def test_special_products(): # Wallis product assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \ 4**n*factorial(n)**2/rf(Rational(1, 2), n)/rf(Rational(3, 2), n) # Euler's product formula for sin assert product(1 + a/k**2, (k, 1, n)) == \ rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2
def test_special_products(): # Wallis product assert product((4*k)**2 / (4*k**2-1), (k, 1, n)) == \ 4**n*factorial(n)**2/rf(Rational(1, 2), n)/rf(Rational(3, 2), n) # Euler's product formula for sin assert product(1 + a/k**2, (k, 1, n)) == \ rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2
def test_rf_ff_eval_hiprec(): maple = Float('6.9109401292234329956525265438452') us = ff(18, S(2)/3).evalf(32) assert abs(us - maple)/us < 1e-31 maple = Float('6.8261540131125511557924466355367') us = rf(18, S(2)/3).evalf(32) assert abs(us - maple)/us < 1e-31 maple = Float('34.007346127440197150854651814225') us = rf(Float('4.4', 32), Float('2.2', 32)); assert abs(us - maple)/us < 1e-31
def test_rf_ff_eval_hiprec(): maple = Float('6.9109401292234329956525265438452') us = ff(18, Rational(2, 3)).evalf(32) assert abs(us - maple) / us < 1e-31 maple = Float('6.8261540131125511557924466355367') us = rf(18, Rational(2, 3)).evalf(32) assert abs(us - maple) / us < 1e-31 maple = Float('34.007346127440197150854651814225') us = rf(Float('4.4', 32), Float('2.2', 32)) assert abs(us - maple) / us < 1e-31
def test_rsolve_hyper(): assert rsolve_hyper([-1, -1, 1], 0, n) in [ C0 * (S.Half - S.Half * sqrt(5)) ** n + C1 * (S.Half + S.Half * sqrt(5)) ** n, C1 * (S.Half - S.Half * sqrt(5)) ** n + C0 * (S.Half + S.Half * sqrt(5)) ** n, ] assert rsolve_hyper([n ** 2 - 2, -2 * n - 1, 1], 0, n) in [ C0 * rf(sqrt(2), n) + C1 * rf(-sqrt(2), n), C1 * rf(sqrt(2), n) + C0 * rf(-sqrt(2), n), ] assert rsolve_hyper([n ** 2 - k, -2 * n - 1, 1], 0, n) in [ C0 * rf(sqrt(k), n) + C1 * rf(-sqrt(k), n), C1 * rf(sqrt(k), n) + C0 * rf(-sqrt(k), n), ] assert rsolve_hyper([2 * n * (n + 1), -n ** 2 - 3 * n + 2, n - 1], 0, n) == C1 * factorial(n) + C0 * 2 ** n assert rsolve_hyper([n + 2, -(2 * n + 3) * (17 * n ** 2 + 51 * n + 39), n + 1], 0, n) == 0 assert rsolve_hyper([-n - 1, -1, 1], 0, n) == 0 assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n ** 2 / 2 - n / 2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n ** 2 / 2 + n / 2 assert rsolve_hyper([-1, 1], 3 * (n + n ** 2), n).expand() == C0 + n ** 3 - n
def test_rsolve_hyper(): assert rsolve_hyper( [-1, -1, 1], 0, n) == C0 * (S.Half + S.Half * sqrt(5))**n + C1 * (S.Half - S.Half * sqrt(5))**n assert rsolve_hyper([n**2 - 2, -2 * n - 1, 1], 0, n) in [ C0 * rf(sqrt(2), n) + C1 * rf(-sqrt(2), n), C1 * rf(sqrt(2), n) + C0 * rf(-sqrt(2), n) ] assert rsolve_hyper([n**2 - k, -2 * n - 1, 1], 0, n) in [ C0 * rf(sqrt(k), n) + C1 * rf(-sqrt(k), n), C1 * rf(sqrt(k), n) + C0 * rf(-sqrt(k), n) ] assert rsolve_hyper([2 * n * (n + 1), -n**2 - 3 * n + 2, n - 1], 0, n) == C0 * factorial(n) + C1 * 2**n assert rsolve_hyper( [n + 2, -(2 * n + 3) * (17 * n**2 + 51 * n + 39), n + 1], 0, n) == 0 assert rsolve_hyper([-n - 1, -1, 1], 0, n) == 0 assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2 / 2 - n / 2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2 / 2 + n / 2 assert rsolve_hyper([-1, 1], 3 * (n + n**2), n).expand() == C0 + n**3 - n
def test_issue_9699(): n, k = symbols('n k', real=True) x, y = symbols('x, y') assert combsimp((n + 1)*factorial(n)) == factorial(n + 1) assert combsimp((x + 1)*factorial(x)/gamma(y)) == gamma(x + 2)/gamma(y) assert combsimp(factorial(n)/n) == factorial(n - 1) assert combsimp(rf(x + n, k)*binomial(n, k)) == binomial(n, k)*gamma(k + n + x)/gamma(n + x)
def test_simple_products(): assert product(2, (k, a, n)) == 2**(n - a + 1) assert product(k, (k, 1, n)) == factorial(n) assert product(k**3, (k, 1, n)) == factorial(n)**3 assert product(k + 1, (k, 0, n - 1)) == factorial(n) assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a) assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2) assert isinstance(product(k**k, (k, 1, n)), Product) assert Product(x**k, (k, 1, n)).variables == [k] raises(ValueError, lambda: Product(n)) raises(ValueError, lambda: Product(n, k)) raises(ValueError, lambda: Product(n, k, 1)) raises(ValueError, lambda: Product(n, k, 1, 10)) raises(ValueError, lambda: Product(n, (k, 1))) assert product(1, (n, 1, oo)) == 1 # issue 8301 assert product(2, (n, 1, oo)) == oo assert product(-1, (n, 1, oo)).func is Product
