Ejemplo n.º 1
0
def testIsotypePartition(tensor):
    """Test that the components of tensor add up to tensor, 
    that projecting them again the same way leaves them unchanged,
    and that projecting them differently leaves them zero"""
    #print("---")
    total = np.zeros_like(tensor, dtype="float64")
    for pp in partitions(tensor.ndim):
        p = IntegerPartition(pp).partition
        t=project(tensor, p)
        #print (p)
        #print(";")
        #print(t)
        #print(t-project(t,p))
        #print(project(t,p))
        assert np.allclose(t,project(t,p))
        #print(tensor,total,t)
        total += t
        for qq in partitions(tensor.ndim):
            q=IntegerPartition(qq).partition
            if q!=p:
                #print(p,q)
                #print(project(t,q))
                assert np.allclose(0,project(t,q))
    #print(".")
    #print(tensor)
    #print(total)
    assert np.allclose(tensor,total)
    print("test ok")
Ejemplo n.º 2
0
def test_partitions():
    assert [p.copy() for p in partitions(6, k=2)] == [
        {2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=3)] == [
        {3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
        {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=2, m=2)] == []

    assert [p.copy() for p in partitions(8, k=4, m=3)] == [
        {4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
        i.copy() for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
        and sum(i.values()) <=3]

    assert [p.copy() for p in partitions(S(3), m=2)] == [
        {3: 1}, {1: 1, 2: 1}]

    assert [i.copy() for i in partitions(4, k=3)] == [
        {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
        i.copy() for i in partitions(4) if all(k <= 3 for k in i)]

    raises(ValueError, lambda: list(partitions(3, 0)))

    # Consistency check on output of _partitions and RGS_unrank.
    # This provides a sanity test on both routines.  Also verifies that
    # the total number of partitions is the same in each case.
    #    (from pkrathmann2)

    for n in range(2, 6):
        i  = 0
        for m, q  in _set_partitions(n):
            assert  q == RGS_unrank(i, n)
            i = i+1
        assert i == RGS_enum(n)
Ejemplo n.º 3
0
def test_partitions():
    assert [p.copy() for p in partitions(6, k=2)] == [
        {2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=3)] == [
        {3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
        {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=2, m=2)] == []

    assert [p.copy() for p in partitions(8, k=4, m=3)] == [
        {4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
        i.copy() for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
        and sum(i.values()) <=3]

    assert [p.copy() for p in partitions(S(3), m=2)] == [
        {3: 1}, {1: 1, 2: 1}]

    assert [i.copy() for i in partitions(4, k=3)] == [
        {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
        i.copy() for i in partitions(4) if all(k <= 3 for k in i)]

    raises(ValueError, lambda: list(partitions(3, 0)))

    # Consistency check on output of _partitions and RGS_unrank.
    # This provides a sanity test on both routines.  Also verifies that
    # the total number of partitions is the same in each case.
    #    (from pkrathmann2)

    for n in range(2, 6):
        i  = 0
        for m, q  in _set_partitions(n):
            assert  q == RGS_unrank(i, n)
            i = i+1
        assert i == RGS_enum(n)
Ejemplo n.º 4
0
def test_partitions():
    assert [p.copy() for p in partitions(6, k=2)] == [{2: 3}, \
    {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=3)] == [{3: 2}, \
    {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2}, \
    {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=2, m=2)] == []

    assert [p.copy() for p in partitions(8, k=4, m=3)] == [{4: 2},\
    {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}]
Ejemplo n.º 5
0
def test_partitions():
    assert [p.copy() for p in partitions(6, k=2)] == [{2: 3}, \
    {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=3)] == [{3: 2}, \
    {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2}, \
    {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=2, m=2)] == []

    assert [p.copy() for p in partitions(8, k=4, m=3)] == [{4: 2},\
    {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}]
Ejemplo n.º 6
0
def test_partitions():
    assert [p.copy() for p in partitions(6, k=2)] == [{2: 3}, \
    {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=3)] == [{3: 2}, \
    {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2}, \
    {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=2, m=2)] == []

    assert [p.copy() for p in partitions(8, k=4, m=3)] == [{4: 2},\
    {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}]

    assert [p.copy() for p in partitions(S(3), 2)] == \
    [{3: 1}, {1: 1, 2: 1}]

