def curv(f_x, f_y): subst=[(s_cos(x),cos(f_x)),(s_sin(y),sin(f_y))] # subst=[(x,f_x),(y,f_y)] return fxx.subs(subst)+fyy.subs(subst)
from sympy import Symbol, cos as s_cos, sin as s_sin from math import cos, sin x=Symbol('x') y=Symbol('y') f=1.4+s_cos(x)+s_sin(y) fxx=f.diff(x,2) fyy=f.diff(y,2) def curv(f_x, f_y): subst=[(s_cos(x),cos(f_x)),(s_sin(y),sin(f_y))] # subst=[(x,f_x),(y,f_y)] return fxx.subs(subst)+fyy.subs(subst) def integral_curv(xmin, xmax, ymin, ymax, xsteps, ysteps): sum=0 xstep=(xmax-xmin)/xsteps ystep=(ymax-ymin)/ysteps for i in xrange(xsteps): for j in xrange(ysteps): sum+=curv(xmin+i*xstep, ymin+j*ystep)*xstep*ystep return sum