def test_simple_products(): assert product(2, (k, a, n)) == 2**(n - a + 1) assert product(k, (k, 1, n)) == factorial(n) assert product(k**3, (k, 1, n)) == factorial(n)**3 assert product(k + 1, (k, 0, n - 1)) == factorial(n) assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a) assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2) assert isinstance(product(k**k, (k, 1, n)), Product) assert Product(x**k, (k, 1, n)).variables == [k] raises(ValueError, lambda: Product(n)) raises(ValueError, lambda: Product(n, k)) raises(ValueError, lambda: Product(n, k, 1)) raises(ValueError, lambda: Product(n, k, 1, 10)) raises(ValueError, lambda: Product(n, (k, 1))) assert product(1, (n, 1, oo)) == 1 # issue 8301 assert product(2, (n, 1, oo)) is oo assert product(-1, (n, 1, oo)).func is Product
def test_rf_lambdify_mpmath(): from sympy import lambdify x, y = symbols('x,y') f = lambdify((x,y), rf(x, y), 'mpmath') maple = Float('34.007346127440197') us = f(4.4, 2.2) assert abs(us - maple)/us < 1e-15
def pdf(self, *syms): n, theta = self.n, self.theta term_1 = factorial(n)/rf(theta, n) term_2 = Mul.fromiter([theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])) for j in range(n)]) cond = Eq(sum([(k+1)*syms[k] for k in range(n)]), n) return Piecewise((term_1 * term_2, cond), (0, True))
def test_rf_lambdify_mpmath(): from sympy import lambdify x, y = symbols('x,y') f = lambdify((x, y), rf(x, y), 'mpmath') maple = Float('34.007346127440197') us = f(4.4, 2.2) assert abs(us - maple) / us < 1e-15
def test_ff_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert ff(nan, y) == nan assert ff(x, nan) == nan assert ff(x, y) == ff(x, y) assert ff(oo, 0) == 1 assert ff(-oo, 0) == 1 assert ff(oo, 6) == oo assert ff(-oo, 7) == -oo assert ff(oo, -6) == oo assert ff(-oo, -7) == oo assert ff(x, 0) == 1 assert ff(x, 1) == x assert ff(x, 2) == x * (x - 1) assert ff(x, 3) == x * (x - 1) * (x - 2) assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4) assert ff(x, -1) == 1 / (x + 1) assert ff(x, -2) == 1 / ((x + 1) * (x + 2)) assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3)) assert ff(100, 100) == factorial(100) assert ff(2 * x**2 - 5 * x, 2) == (2 * x**2 - 5 * x) * (2 * x**2 - 5 * x - 1) assert isinstance(ff(2 * x**2 - 5 * x, 2), Mul) assert ff(x**2 + 3 * x, -2) == 1 / ((x**2 + 3 * x + 1) * (x**2 + 3 * x + 2)) assert ff(Poly(2 * x**2 - 5 * x, x), 2) == Poly(4 * x**4 - 28 * x**3 + 59 * x**2 - 35 * x, x) assert isinstance(ff(Poly(2 * x**2 - 5 * x, x), 2), Poly) raises(ValueError, lambda: ff(Poly(2 * x**2 - 5 * x, x, y), 2)) assert ff(Poly(x**2 + 3 * x, x), -2) == 1 / (x**4 + 12 * x**3 + 49 * x**2 + 78 * x + 40) raises(ValueError, lambda: ff(Poly(x**2 + 3 * x, x, y), -2)) assert ff(x, m).is_integer is None assert ff(n, k).is_integer is None assert ff(n, m).is_integer is True assert ff(n, k + pi).is_integer is False assert ff(n, m + pi).is_integer is False assert ff(pi, m).is_integer is False assert isinstance(ff(x, x), ff) assert ff(n, n) == factorial(n) assert ff(x, k).rewrite(rf) == rf(x - k + 1, k) assert ff(x, k).rewrite(gamma) == (-1)**k * gamma(k - x) / gamma(-x) assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k) assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
def test_rf_lambdify_mpmath(): from sympy import lambdify x, y = symbols("x,y") f = lambdify((x, y), rf(x, y), "mpmath") maple = Float("34.007346127440197") us = f(4.4, 2.2) assert abs(us - maple) / us < 1e-15
def test_ff_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert ff(nan, y) == nan assert ff(x, nan) == nan assert ff(x, y) == ff(x, y) assert ff(oo, 0) == 1 assert ff(-oo, 0) == 1 assert ff(oo, 6) == oo assert ff(-oo, 7) == -oo assert ff(oo, -6) == oo assert ff(-oo, -7) == oo assert ff(x, 0) == 1 assert ff(x, 1) == x assert ff(x, 2) == x*(x - 1) assert ff(x, 3) == x*(x - 1)*(x - 2) assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4) assert ff(x, -1) == 1/(x + 1) assert ff(x, -2) == 1/((x + 1)*(x + 2)) assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3)) assert ff(100, 100) == factorial(100) assert ff(2*x**2 - 5*x, 2) == (2*x**2 - 5*x)*(2*x**2 - 5*x - 1) assert isinstance(ff(2*x**2 - 5*x, 2), Mul) assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2)) assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x) assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly) raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2)) assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40) raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2)) assert ff(x, m).is_integer is None assert ff(n, k).is_integer is None assert ff(n, m).is_integer is True assert ff(n, k + pi).is_integer is False assert ff(n, m + pi).is_integer is False assert ff(pi, m).is_integer is False assert isinstance(ff(x, x), ff) assert ff(n, n) == factorial(n) assert ff(x, k).rewrite(rf) == rf(x - k + 1, k) assert ff(x, k).rewrite(gamma) == (-1)**k*gamma(k - x) / gamma(-x) assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k) assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