    raises(ValueError, 'list(partitions(3, 0))')
Ejemplo n.º 7
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq("a")) == ["a"]
    assert list(uniq("ababc")) == list("abc")
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == [([1], 2, 2), (2, [1], 2), (2, 2, [1])]
    assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == [2, 3, 4, [2], [1], [3]]
Ejemplo n.º 8
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1], [1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
        [([1], 2, 2), (2, [1], 2), (2, 2, [1]), (2, [1], 2), (2, 2, [1])]
Ejemplo n.º 9
0
def fourth_term(lambdas: tp.Dict[int, int]) -> tp.Any:
    min_lambda = min(lambdas)
    if min_lambda < 2:
        return 0
    reduced_lambdas = lambdas.copy()
    decrease_key(reduced_lambdas, min_lambda)
    return t / Q * sum(
        map(lambda mu: subterm(mu, reduced_lambdas, f_1),
            partitions(min_lambda - 2)))
Ejemplo n.º 10
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1], [1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
        [([1], 2, 2), (2, [1], 2), (2, 2, [1]), (2, [1], 2), (2, 2, [1])]
Ejemplo n.º 11
0
def first_term(lambdas: tp.Dict[int, int]) -> tp.Any:
    min_lambda = min(lambdas)
    if min_lambda == 1:
        return 0
    reduced_lambdas = lambdas.copy()
    decrease_key(reduced_lambdas, min_lambda)
    return -t / Q * q ** 2 * (1 - q) * \
           sum(map(lambda mu: subterm(mu, reduced_lambdas, f_1),
                   partitions(min_lambda, k=min_lambda-1)))
Ejemplo n.º 12
0
def rs_partitions(N, n):
    from sympy.utilities.iterables import multiset_permutations, partitions
    k = 2 * n
    for m, p in partitions(N, m=k, size=True):
        if m >= n:
            for q in multiset_permutations(
                    sum([[k] * v for k, v in p.items()], []) + [0] * (k - m)):
                res = [(q[:n][i], q[n:][i]) for i in range(n)]
                if not (0 in map(lambda x: x[0] or x[1], res)):
                    yield res
Ejemplo n.º 13
0
def test_nD_derangements():
    from sympy.utilities.iterables import (partitions, multiset,
                                           multiset_derangements,
                                           multiset_permutations)
    from sympy.functions.combinatorial.numbers import nD

    got = []
    for i in partitions(8, k=4):
        s = []
        it = 0
        for k, v in i.items():
            for i in range(v):
                s.extend([it] * k)
                it += 1
        ms = multiset(s)
        c1 = sum(1 for i in multiset_permutations(s)
                 if all(i != j for i, j in zip(i, s)))
        assert c1 == nD(ms) == nD(ms, 0) == nD(ms, 1)
        v = [tuple(i) for i in multiset_derangements(s)]
        c2 = len(v)
        assert c2 == len(set(v))
        assert c1 == c2
        got.append(c1)
    assert got == [
        1, 4, 6, 12, 24, 24, 61, 126, 315, 780, 297, 772, 2033, 5430, 14833
    ]

