_indices(f(a, y[i], x[j])*g(x[i])) == ({j}, {})
    assert get_indices(g(f(x[i]))) == ({i}, {})

    assert get_contraction_structure(f(x[i])) == {None: {f(x[i])}}
    assert get_contraction_structure(
        f(y[i])*g(x[i])) == {(i,): {f(y[i])*g(x[i])}}
    assert get_contraction_structure(
        f(y[i])*g(f(x[i]))) == {(i,): {f(y[i])*g(f(x[i]))}}
    assert get_contraction_structure(
        f(x[j], y[i])*g(x[i])) == {(i,): {f(x[j], y[i])*g(x[i])}}
Ejemplo n.º 6
0
def tt():
    bc = VectorFieldBase()
    br = OneFormFieldBase(bc)
    i = Idx('i', 2)
    x = VIB("x", [bc], {(0, ): 2, (1, ): 2})
    y = VIB("y", [br], {(0, ): 2, (1, ): 2})
    res = x[i] * y[i]
    print(res)
    assert (res == 8)
    j = Idx('j', 2)
    A = VIB("A", [bc, bc], {(0, 0): 3})
    x
    res = get_contraction_structure(A[i, j] * y[i])
Ejemplo n.º 7
0
def test_contraction_structure_Add_in_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    s_ii_jj_s = (1 + x[i, i])**(1 + y[j, j])
    expected = {
        None: {s_ii_jj_s},
        s_ii_jj_s: [
            {None: {S.One}, (i,): {x[i, i]}},
            {None: {S.One}, (j,): {y[j, j]}}
        ]
    }
    result = get_contraction_structure(s_ii_jj_s)
    assert result == expected

    s_ii_jk_s = (1 + x[i, i]) ** (1 + y[j, k])
    expected_2 = {
        None: {(x[i, i] + 1)**(y[j, k] + 1)},
        s_ii_jk_s: [
            {None: {S.One}, (i,): {x[i, i]}}
        ]
    }
    result_2 = get_contraction_structure(s_ii_jk_s)
    assert result_2 == expected_2
Ejemplo n.º 8
0
def test_contraction_structure_Pow_in_Pow():
    x = IndexedBase('x')
    y = IndexedBase('y')
    z = IndexedBase('z')
    i, j, k = Idx('i'), Idx('j'), Idx('k')
    ii_jj_kk = x[i, i]**y[j, j]**z[k, k]
    expected = {
        None: {ii_jj_kk},
        ii_jj_kk: [
            {(i,): {x[i, i]}},
            {
                None: {y[j, j]**z[k, k]},
                y[j, j]**z[k, k]: [
                    {(j,): {y[j, j]}},
                    {(k,): {z[k, k]}}
                ]
            }
        ]
    }
    assert get_contraction_structure(ii_jj_kk) == expected
Ejemplo n.º 9
0
    def __getitem__(self, indices, **kw_args):
        self.checkShapeCompatibility(indices)

        if not (is_sequence(indices)):
            # only one index
            index = indices
            if self.shape and len(self.shape) != 1:
                raise IncompatibleShapeException()
            if type(index) is int:
                return (self.data[(index, )])
            else:
                return VI(self, index, **kw_args)

        else:
            if self.shape and len(self.shape) != len(indices):
                raise IndexException("Rank mismatch.")
            if all(type(k) is int for k in indices):
                # all indices are integers
                return (self.data[indices])

            elif all(type(i) is Idx or type(i) is int for i in indices):
                # some indices are symbolic some are integers
                # first handle the integer indices
                fixedIndexPositions = [
                    i for i in range(len(indices))
                    if not (type(indices[i]) is Idx)
                ]
                symbolicIndexPositions = [
                    i for i in range(len(indices)) if type(indices[i]) is Idx
                ]
                freeIndices = [i for i in indices if type(i) is Idx]
                freeKeys = [
                    k for k in self.data.keys()
                    if all(k[p] == indices[p] for p in fixedIndexPositions)
                ]
                if self.bases:
                    remainingBases = [
                        b for p, b in enumerate(self.bases)
                        if p in symbolicIndexPositions
                    ]
                else:
                    remainingBases = None

                newTensorIndexSet = TensorIndexSet("intermediate",
                                                   remainingBases)
                newTensorIndexSet.data = {}
                for k in freeKeys:
                    newTensorIndexSet.data[extractIndices(
                        k, symbolicIndexPositions)] = self.data[k]
                # now check the remaining part for contraction
                expr = VI(newTensorIndexSet, *freeIndices, **kw_args)
                cs = get_contraction_structure(expr)
                csk = list(cs.keys())
                if None in csk:
                    #no contraction
                    return (expr)
                else:
                    # compute the contracted indexed object or number.
                    # Since we are in __getitem__  we assume that we deal here
                    # only with one VI instance not with a many term expression
                    dummySuspects = csk[0]
                    #freeIndices=indices
                    for d in dummySuspects:
                        cs = get_contraction_structure(expr)
                        csk = cs.keys()
                        # there could be multiple contractions like x[_i,^i,^i,_i]
                        # which is the same as x[_i,^i,^j,_j] (or x[_i,^j,^i,_j]
                        # but we do not implement this because it is not very clear
                        dummyPositions = [
                            p for p, ind in enumerate(freeIndices) if ind == d
                        ]
                        # find pairs
                        n = len(dummyPositions)
                        if n != 2:
                            # exclude things like [i,i,i,j] where one index occures more than 2 times
                            # rendering the contraction ambigous
                            raise (ContractionException(d, n))
                        p0 = dummyPositions[0]
                        p1 = dummyPositions[1]
                        b0 = newTensorIndexSet.bases[p0].dual
                        b1 = newTensorIndexSet.bases[p1].dual
                        if b1 != b0.dual:
                            # implement only natural pairing (up and down indices)
                            raise (ContractionIncompatibleBaseException(
                                d, p0, p1, b0, b1))
                        newBases = [
                            b for i, b in enumerate(newTensorIndexSet.bases)
                            if not (i in dummyPositions)
                        ]
                        nonDummyPositions = [
                            p for p, ind in enumerate(freeIndices) if ind != d
                        ]
                        if len(newBases) == 0:
                            # the result will be a scalar
                            res = sum([
                                newTensorIndexSet.data[k]
                                for k in newTensorIndexSet.data.keys()
                                if k[p0] == k[p1]
                            ])
                            return (res)
                        else:
                            newData = {}
                            newKeys = set([
                                deleteIndices(k, dummyPositions)
                                for k in newTensorIndexSet.data.keys()
                            ])
                            for nk in newKeys:
                                newData[nk] = simplify(
                                    sum([
                                        newTensorIndexSet.data[k]
                                        for k in newTensorIndexSet.data.keys()
                                        if k[p0] == k[p1] and deleteIndices(
                                            k, dummyPositions) == nk
                                    ]))
                            newTensorIndexSet.data = newData
                            newTensorIndexSet.bases = newBases
                            freeIndices = [
                                i for p, i in enumerate(freeIndices)
                                if p in nonDummyPositions
                            ]
                            expr = VI(newTensorIndexSet, *freeIndices,
                                      **kw_args)

                    return (expr)
Ejemplo n.º 10
0
from sympy.tensor.index_methods import get_contraction_structure
from sympy import symbols, default_sort_key
from sympy.tensor import IndexedBase, Idx
x, y = map(IndexedBase, ['x', 'y'])
i, j = map(Idx, ['i', 'j'])
print(type(x[i] * y[j]))
get_contraction_structure(x[i] * y[j])