def test_issue_9699(): n, k = symbols('n k', real=True) x, y = symbols('x, y') assert combsimp((n + 1) * factorial(n)) == factorial(n + 1) assert combsimp( (x + 1) * factorial(x) / gamma(y)) == gamma(x + 2) / gamma(y) assert combsimp(factorial(n) / n) == factorial(n - 1) assert combsimp( rf(x + n, k) * binomial(n, k)) == binomial(n, k) * gamma(k + n + x) / gamma(n + x)
def test_simple_products(): assert product(2, (k, a, n)) == 2**(n-a+1) assert product(k, (k, 1, n)) == factorial(n) assert product(k**3, (k, 1, n)) == factorial(n)**3 assert product(k+1, (k, 0, n-1)) == factorial(n) assert product(k+1, (k, a, n-1)) == rf(1+a, n-a) assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 1, Rational(5, 2))) == cos(1)*cos(2) assert isinstance(product(k**k, (k, 1, n)), Product)
def test_rsolve_hyper(): assert rsolve_hyper([-1, -1, 1], 0, n) in [ C0 * (S.Half - S.Half * sqrt(5))**n + C1 * (S.Half + S.Half * sqrt(5))**n, C1 * (S.Half - S.Half * sqrt(5))**n + C0 * (S.Half + S.Half * sqrt(5))**n, ] assert rsolve_hyper([n**2 - 2, -2 * n - 1, 1], 0, n) in [ C0 * rf(sqrt(2), n) + C1 * rf(-sqrt(2), n), C1 * rf(sqrt(2), n) + C0 * rf(-sqrt(2), n), ] assert rsolve_hyper([n**2 - k, -2 * n - 1, 1], 0, n) in [ C0 * rf(sqrt(k), n) + C1 * rf(-sqrt(k), n), C1 * rf(sqrt(k), n) + C0 * rf(-sqrt(k), n), ] assert (rsolve_hyper([2 * n * (n + 1), -(n**2) - 3 * n + 2, n - 1], 0, n) == C1 * factorial(n) + C0 * 2**n) assert (rsolve_hyper( [n + 2, -(2 * n + 3) * (17 * n**2 + 51 * n + 39), n + 1], 0, n) == None) assert rsolve_hyper([-n - 1, -1, 1], 0, n) == None assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2 / 2 - n / 2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2 / 2 + n / 2 assert rsolve_hyper([-1, 1], 3 * (n + n**2), n).expand() == C0 + n**3 - n assert rsolve_hyper([-a, 1], 0, n).expand() == C0 * a**n assert rsolve_hyper( [-a, 0, 1], 0, n).expand() == (-1)**n * C1 * a**(n / 2) + C0 * a**(n / 2) assert (rsolve_hyper([1, 1, 1], 0, n).expand() == C0 * (Rational(-1, 2) - sqrt(3) * I / 2)**n + C1 * (Rational(-1, 2) + sqrt(3) * I / 2)**n) assert rsolve_hyper([1, -2 * n / a - 2 / a, 1], 0, n) is None
def pdf(self, *syms): n, theta = self.n, self.theta condi = isinstance(self.n, Integer) if not (isinstance(syms[0], IndexedBase) or condi): raise ValueError("Please use IndexedBase object for syms as " "the dimension is symbolic") term_1 = factorial(n)/rf(theta, n) if condi: term_2 = Mul.fromiter([theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])) for j in range(n)]) cond = Eq(sum([(k + 1)*syms[k] for k in range(n)]), n) return Piecewise((term_1 * term_2, cond), (0, True)) syms = syms[0] j, k = symbols('j, k', positive=True, integer=True) term_2 = Product(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])), (j, 0, n - 1)) cond = Eq(Sum((k + 1)*syms[k], (k, 0, n - 1)), n) return Piecewise((term_1 * term_2, cond), (0, True))
def test_rsolve_hyper(): assert rsolve_hyper([-1, -1, 1], 0, n) in [ C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n, C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n, ] assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n), C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n), ] assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [ C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n), C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n), ] assert rsolve_hyper( [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n assert rsolve_hyper( [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == None assert rsolve_hyper([-n - 1, -1, 1], 0, n) == None assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2 assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2 assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2) assert rsolve_hyper([1, 1, 1], 0, n).expand() == \ C0*(-S(1)/2 - sqrt(3)*I/2)**n + C1*(-S(1)/2 + sqrt(3)*I/2)**n assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) == None