    assert nD('1112233456', brute=True) == nD('1112233456') == 16356
    assert nD('') == nD([]) == nD({}) == 0
    assert nD({1: 0}) == 0
    raises(ValueError, lambda: nD({1: -1}))
    assert nD('112') == 0
    assert nD(i='112') == 0
    assert [nD(n=i) for i in range(6)] == [0, 0, 1, 2, 9, 44]
    assert nD((i for i in range(4))) == nD('0123') == 9
    assert nD(m=(i for i in range(4))) == 3
    assert nD(m={0: 1, 1: 1, 2: 1, 3: 1}) == 3
    assert nD(m=[0, 1, 2, 3]) == 3
    raises(TypeError, lambda: nD(m=0))
    raises(TypeError, lambda: nD(-1))
    assert nD({-1: 1, -2: 1}) == 1
    assert nD(m={0: 3}) == 0
    raises(ValueError, lambda: nD(i='123', n=3))
    raises(ValueError, lambda: nD(i='123', m=(1, 2)))
    raises(ValueError, lambda: nD(n=0, m=(1, 2)))
    raises(ValueError, lambda: nD({1: -1}))
    raises(ValueError, lambda: nD(m={-1: 1, 2: 1}))
    raises(ValueError, lambda: nD(m={1: -1, 2: 1}))
    raises(ValueError, lambda: nD(m=[-1, 2]))
    raises(TypeError, lambda: nD({1: x}))
    raises(TypeError, lambda: nD(m={1: x}))
    raises(TypeError, lambda: nD(m={x: 1}))
Ejemplo n.º 14
0
def fifth_term(lambdas: tp.Dict[int, int]) -> tp.Any:
    min_lambda = min(lambdas)
    reduced_lambdas = lambdas.copy()
    decrease_key(reduced_lambdas, min_lambda)
    answer = 0
    for nu, sub_lambda in partition_into_two(reduced_lambdas):
        if min_lambda + norm(nu) - 2 < 0:
            continue
        combinations = 1
        for key in nu:
            combinations *= sm.binomial(reduced_lambdas[key], nu[key])
        answer += combinations * map_prod(nu, f_3) * \
                  sum(map(lambda mu: subterm(mu, sub_lambda, f_2),
                          partitions(min_lambda + norm(nu) - 2)))
    return q * Q * answer
Ejemplo n.º 15
0
def test_uniq():
    assert list(uniq(p for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
        [([1], 2, 2), (2, [1], 2), (2, 2, [1])]
    assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \
        [2, 3, 4, [2], [1], [3]]
    f = [1]
    raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
    f = [[1]]
    raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
Ejemplo n.º 16
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == [
        {4: 1},
        {1: 1, 3: 1},
        {2: 2},
        {1: 2, 2: 1},
        {1: 4},
    ]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq("a")) == ["a"]
    assert list(uniq("ababc")) == list("abc")
    assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
    assert list(uniq(permutations(i for i in [[1], 2, 2]))) == [
        ([1], 2, 2),
        (2, [1], 2),
        (2, 2, [1]),
    ]
    assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == [2, 3, 4, [2], [1], [3]]
Ejemplo n.º 17
0
def test_integer_partition():
    # no zeros in partition
    raises(ValueError, lambda: IntegerPartition(list(range(3))))
    # check fails since 1 + 2 != 100
    raises(ValueError, lambda: IntegerPartition(100, list(range(1, 3))))
    a = IntegerPartition(8, [1, 3, 4])
    b = a.next_lex()
    c = IntegerPartition([1, 3, 4])
    d = IntegerPartition(8, {1: 3, 3: 1, 2: 1})
    assert a == c
    assert a.integer == d.integer
    assert a.conjugate == [3, 2, 2, 1]
    assert (a == b) is False
    assert a <= b
    assert (a > b) is False
    assert a != b

    for i in range(1, 11):
        next = set()
        prev = set()
        a = IntegerPartition([i])
        ans = set([IntegerPartition(p) for p in partitions(i)])
        n = len(ans)
        for j in range(n):
            next.add(a)
            a = a.next_lex()
            IntegerPartition(i, a.partition)  # check it by giving i
        for j in range(n):
            prev.add(a)
            a = a.prev_lex()
            IntegerPartition(i, a.partition)  # check it by giving i
        assert next == ans
        assert prev == ans

    assert IntegerPartition([1, 2, 3]).as_ferrers() == '###\n##\n#'
    assert IntegerPartition([1, 1, 3]).as_ferrers('o') == 'ooo\no\no'
    assert str(IntegerPartition([1, 1, 3])) == '[3, 1, 1]'
    assert IntegerPartition([1, 1, 3]).partition == [3, 1, 1]

    raises(ValueError, lambda: random_integer_partition(-1))
    assert random_integer_partition(1) == [1]
    assert random_integer_partition(10, seed=[1, 3, 2, 1, 5, 1]
            ) == [5, 2, 1, 1, 1]
Ejemplo n.º 18
0
def test_integer_partition():
    # no zeros in partition
    raises(ValueError, lambda: IntegerPartition(list(range(3))))
    # check fails since 1 + 2 != 100
    raises(ValueError, lambda: IntegerPartition(100, list(range(1, 3))))
    a = IntegerPartition(8, [1, 3, 4])
    b = a.next_lex()
    c = IntegerPartition([1, 3, 4])
    d = IntegerPartition(8, {1: 3, 3: 1, 2: 1})
    assert a == c
    assert a.integer == d.integer
    assert a.conjugate == [3, 2, 2, 1]
    assert (a == b) is False
    assert a <= b
    assert (a > b) is False
    assert a != b

    for i in range(1, 11):
        next = set()
        prev = set()
        a = IntegerPartition([i])
        ans = set([IntegerPartition(p) for p in partitions(i)])
        n = len(ans)
        for j in range(n):
            next.add(a)
            a = a.next_lex()
            IntegerPartition(i, a.partition)  # check it by giving i
        for j in range(n):
            prev.add(a)
            a = a.prev_lex()
            IntegerPartition(i, a.partition)  # check it by giving i
        assert next == ans
        assert prev == ans