def test_rf_eval_apply(): x, y = symbols('x,y') assert rf(nan, y) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x*(x + 1) assert rf(x, 3) == x*(x + 1)*(x + 2) assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4) assert rf(x, -1) == 1/(x - 1) assert rf(x, -2) == 1/((x - 1)*(x - 2)) assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3)) assert rf(1, 100) == factorial(100) n = Symbol('n', integer=True) k = Symbol('k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False
def test_rf_eval_apply(): x, y = symbols('x,y') assert rf(nan, y) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x * (x + 1) assert rf(x, 3) == x * (x + 1) * (x + 2) assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4) assert rf(x, -1) == 1 / (x - 1) assert rf(x, -2) == 1 / ((x - 1) * (x - 2)) assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3)) assert rf(1, 100) == factorial(100)
def test_ff_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert ff(nan, y) is nan assert ff(x, nan) is nan assert unchanged(ff, x, y) assert ff(oo, 0) == 1 assert ff(-oo, 0) == 1 assert ff(oo, 6) is oo assert ff(-oo, 7) is -oo assert ff(-oo, 6) is oo assert ff(oo, -6) is oo assert ff(-oo, -7) is oo assert ff(x, 0) == 1 assert ff(x, 1) == x assert ff(x, 2) == x * (x - 1) assert ff(x, 3) == x * (x - 1) * (x - 2) assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4) assert ff(x, -1) == 1 / (x + 1) assert ff(x, -2) == 1 / ((x + 1) * (x + 2)) assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3)) assert ff(100, 100) == factorial(100) assert ff(2 * x**2 - 5 * x, 2) == (2 * x**2 - 5 * x) * (2 * x**2 - 5 * x - 1) assert isinstance(ff(2 * x**2 - 5 * x, 2), Mul) assert ff(x**2 + 3 * x, -2) == 1 / ((x**2 + 3 * x + 1) * (x**2 + 3 * x + 2)) assert ff(Poly(2 * x**2 - 5 * x, x), 2) == Poly(4 * x**4 - 28 * x**3 + 59 * x**2 - 35 * x, x) assert isinstance(ff(Poly(2 * x**2 - 5 * x, x), 2), Poly) raises(ValueError, lambda: ff(Poly(2 * x**2 - 5 * x, x, y), 2)) assert ff(Poly(x**2 + 3 * x, x), -2) == 1 / (x**4 + 12 * x**3 + 49 * x**2 + 78 * x + 40) raises(ValueError, lambda: ff(Poly(x**2 + 3 * x, x, y), -2)) assert ff(x, m).is_integer is None assert ff(n, k).is_integer is None assert ff(n, m).is_integer is True assert ff(n, k + pi).is_integer is False assert ff(n, m + pi).is_integer is False assert ff(pi, m).is_integer is False assert isinstance(ff(x, x), ff) assert ff(n, n) == factorial(n) assert ff(x, k).rewrite(rf) == rf(x - k + 1, k) assert ff(x, k).rewrite(gamma) == (-1)**k * gamma(k - x) / gamma(-x) assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k) assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k) assert ff(x, y).rewrite(factorial) == ff(x, y) assert ff(x, y).rewrite(binomial) == ff(x, y) import random from mpmath import ff as mpmath_ff for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() assert (abs(mpmath_ff(x, k) - ff(x, k)) < 10**(-15))
def test_ff_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert ff(nan, y) is nan assert ff(x, nan) is nan assert unchanged(ff, x, y) assert ff(oo, 0) == 1 assert ff(-oo, 0) == 1 assert ff(oo, 6) is oo assert ff(-oo, 7) is -oo assert ff(-oo, 6) is oo assert ff(oo, -6) is oo assert ff(-oo, -7) is oo assert ff(x, 0) == 1 assert ff(x, 1) == x assert ff(x, 2) == x*(x - 1) assert ff(x, 3) == x*(x - 1)*(x - 2) assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4) assert ff(x, -1) == 1/(x + 1) assert ff(x, -2) == 1/((x + 1)*(x + 2)) assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3)) assert ff(100, 100) == factorial(100) assert ff(2*x**2 - 5*x, 2) == (2*x**2 - 5*x)*(2*x**2 - 5*x - 1) assert isinstance(ff(2*x**2 - 5*x, 2), Mul) assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2)) assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x) assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly) raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2)) assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40) raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2)) assert ff(x, m).is_integer is None assert ff(n, k).is_integer is None assert ff(n, m).is_integer is True assert ff(n, k + pi).is_integer is False assert ff(n, m + pi).is_integer is False assert ff(pi, m).is_integer is False assert isinstance(ff(x, x), ff) assert ff(n, n) == factorial(n) def check(x, k, o, n): a, b = Dummy(), Dummy() r = lambda x, k: o(a, b).rewrite(n).subs({a:x,b:k}) for i in range(-5,5): for j in