    assert IntegerPartition([1, 2, 3]).as_ferrers() == '###\n##\n#'
    assert IntegerPartition([1, 1, 3]).as_ferrers('o') == 'ooo\no\no'
    assert str(IntegerPartition([1, 1, 3])) == '[3, 1, 1]'
    assert IntegerPartition([1, 1, 3]).partition == [3, 1, 1]

    raises(ValueError, lambda: random_integer_partition(-1))
    assert random_integer_partition(1) == [1]
    assert random_integer_partition(10, seed=[1, 3, 2, 1, 5,
                                              1]) == [5, 2, 1, 1, 1]
Ejemplo n.º 19
0
def calcFaaDiBrunoFromPartitionsFromFunction( baseDerivativeFunction, l, n, x, thresholdForExp=30.0, verbose=True):
    """
    Function to calculate derivatives of iterated base function
    
    :param baseDerivativeFunction: Function that returns derivaties of base function
    :param l: Order of function iteration
    :param n: Highest order of derivative to be evaluated for iterated function 
    :param x: Point at which derivatives are to be evaluated
    :param thresholdForExp: Threshold beyond which differences in logarithms will be capped
    :param verbose: Boolean flag. If true then print messages
    :return: Dictionary containing logarithms and signs of derivates of iterated base function
    
    """
    
    # set up arrays for holding derivatives (on log scale)
    # of the base function, the current iteration and next iteration  
    
    evaluationPoint = x
    
    baseDerivativesLog = np.zeros( n )
    baseDerivativesSign = np.ones( n )
    currentDerivativesLog = np.zeros( n )
    currentDerivativesSign = np.ones( n )
    for k in range( n ):		
        baseDerivativeTmp = baseDerivativeFunction( x, k+1 )
        if( np.abs( baseDerivativeTmp ) > 1.0e-12 ):
            baseDerivativesLog[k] = np.log( np.abs(baseDerivativeTmp) )
            baseDerivativesSign[k] = np.sign( baseDerivativeTmp)

            # get current derivatives
            currentDerivativesLog[k] = np.log( np.abs( baseDerivativeTmp ) )
            currentDerivativesSign[k] = np.sign( baseDerivativeTmp )
        else:
            baseDerivativesLog[k] = float( '-Inf' )
            baseDerivativesSign[k] = 1.0

            currentDerivativesLog[k] = float( '-Inf' )
            currentDerivativesSign[k] = 1.0
            


    nextDerivativesLog = np.zeros( n )
    nextDerivativesSign = np.ones( n )


    # initialize array for holding derivatives at each iteration
    iteratedFunctionDerivativesLog = np.zeros( (l, n) )
    iteratedFunctionDerivativesSign = np.ones( (l, n) )

    # store base derivatives in first row of array
    iteratedFunctionDerivativesLog[0, :] = baseDerivativesLog
    iteratedFunctionDerivativesSign[0, :] = baseDerivativesSign

    # set number of function iterations
    nIterations = l-1

    # if we need to iterate then do so
    if( nIterations > 0 ): 


        # evaluate approximate number of paritions required
        log_nPartitions = calcHardyRamanujanApprox( n )

        if( verbose==True ):
            print( "You have requested evaluation up to derivative " + str(n) )
            if( log_nPartitions > np.log( 1.0e6 ) ):
                print( "Warning: There are approximately " + str(int(np.round(np.exp(log_nPartitions)))) + " partitions of " + str(n) )
                print( "Warning: Evaluation will be costly both in terms of memory and run-time" )

        # store partitions
        pStore = {}
        for k in range( n ):
            # get partition iterator
            pIterator = partitions(k+1)
            pStore[k] = [p.copy() for p in pIterator]

        # loop over function iterations    
        for iteration in range( nIterations ):
            evaluationPoint = baseDerivativeFunction( evaluationPoint, 0 )

            if( verbose==True ):
                print( "Evaluating derivatives for function iteration " + str(iteration+1)  )

            for k in range( n ):
                faaSumLog = float( '-Inf' )
                faaSumSign = 1
			
                # get partitions
                partitionsK = pStore[k]
                for pidx in range( len(partitionsK) ):
                    p = partitionsK[pidx]
                    sumTmp = 0.0
                    sumMultiplicty = 0
                    parityTmp = 1
                    for i in p.keys():
                        value = float(i)
                        multiplicity = float( p[i] )
                        sumMultiplicty += p[i]
                        sumTmp += multiplicity * currentDerivativesLog[i-1]
                        sumTmp -= gammaln( multiplicity + 1.0 )
                        sumTmp -= multiplicity * gammaln( value + 1.0 )
                        parityTmp *= np.power( currentDerivativesSign[i-1], multiplicity )	

                    
                    #evaluationPointTmp = np.exp( currentDerivativesLog[0] ) * currentDerivativesSign[0]
                    baseDerivativeTmp = baseDerivativeFunction( evaluationPoint , sumMultiplicty )
                    if( np.abs( baseDerivativeTmp ) > 1.0e-12 ):
                        sumTmp += np.log( np.abs( baseDerivativeTmp ) )
                        parityTmp *= np.sign( baseDerivativeTmp )
                    else:
                        sumTmp = float( '-Inf' )
                        parityTmp = 1.0

                    # now update faaSum on log scale
                    if( sumTmp > float( '-Inf' ) ):
                        if( faaSumLog > float( '-Inf' ) ):
                            diffLog = sumTmp - faaSumLog
                            if( np.abs(diffLog) <= thresholdForExp ):
                                if( diffLog >= 0.0 ):
                                    faaSumLog = sumTmp
                                    faaSumLog += np.log( 1.0 + (float(parityTmp*faaSumSign) * np.exp( -diffLog )) )
                                    faaSumSign = parityTmp
                                else:
                                    faaSumLog += np.log( 1.0 + (float(parityTmp*faaSumSign) * np.exp( diffLog )) )
                            else:
                                if( diffLog > thresholdForExp ):
                            	    faaSumLog = sumTmp
                            	    faaSumSign = parityTmp
                        else:
                            faaSumLog = sumTmp
                            faaSumSign = parityTmp

                nextDerivativesLog[k] = faaSumLog + gammaln( float(k+2) )
                nextDerivativesSign[k] = faaSumSign

            # update accounting for proceeding to next function iteration
            currentDerivativesLog[0:n] = nextDerivativesLog[0:n]
            currentDerivativesSign[0:n] = nextDerivativesSign[0:n]
            iteratedFunctionDerivativesLog[iteration+1, 0:n] = currentDerivativesLog[0:n]
            iteratedFunctionDerivativesSign[iteration+1, 0:n] = currentDerivativesSign[0:n]

    return( {'logDerivatives':iteratedFunctionDerivativesLog, 'signDerivatives':iteratedFunctionDerivativesSign} )
Ejemplo n.º 20
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
Ejemplo n.º 21
0
def test_nC_nP_nT():
    from sympy.utilities.iterables import (multiset_permutations,
                                           multiset_combinations,
                                           multiset_partitions, partitions,
                                           subsets, permutations)
    from sympy.functions.combinatorial.numbers import (nP, nC, nT, stirling,
                                                       _multiset_histogram,
                                                       _AOP_product)
    from sympy.combinatorics.permutations import Permutation
    from sympy.core.numbers import oo
    from random import choice

    c = string.ascii_lowercase
    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nP(s, i)
                tot += check
                assert len(list(multiset_permutations(s, i))) == check
                if u:
                    assert nP(len(s), i) == check
            assert nP(s) == tot
        except AssertionError:
            print(s, i, 'failed perm test')
            raise ValueError()

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nC(s, i)
                tot += check
                assert len(list(multiset_combinations(s, i))) == check
                if u:
                    assert nC(len(s), i) == check
            assert nC(s) == tot
            if u:
                assert nC(len(s)) == tot
        except AssertionError:
            print(s, i, 'failed combo test')
            raise ValueError()

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(i, j)
            tot += check
            assert sum(1 for p in partitions(i, j, size=True)
                       if p[0] == j) == check
        assert nT(i) == tot

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(range(i), j)
            tot += check
            assert len(list(multiset_partitions(list(range(i)), j))) == check
        assert nT(range(i)) == tot

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(1, 8):
                check = nT(s, i)
                tot += check
                assert len(list(multiset_partitions(s, i))) == check
                if u:
                    assert nT(range(len(s)), i) == check
            if u:
                assert nT(range(len(s))) == tot
            assert nT(s) == tot
        except AssertionError:
            print(s, i, 'failed partition test')
            raise ValueError()