range(-5,5): assert o(i, j) == r(i, j), (o, n) check(x, k, ff, rf) check(x, k, ff, gamma) check(n, k, ff, factorial) check(x, k, ff, binomial) check(x, y, ff, factorial) check(x, y, ff, binomial) assert ff(x, k).rewrite(rf) == rf(x - k + 1, k) assert ff(x, k).rewrite(gamma) == Piecewise( (gamma(x + 1)/gamma(-k + x + 1), x >= 0), ((-1)**k*gamma(k - x)/gamma(-x), True)) assert ff(5, k).rewrite(gamma) == 120/gamma(6 - k) assert ff(n, k).rewrite(factorial) == Piecewise( (factorial(n)/factorial(-k + n), n >= 0), ((-1)**k*factorial(k - n - 1)/factorial(-n - 1), True)) assert ff(5, k).rewrite(factorial) == 120/factorial(5 - k) assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k) assert ff(x, y).rewrite(factorial) == ff(x, y) assert ff(x, y).rewrite(binomial) == ff(x, y) import random from mpmath import ff as mpmath_ff for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() a = mpmath_ff(x, k) b = ff(x, k) assert (abs(a - b) < abs(a) * 10**(-15))
def test_rf_eval_apply(): x, y = symbols('x,y') assert rf(nan, y) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x * (x + 1) assert rf(x, 3) == x * (x + 1) * (x + 2) assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4) assert rf(x, -1) == 1 / (x - 1) assert rf(x, -2) == 1 / ((x - 1) * (x - 2)) assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3 * x, 2) == x**4 + 8 * x**3 + 19 * x**2 + 12 * x assert rf(x**3 + x, -2) == 1 / (x**6 - 9 * x**5 + 35 * x**4 - 75 * x**3 + 94 * x**2 - 66 * x + 20) n = Symbol('n', integer=True) k = Symbol('k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False
def test_rational_products(): assert product(1 + 1 / k, (k, 1, n)) == rf(2, n) / factorial(n)
n = Symbol("n", positive=True, integer=True) k = Symbol("k", integer=True) # binomialpoly = implemented_function(Function('(x+y)^n'), lambda n: (x+y)**n) # binomialpoly_n = lambdify(n, binomialpoly(n)) binomialpoly = (x + y) ** n binomialpolyexpand = Sum(binomial(n, k) * x ** k * y ** (n - k), (k, 0, n)) binomialpoly.subs(n, 1) == binomialpolyexpand.subs(n, 1).doit() # True binomialpoly.subs(n, 2).expand() == binomialpolyexpand.subs(n, 2).doit() # True binomialpoly.subs(n, 3).expand() == binomialpolyexpand.subs(n, 3).doit() # True binomialpoly.subs(n, 4).expand() == binomialpolyexpand.subs(n, 4).doit() # True # rising factorial a, q = symbols("a q") # a_n = Product(a+k,(k,0,n-1)) a_n = rf(a, n) aq_n = Product(Rat(1) - a * q ** k, (k, 0, n - 1)) # e.g. aq_n.subs(n,3).doit() # Hermite polynomials HermiteF = factorial(n) * (Rat(-1)) ** k * (Rat(2) * x) ** (n - Rat(2) * k) / (factorial(n - Rat(2) * k) * factorial(k)) HermiteP = Sum(HermiteF, (k, 0, floor(n / 2))) hermite_poly(1, x) == HermiteP.subs(n, 1).doit() # True hermite_poly(2, x) == HermiteP.subs(n, 2).doit() # True hermite_poly(3, x) == HermiteP.subs(n, 3).doit() # True hermite_poly(4, x) == HermiteP.subs(n, 4).doit() # True (HermiteF.subs(n, n + 1) / HermiteF).simplify() # 2*x*(n + 1)/(-2*k + n + 1) (HermiteF.subs(k, k + 1) / HermiteF).simplify() # -(2*k - n)*(2*k - n + 1)/(4*x**2*(k + 1))
def test_rf_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(nan, y) == nan assert rf(x, nan) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x * (x + 1) assert rf(x, 3) == x * (x + 1) * (x + 2) assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4) assert rf(x, -1) == 1 / (x - 1) assert rf(x, -2) == 1 / ((x - 1) * (x - 2)) assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3 * x, 2) == (x**2 + 3 * x) * (x**2 + 3 * x + 1) assert isinstance(rf(x**2 + 3 * x, 2), Mul) assert rf(x**3 + x, -2) == 1 / ((x**3 + x - 1) * (x**3 + x - 2)) assert rf(Poly(x**2 + 3 * x, x), 2) == Poly(x**4 + 8 * x**3 + 19 * x**2 + 12 * x, x) assert isinstance(rf(Poly(x**2 + 3 * x, x), 2), Poly) raises(ValueError, lambda: rf(Poly(x**2 + 3 * x, x, y), 2)) assert rf(Poly(x**3 + x, x), -2) == 1 / (x**6 - 9 * x**5 + 35 * x**4 - 75 * x**3 + 94 * x**2 - 66 * x + 20) raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2)) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(binomial) == factorial(k) * binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == \ factorial(n + k - 1) / factorial(n - 1)
def test_rf_eval_apply(): x, y = symbols("x,y") n, k = symbols("n k", integer=True) m = Symbol("m", integer=True, nonnegative=True) assert rf(nan, y) == nan assert rf(x, nan) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x * (x + 1) assert rf(x, 3) == x * (x + 1) * (x + 2) assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4) assert rf(x, -1) == 1 / (x - 1) assert rf(x, -2) == 1 / ((x - 1) * (x - 2)) assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3)) assert rf(1, 100) == factorial(100) assert rf(x ** 2 + 3 * x, 2) == x ** 4 + 8 * x ** 3 + 19 * x ** 2 + 12 * x assert rf(x ** 3 + x, -2) == 1 / (x ** 6 - 9 * x ** 5 + 35 * x ** 4 - 75 * x ** 3 + 94 * x ** 2 - 66 * x + 20) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(binomial) == factorial(k) * binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == factorial(n + k - 1) / factorial(n - 1)
def test_rational_products(): assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n)
def test_F1(): assert rf(x, 3) == x * (1 + x) * (2 + x)
def test_rf_eval_apply(): x, y = symbols('x,y') assert rf(nan, y) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x*(x + 1) assert rf(x, 3) == x*(x + 1)*(x + 2) assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4) assert rf(x, -1) == 1/(x - 1) assert rf(x, -2) == 1/((x - 1)*(x - 2)) assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3)) assert rf(1, 100) == factorial(100)
def to_sequence(self): """ Finds the recurrence relation in power series expansion of the function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ, QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1 See Also ======== HolonomicFunction.series References ========== hal.inria.fr/inria-00070025/document """ dict1 = {} n = symbols('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if i - k in dict1: dict1[i - k] += (coeff * rf(n - k + 1, i)) else: dict1[i - k] = (coeff * rf(n - k + 1, i)) sol = [] lower = min(dict1.keys()) upper = max(dict1.keys()) for j in range(lower, upper + 1): if j in dict1.keys(): sol.append(dict1[j].subs(n, n - lower)) else: sol.append(S(0)) # recurrence relation sol = RecurrenceOperator(sol, R) if not self._have_init_cond: return HolonomicSequence(sol) if self.x0 != 0: return HolonomicSequence(sol) # computing the initial conditions for recurrence order = sol.order all_roots = roots(sol.listofpoly[-1].rep, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) if max_root >= 0: order += max_root + 1 y0 = _extend_y0(self, order) u0 = [] # u(n) = y^n(0)/factorial(n) for i, j in enumerate(y0): u0.append(j / factorial(i)) return HolonomicSequence(sol, u0)
def test_rf_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(nan, y) == nan assert rf(x, nan) == nan assert rf(x, y) == rf(x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) == oo assert rf(-oo, 7) == -oo assert rf(oo, -6) == oo assert rf(-oo, -7) == oo assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x*(x + 1) assert rf(x, 3) == x*(x + 1)*(x + 2) assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4) assert rf(x, -1) == 1/(x - 1) assert rf(x, -2) == 1/((x - 1)*(x - 2)) assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1) assert isinstance(rf(x**2 + 3*x, 2), Mul) assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2)) assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x) assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly) raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2)) assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20) raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2)) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == \ factorial(n + k - 1) / factorial(n - 1)
def ExLax(X,Y,z,k,w_0,m_max): """ Takes the series of Opt. Lett. 28(10), 2003 to compute the non-paraxial corrections to Ex up to order m. """ # -- Symbol/initial function definition. x_sym, y_sym,z_sym,k_sym, w_0_sym = sympy.symbols('x_sym y_sym z_sym k_sym w_0_sym') z_r_sym = k_sym*w_0_sym**2/2 w_z_sym = w_0_sym*sympy.sqrt(1+(z_sym/z_r_sym)**2) R_sym = z_sym/(z_sym**2+z_r_sym**2) phi_0 = w_0_sym/w_z_sym*sympy.exp(-(x_sym**2+y_sym**2)/w_z_sym**2) \ *sympy.exp(-1j*k_sym*z_sym) \ *sympy.exp(1j*sympy.atan(z_sym/z_r_sym)) # *sympy.exp(-1j*k_sym*(x_sym**2+y_sym**2)*R_sym/2) \ # -- Symbolic expressions for summation phi/psi = sum_m phi^(2m)/psi^(2m+1) phi = phi_0 psi = 1j/k*sympy.diff(phi_0,x_sym) weginer_phi = sympy.S.Zero weginer_psi = sympy.S.Zero phi_aj = [sympy.S.Zero] phi_sj = [sympy.S.Zero] psi_aj = [sympy.S.Zero] psi_sj = [sympy.S.Zero] # -- Symbolic expressions for specific values of m, to be used in the loop. phi_2m = phi psi_2mp1 = psi # -- We compute the derivatives analytically. derivatives = [] for i in range(1,2*m_max+1): derivatives.append(sympy.diff(phi_0,z_sym,i)) # -- We