    # tests for Stirling numbers of the first kind that are not tested in the
    # above
    assert [stirling(9, i, kind=1) for i in range(11)
            ] == [0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
    perms = list(permutations(range(4)))
    assert [
        sum(1 for p in perms if Permutation(p).cycles == i) for i in range(5)
    ] == [0, 6, 11, 6, 1] == [stirling(4, i, kind=1) for i in range(5)]
    # http://oeis.org/A008275
    assert [
        stirling(n, k, signed=1) for n in range(10) for k in range(1, n + 1)
    ] == [
        1, -1, 1, 2, -3, 1, -6, 11, -6, 1, 24, -50, 35, -10, 1, -120, 274,
        -225, 85, -15, 1, 720, -1764, 1624, -735, 175, -21, 1, -5040, 13068,
        -13132, 6769, -1960, 322, -28, 1, 40320, -109584, 118124, -67284,
        22449, -4536, 546, -36, 1
    ]
    # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
    assert [stirling(n, k, kind=1) for n in range(10)
            for k in range(n + 1)] == [
                1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35,
                10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735,
                175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0,
                40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1
            ]
    # https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
    assert [stirling(n, k, kind=2) for n in range(10)
            for k in range(n + 1)] == [
                1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10,
                1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0,
                1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770,
                6951, 2646, 462, 36, 1
            ]
    assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
    raises(ValueError, lambda: stirling(-2, 2))

    def delta(p):
        if len(p) == 1:
            return oo
        return min(abs(i[0] - i[1]) for i in subsets(p, 2))

    parts = multiset_partitions(range(5), 3)
    d = 2
    assert (sum(1
                for p in parts if all(delta(i) >= d
                                      for i in p)) == stirling(5, 3, d=d) == 7)

    # other coverage tests
    assert nC('abb', 2) == nC('aab', 2) == 2
    assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
    assert nP(3, 4) == 0
    assert nP('aabc', 5) == 0
    assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
        len(list(multiset_combinations('aabbccdd', 2))) == 10
    assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
    assert nC(list('abcdd'), 4) == 4
    assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
    assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
    assert nC('aabb' * 3, 3) == 4  # aaa, bbb, abb, baa
    assert dict(_AOP_product((4, 1, 1, 1))) == {
        0: 1,
        1: 4,
        2: 7,
        3: 8,
        4: 8,
        5: 7,
        6: 4,
        7: 1
    }
    # the following was the first t that showed a problem in a previous form of
    # the function, so it's not as random as it may appear
    t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
    assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
    raises(ValueError, lambda: _multiset_histogram({1: 'a'}))
Ejemplo n.º 22
0
def test_partitions():
    ans = [[{}], [(0, {})]]
    for i in range(2):
        assert list(partitions(0, size=i)) == ans[i]
        assert list(partitions(1, 0, size=i)) == ans[i]
        assert list(partitions(6, 2, 2, size=i)) == ans[i]
        assert list(partitions(6, 2, None, size=i)) != ans[i]
        assert list(partitions(6, None, 2, size=i)) != ans[i]
        assert list(partitions(6, 2, 0, size=i)) == ans[i]

    assert [p for p in partitions(6, k=2)] == [{
        2: 3
    }, {
        1: 2,
        2: 2
    }, {
        1: 4,
        2: 1
    }, {
        1: 6
    }]

    assert [p for p in partitions(6, k=3)] == [{
        3: 2
    }, {
        1: 1,
        2: 1,
        3: 1
    }, {
        1: 3,
        3: 1
    }, {
        2: 3
    }, {
        1: 2,
        2: 2
    }, {
        1: 4,
        2: 1
    }, {
        1: 6
    }]

    assert [p for p in partitions(8, k=4, m=3)] == [{
        4: 2
    }, {
        1: 1,
        3: 1,
        4: 1
    }, {
        2: 2,
        4: 1
    }, {
        2: 1,
        3: 2
    }] == [
        i for i in partitions(8, k=4, m=3)
        if all(k <= 4 for k in i) and sum(i.values()) <= 3
    ]

    assert [p for p in partitions(S(3), m=2)] == [{3: 1}, {1: 1, 2: 1}]

    assert [i for i in partitions(4, k=3)] == [{
        1: 1,
        3: 1
    }, {
        2: 2
    }, {
        1: 2,
        2: 1
    }, {
        1: 4
    }] == [i for i in partitions(4) if all(k <= 3 for k in i)]

    # Consistency check on output of _partitions and RGS_unrank.
    # This provides a sanity test on both routines.  Also verifies that
    # the total number of partitions is the same in each case.
    #    (from pkrathmann2)

    for n in range(2, 6):
        i = 0
        for m, q in _set_partitions(n):
            assert q == RGS_unrank(i, n)
            i += 1
        assert i == RGS_enum(n)
Ejemplo n.º 23
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq("a")) == ["a"]
    assert list(uniq("ababc")) == list("abc")
Ejemplo n.º 24
0
def test_uniq():
    assert list(uniq(p.copy() for p in partitions(4))) == \
        [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert list(uniq(x % 2 for x in range(5))) == [0, 1]
    assert list(uniq('a')) == ['a']
    assert list(uniq('ababc')) == list('abc')
Ejemplo n.º 25
0
def test_partitions():
    ans = [[{}], [(0, {})]]
    for i in range(2):
        assert list(partitions(0, size=i)) == ans[i]
        assert list(partitions(1, 0, size=i)) == ans[i]
        assert list(partitions(6, 2, 2, size=i)) == ans[i]
        assert list(partitions(6, 2, None, size=i)) != ans[i]
        assert list(partitions(6, None, 2, size=i)) != ans[i]
        assert list(partitions(6, 2, 0, size=i)) == ans[i]

    assert [p.copy() for p in partitions(6, k=2)] == [
        {2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(6, k=3)] == [
        {3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
        {1: 4, 2: 1}, {1: 6}]

    assert [p.copy() for p in partitions(8, k=4, m=3)] == [
        {4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
        i.copy() for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
        and sum(i.values()) <=3]

    assert [p.copy() for p in partitions(S(3), m=2)] == [
        {3: 1}, {1: 1, 2: 1}]

    assert [i.copy() for i in partitions(4, k=3)] == [
        {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
        i.copy() for i in partitions(4) if all(k <= 3 for k in i)]


    # Consistency check on output of _partitions and RGS_unrank.
    # This provides a sanity test on both routines.  Also verifies that
    # the total number of partitions is the same in each case.
    #    (from pkrathmann2)

    for n in range(2, 6):
        i  = 0
        for m, q  in _set_partitions(n):
            assert  q == RGS_unrank(i, n)
            i += 1
        assert i == RGS_enum(n)
Ejemplo n.º 26
0
def test_F6():
    partTest = [p.copy() for p in partitions(4)]
    partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
    assert partTest == partDesired
Ejemplo n.º 27
0
def test_nC_nP_nT():
    from sympy.utilities.iterables import (
        multiset_permutations, multiset_combinations, multiset_partitions,
        partitions, subsets, permutations)
    from sympy.functions.combinatorial.numbers import (
        nP, nC, nT, stirling, _multiset_histogram, _AOP_product)
    from sympy.combinatorics.permutations import Permutation
    from sympy.core.numbers import oo
    from random import choice

    c = string.ascii_lowercase
    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nP(s, i)
                tot += check
                assert len(list(multiset_permutations(s, i))) == check
                if u:
                    assert nP(len(s), i) == check
            assert nP(s) == tot
        except AssertionError:
            print(s, i, 'failed perm test')
            raise ValueError()

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(8):
                check = nC(s, i)
                tot += check
                assert len(list(multiset_combinations(s, i))) == check
                if u:
                    assert nC(len(s), i) == check
            assert nC(s) == tot
            if u:
                assert nC(len(s)) == tot
        except AssertionError:
            print(s, i, 'failed combo test')
            raise ValueError()

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(i, j)
            tot += check
            assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check
        assert nT(i) == tot

    for i in range(1, 10):
        tot = 0
        for j in range(1, i + 2):
            check = nT(range(i), j)
            tot += check
            assert len(list(multiset_partitions(range(i), j))) == check
        assert nT(range(i)) == tot

    for i in range(100):
        s = ''.join(choice(c) for i in range(7))
        u = len(s) == len(set(s))
        try:
            tot = 0
            for i in range(1, 8):
                check = nT(s, i)
                tot += check
                assert len(list(multiset_partitions(s, i))) == check
                if u:
                    assert nT(range(len(s)), i) == check
            if u:
                assert nT(range(len(s))) == tot
            assert nT(s) == tot
        except AssertionError:
            print(s, i, 'failed partition test')
            raise ValueError()