evaluate the higher-order terms. for m in range(1,m_max+1): phi_2m = sympy.S.Zero for p in range(1,m+1): # -- We evaluate the product between the z factor and the derivative, # -- and add it to the symbolic expression. polynomial = z_sym**p*derivatives[m+p-2] phi_2m += ExpansionCoefficient(m,p)*polynomial phi_2m *= (1j/(2*k))**m psi_2mp1 = 1j/k*(sympy.diff(phi_2m,x_sym)+sympy.diff(psi_2mp1,z_sym)) phi += phi_2m psi += psi_2mp1 phi_aj.append() # -- Weginer transformation. numerator = sympy.S.Zero denominator = sympy.S.Zero for j in range(m+1): s_j = sympy.S.Zero for i in range(j+1): s_j += numerator += (-1)**j*sympy.binomial(m,j)*sympy.rf(1+j,m-1) # -- We evaluate the magnetic field. Bx_sym = sympy.diff(psi, y_sym)/(1j*k) By_sym = (sympy.diff(phi, z_sym)-sympy.diff(psi,x_sym))/(1j*k) Bz_sym = -sympy.diff(phi, y_sym)/(1j*k) # -- We lambdify the expressions and evaluate them. Ex = sympy.lambdify((x_sym,y_sym,z_sym,k_sym,w_0_sym), phi) Ez = sympy.lambdify((x_sym,y_sym,z_sym,k_sym,w_0_sym), psi) Bx = sympy.lambdify((x_sym,y_sym,z_sym,k_sym,w_0_sym), Bx_sym) By = sympy.lambdify((x_sym,y_sym,z_sym,k_sym,w_0_sym), By_sym) Bz = sympy.lambdify((x_sym,y_sym,z_sym,k_sym,w_0_sym), Bz_sym) return Ex(X,Y,z,k,w_0), np.zeros_like(Ex(X,Y,z,k,w_0)), Ez(X,Y,z,k,w_0), Bx(X,Y,z,k,w_0), By(X,Y,z,k,w_0), Bz(X,Y,z,k,w_0)
def test_rf_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(nan, y) is nan assert rf(x, nan) is nan assert unchanged(rf, x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) is oo assert rf(-oo, 7) is -oo assert rf(-oo, 6) is oo assert rf(oo, -6) is oo assert rf(-oo, -7) is oo assert rf(-1, pi) == 0 assert rf(-5, 1 + I) == 0 assert unchanged(rf, -3, k) assert unchanged(rf, x, Symbol('k', integer=False)) assert rf(-3, Symbol('k', integer=False)) == 0 assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0 assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x * (x + 1) assert rf(x, 3) == x * (x + 1) * (x + 2) assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4) assert rf(x, -1) == 1 / (x - 1) assert rf(x, -2) == 1 / ((x - 1) * (x - 2)) assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3 * x, 2) == (x**2 + 3 * x) * (x**2 + 3 * x + 1) assert isinstance(rf(x**2 + 3 * x, 2), Mul) assert rf(x**3 + x, -2) == 1 / ((x**3 + x - 1) * (x**3 + x - 2)) assert rf(Poly(x**2 + 3 * x, x), 2) == Poly(x**4 + 8 * x**3 + 19 * x**2 + 12 * x, x) assert isinstance(rf(Poly(x**2 + 3 * x, x), 2), Poly) raises(ValueError, lambda: rf(Poly(x**2 + 3 * x, x, y), 2)) assert rf(Poly(x**3 + x, x), -2) == 1 / (x**6 - 9 * x**5 + 35 * x**4 - 75 * x**3 + 94 * x**2 - 66 * x + 20) raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2)) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(binomial) == factorial(k) * binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == \ factorial(n + k - 1) / factorial(n - 1) assert rf(x, y).rewrite(factorial) == rf(x, y) assert rf(x, y).rewrite(binomial) == rf(x, y) import random from mpmath import rf as mpmath_rf for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
def test_rf_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(nan, y) is nan assert rf(x, nan) is nan assert unchanged(rf, x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) is oo assert rf(-oo, 7) is -oo assert rf(-oo, 6) is oo assert rf(oo, -6) is oo assert rf(-oo, -7) is oo assert rf(-1, pi) == 0 assert rf(-5, 1 + I) == 0 assert unchanged(rf, -3, k) assert unchanged(rf, x, Symbol('k', integer=False)) assert rf(-3, Symbol('k', integer=False)) == 0 assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0 assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x*(x + 1) assert rf(x, 3) == x*(x + 1)*(x + 2) assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4) assert rf(x, -1) == 1/(x - 1) assert rf(x, -2) == 1/((x - 1)*(x - 2)) assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1) assert isinstance(rf(x**2 + 3*x, 2), Mul) assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2)) assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x) assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly) raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2)) assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20) raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2)) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False def check(x, k, o, n): a, b = Dummy(), Dummy() r = lambda x, k: o(a, b).rewrite(n).subs({a:x,b:k}) for i in range(-5,5): for j in range(-5,5): assert