    # tests for Stirling numbers of the first kind that are not tested in the
    # above
    assert [stirling(9, i, kind=1) for i in range(11)] == [
        0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
    perms = list(permutations(range(4)))
    assert [sum(1 for p in perms if Permutation(p).cycles == i)
            for i in range(5)] == [0, 6, 11, 6, 1] == [
            stirling(4, i, kind=1) for i in range(5)]
    # http://oeis.org/A008275
    assert [stirling(n, k, signed=1)
        for n in range(10) for k in range(1, n + 1)] == [
            1, -1,
            1, 2, -3,
            1, -6, 11, -6,
            1, 24, -50, 35, -10,
            1, -120, 274, -225, 85, -15,
            1, 720, -1764, 1624, -735, 175, -21,
            1, -5040, 13068, -13132, 6769, -1960, 322, -28,
            1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1]
    # http://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
    assert  [stirling(n, k, kind=1)
        for n in range(10) for k in range(n+1)] == [
            1,
            0, 1,
            0, 1, 1,
            0, 2, 3, 1,
            0, 6, 11, 6, 1,
            0, 24, 50, 35, 10, 1,
            0, 120, 274, 225, 85, 15, 1,
            0, 720, 1764, 1624, 735, 175, 21, 1,
            0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1,
            0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1]
    # http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
    assert [stirling(n, k, kind=2)
        for n in range(10) for k in range(n+1)] == [
            1,
            0, 1,
            0, 1, 1,
            0, 1, 3, 1,
            0, 1, 7, 6, 1,
            0, 1, 15, 25, 10, 1,
            0, 1, 31, 90, 65, 15, 1,
            0, 1, 63, 301, 350, 140, 21, 1,
            0, 1, 127, 966, 1701, 1050, 266, 28, 1,
            0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
    assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
    raises(ValueError, lambda: stirling(-2, 2))

    def delta(p):
        if len(p) == 1:
            return oo
        return min(abs(i[0] - i[1]) for i in subsets(p, 2))
    parts = multiset_partitions(range(5), 3)
    d = 2
    assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) ==
            stirling(5, 3, d=d) == 7)

    # other coverage tests
    assert nC('abb', 2) == nC('aab', 2) == 2
    assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
    assert nP(3, 4) == 0
    assert nP('aabc', 5) == 0
    assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
        len(list(multiset_combinations('aabbccdd', 2))) == 10
    assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
    assert nC(list('abcdd'), 4) == 4
    assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
    assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
    assert nC('aabb'*3, 3) == 4  # aaa, bbb, abb, baa
    assert dict(_AOP_product((4,1,1,1))) == {
        0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1}
    # the following was the first t that showed a problem in a previous form of
    # the function, so it's not as random as it may appear
    t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
    assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
    raises(ValueError, lambda: _multiset_histogram({1:'a'}))
Ejemplo n.º 28
0
def test_F6():
    partTest = [p.copy() for p in partitions(4)]
    partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
    assert partTest == partDesired
Ejemplo n.º 29
0
def kbin(l, k, ordered=True):
    """
    Return sequence ``l`` partitioned into ``k`` bins.
    If ordered is True then the order of the items in the
    flattened partition will be the same as the order of the
    items in ``l``; if False, all permutations of the items will
    be given; if None, only unique permutations for a given
    partition will be given.

    Examples
    ========

    >>> from sympy.utilities.iterables import kbin
    >>> for p in kbin(range(3), 2):
    ...     print p
    ...
    [[0], [1, 2]]
    [[0, 1], [2]]
    >>> for p in kbin(range(3), 2, ordered=False):
    ...     print p
    ...
    [(0,), (1, 2)]
    [(0,), (2, 1)]
    [(1,), (0, 2)]
    [(1,), (2, 0)]
    [(2,), (0, 1)]
    [(2,), (1, 0)]
    [(0, 1), (2,)]
    [(0, 2), (1,)]
    [(1, 0), (2,)]
    [(1, 2), (0,)]
    [(2, 0), (1,)]
    [(2, 1), (0,)]
    >>> for p in kbin(range(3), 2, ordered=None):
    ...     print p
    ...
    [[0], [1, 2]]
    [[1], [2, 0]]
    [[2], [0, 1]]
    [[0, 1], [2]]
    [[1, 2], [0]]
    [[2, 0], [1]]

    """
    from sympy.utilities.iterables import partitions
    from itertools import permutations
    def rotations(seq):
        for i in range(len(seq)):
            yield seq
            seq.append(seq.pop(0))
    if ordered is None:
        func = rotations
    else:
        func = permutations
    for p in partitions(len(l), k):
        if sum(p.values()) != k:
            continue
        for pe in permutations(p.keys()):
            rv = []
            i = 0
            for part in pe:
                for do in range(p[part]):
                    j = i + part
                    rv.append(l[i: j])
                    i = j
            if ordered:
                yield rv
            else:
                template = [len(i) for i in rv]
                for pp in func(l):
                    rvp = []
                    ii = 0
                    for t in template:
                        jj = ii + t
                        rvp.append(pp[ii: jj])
                        ii = jj
                    yield rvp