o(i, j) == r(i, j), (o, n, i, j) check(x, k, rf, ff) check(x, k, rf, binomial) check(n, k, rf, factorial) check(x, y, rf, factorial) check(x, y, rf, binomial) assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(gamma) == Piecewise( (gamma(k + x)/gamma(x), x > 0), ((-1)**k*gamma(1 - x)/gamma(-k - x + 1), True)) assert rf(5, k).rewrite(gamma) == gamma(k + 5)/24 assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == Piecewise( (factorial(k + n - 1)/factorial(n - 1), n > 0), ((-1)**k*factorial(-n)/factorial(-k - n), True)) assert rf(5, k).rewrite(factorial) == factorial(k + 4)/24 assert rf(x, y).rewrite(factorial) == rf(x, y) assert rf(x, y).rewrite(binomial) == rf(x, y) import random from mpmath import rf as mpmath_rf for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
def test_gammasimp(): R = Rational # was part of test_combsimp_gamma() in test_combsimp.py assert gammasimp(gamma(x)) == gamma(x) assert gammasimp(gamma(x + 1)/x) == gamma(x) assert gammasimp(gamma(x)/(x - 1)) == gamma(x - 1) assert gammasimp(x*gamma(x)) == gamma(x + 1) assert gammasimp((x + 1)*gamma(x + 1)) == gamma(x + 2) assert gammasimp(gamma(x + y)*(x + y)) == gamma(x + y + 1) assert gammasimp(x/gamma(x + 1)) == 1/gamma(x) assert gammasimp((x + 1)**2/gamma(x + 2)) == (x + 1)/gamma(x + 1) assert gammasimp(x*gamma(x) + gamma(x + 3)/(x + 2)) == \ (x + 2)*gamma(x + 1) assert gammasimp(gamma(2*x)*x) == gamma(2*x + 1)/2 assert gammasimp(gamma(2*x)/(x - S(1)/2)) == 2*gamma(2*x - 1) assert gammasimp(gamma(x)*gamma(1 - x)) == pi/sin(pi*x) assert gammasimp(gamma(x)*gamma(-x)) == -pi/(x*sin(pi*x)) assert gammasimp(1/gamma(x + 3)/gamma(1 - x)) == \ sin(pi*x)/(pi*x*(x + 1)*(x + 2)) assert gammasimp(factorial(n + 2)) == gamma(n + 3) assert gammasimp(binomial(n, k)) == \ gamma(n + 1)/(gamma(k + 1)*gamma(-k + n + 1)) assert powsimp(gammasimp( gamma(x)*gamma(x + S(1)/2)*gamma(y)/gamma(x + y))) == \ 2**(-2*x + 1)*sqrt(pi)*gamma(2*x)*gamma(y)/gamma(x + y) assert gammasimp(1/gamma(x)/gamma(x - S(1)/3)/gamma(x + S(1)/3)) == \ 3**(3*x - S(3)/2)/(2*pi*gamma(3*x - 1)) assert simplify( gamma(S(1)/2 + x/2)*gamma(1 + x/2)/gamma(1 + x)/sqrt(pi)*2**x) == 1 assert gammasimp(gamma(S(-1)/4)*gamma(S(-3)/4)) == 16*sqrt(2)*pi/3 assert powsimp(gammasimp(gamma(2*x)/gamma(x))) == \ 2**(2*x - 1)*gamma(x + S(1)/2)/sqrt(pi) # issue 6792 e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2 assert gammasimp(e) == -k assert gammasimp(1/e) == -1/k e = (gamma(x) + gamma(x + 1))/gamma(x) assert gammasimp(e) == x + 1 assert gammasimp(1/e) == 1/(x + 1) e = (gamma(x) + gamma(x + 2))*(gamma(x - 1) + gamma(x))/gamma(x) assert gammasimp(e) == (x**2 + x + 1)*gamma(x + 1)/(x - 1) e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2 assert gammasimp(e**2) == k**2 assert gammasimp(e**2/gamma(k + 1)) == k/gamma(k) a = R(1, 2) + R(1, 3) b = a + R(1, 3) assert gammasimp(gamma(2*k)/gamma(k)*gamma(k + a)*gamma(k + b)) 3*2**(2*k + 1)*3**(-3*k - 2)*sqrt(pi)*gamma(3*k + R(3, 2))/2 # issue 9699 assert gammasimp((x + 1)*factorial(x)/gamma(y)) == gamma(x + 2)/gamma(y) assert gammasimp(rf(x + n, k)*binomial(n, k)) == gamma(n + 1)*gamma(k + n + x)/(gamma(k + 1)*gamma(n + x)*gamma(-k + n + 1)) A, B = symbols('A B', commutative=False) assert gammasimp(e*B*A) == gammasimp(e)*B*A # check iteration assert gammasimp(gamma(2*k)/gamma(k)*gamma(-k - R(1, 2))) == ( -2**(2*k + 1)*sqrt(pi)/(2*((2*k + 1)*cos(pi*k)))) assert gammasimp( gamma(k)*gamma(k + R(1, 3))*gamma(k + R(2, 3))/gamma(3*k/2)) == ( 3*2**(3*k + 1)*3**(-3*k - S.Half)*sqrt(pi)*gamma(3*k/2 + S.Half)/2) # issue 6153 assert gammasimp(gamma(S(1)/4)/gamma(S(5)/4)) == 4 # was part of test_combsimp() in test_combsimp.py assert gammasimp(binomial(n + 2, k + S(1)/2)) == gamma(n + 3)/ \ (gamma(k + S(3)/2)*gamma(-k + n + S(5)/2)) assert gammasimp(binomial(n + 2, k + 2.0)) == \ gamma(n + 3)/(gamma(k + 3.0)*gamma(-k + n + 1)) # issue 11548 assert gammasimp(binomial(0, x)) == sin(pi*x)/(pi*x) e = gamma(n + S(1)/3)*gamma(n + S(2)/3) assert gammasimp(e) == e assert gammasimp(gamma(4*n + S(1)/2)/gamma(2*n - S(3)/4)) == \ 2**(4*n - S(5)/2)*(8*n - 3)*gamma(2*n + S(3)/4)/sqrt(pi) i, m = symbols('i m', integer = True) e = gamma(exp(i)) assert gammasimp(e) == e e = gamma(m + 3) assert gammasimp(e) == e e = gamma(m + 1)/(gamma(i + 1)*gamma(-i + m + 1)) assert gammasimp(e) == e p = symbols("p", integer=True, positive=True) assert gammasimp(gamma(-p+4)) == gamma(-p+4)
def test_F1(): assert rf(x, 3) == x*(1 + x)*(2 + x)