Ejemplo n.º 1
0
def test_issue_12005():
    e1 = Subs(Derivative(f(x), x), x, x)
    assert e1.diff(x) == Derivative(f(x), x, x)
    e2 = Subs(Derivative(f(x), x), x, x**2 + 1)
    assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1)
    e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2)
    assert e3.diff(y) == 4*y
    e4 = Subs(Derivative(f(x + y), y), y, (x**2))
    assert e4.diff(y) == S.Zero
    e5 = Subs(Derivative(f(x), x), (y, z), (y, z))
    assert e5.diff(x) == Derivative(f(x), x, x)
    assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x))
Ejemplo n.º 2
0
def test_issue_12005():
    e1 = Subs(Derivative(f(x), x), x, x)
    assert e1.diff(x) == Derivative(f(x), x, x)
    e2 = Subs(Derivative(f(x), x), x, x**2 + 1)
    assert e2.diff(x) == 2 * x * Subs(Derivative(f(x), x, x), x, x**2 + 1)
    e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2)
    assert e3.diff(y) == 4 * y
    e4 = Subs(Derivative(f(x + y), y), y, (x**2))
    assert e4.diff(y) is S.Zero
    e5 = Subs(Derivative(f(x), x), (y, z), (y, z))
    assert e5.diff(x) == Derivative(f(x), x, x)
    assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x))
def test_Subs():
    assert Subs(x, x, 0) == Subs(y, y, 0)
    assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
    assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y, z), (x, y, z), (0, 0, 1))
    assert Subs(f(x, y), (x, y, z), (0, 1, 1)) == \
        Subs(f(x, y), (x, y, z), (0, 1, 2))
    assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
    raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1))
    assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == {y, z}

    assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
        2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0)

    e = Subs(y**2 * f(x), x, y)
    assert e.diff(y) == e.doit().diff(
        y) == y**2 * Derivative(f(y), y) + 2 * y * f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0)
    e1 = Subs(z * f(x), x, 1)
    e2 = Subs(z * f(y), y, 1)
    assert e1 + e2 == 2 * e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z * f(x + 1), x, 1) not in [e1, e2]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
    assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x),
                                                      (x, ), (x + y))
    assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
        Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
        z + Rational('1/2').n(2)*f(0)

    assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
    assert (x * f(x).diff(x).subs(x, 0)).subs(
        x, y) == y * f(x).diff(x).subs(x, 0)
Ejemplo n.º 4
0
def test_Subs():
    assert Subs(x, x, 0) == Subs(y, y, 0)
    assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
    assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y, z), (x, y, z), (0, 0, 1))
    assert Subs(f(x, y), (x, y, z), (0, 1, 1)) == \
        Subs(f(x, y), (x, y, z), (0, 1, 2))
    assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
    raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1))
    assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == {y, z}

    assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
        2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0)

    e = Subs(y**2*f(x), x, y)
    assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0)
    e1 = Subs(z*f(x), x, 1)
    e2 = Subs(z*f(y), y, 1)
    assert e1 + e2 == 2*e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
    assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x),
        (x,), (x + y))
    assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
        Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
        z + Rational('1/2').n(2)*f(0)

    assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
    assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0)
Ejemplo n.º 5
0
def test_Subs():
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f = Function('f')
    g = Function('g')

    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, 'Subs(f(x, y), (x, y), (0, 0, 1))')
    raises(ValueError, 'Subs(f(x, y), (x, x, y), (0, 0, 1))')

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert all([
        isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables
    ])
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1))
    assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0)
    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == set([y, z])

    assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
            2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0)

    e = Subs(y**2 * f(x), x, y)
    assert e.diff(y) == e.doit().diff(
        y) == y**2 * Derivative(f(y), y) + 2 * y * f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0)
    e1 = Subs(z * f(x), x, 1)
    e2 = Subs(z * f(y), y, 1)
    assert e1 + e2 == 2 * e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z * f(x + 1), x, 1) not in [e1, e2]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
Ejemplo n.º 6
0
def test_Subs():
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f = Function('f')
    g = Function('g')

    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, 'Subs(f(x, y), (x, y), (0, 0, 1))')
    raises(ValueError, 'Subs(f(x, y), (x, x, y), (0, 0, 1))')

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert all(isinstance(v, Dummy) for v in Subs(f(x, y),
        (x, y), (0, 1)).variables)
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1))
    assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0)
    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == set([y, z])

    assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0)
    assert Subs(1+f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
            2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0)

    e = Subs(y**2*f(x), x, y)
    assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0)
    e1 = Subs(z*f(x), x, 1)
    e2 = Subs(z*f(y), y, 1)
    assert e1 + e2 == 2*e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z*f(x+1), x, 1) not in [ e1, e2 ]
    assert Derivative(f(x),x).subs(x,g(x)) == Derivative(f(g(x)),g(x))
Ejemplo n.º 7
0
def test_Subs():
    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, 'Subs(f(x, y), (x, y), (0, 0, 1))')
    raises(ValueError, 'Subs(f(x, y), (x, x, y), (0, 0, 1))')

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert all(
        isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables)
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1))
    assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0)
    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == set([y, z])

    assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
            2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0)

    e = Subs(y**2 * f(x), x, y)
    assert e.diff(y) == e.doit().diff(
        y) == y**2 * Derivative(f(y), y) + 2 * y * f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0)
    e1 = Subs(z * f(x), x, 1)
    e2 = Subs(z * f(y), y, 1)
    assert e1 + e2 == 2 * e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z * f(x + 1), x, 1) not in [e1, e2]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
    assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(1) == \
        Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(1) == \
        z + Rational('1/2').n(1)*f(0)
Ejemplo n.º 8
0
def test_Subs():
    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x ** 2), x ** 2, 0).doit() == f(0)
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, "Subs(f(x, y), (x, y), (0, 0, 1))")
    raises(ValueError, "Subs(f(x, y), (x, x, y), (0, 0, 1))")

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert all(isinstance(v, Dummy) for v in Subs(f(x, y), (x, y), (0, 1)).variables)
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1))
    assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1) == Subs(f(x), x, 0)
    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == set([y, z])

    assert Subs(f(x).diff(x), x, 0).doit() == Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit() == 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y * f(x, y).diff(x), (x, y), (0, 2)).doit() == 2 * Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y ** 2 * f(x), x, 0).diff(y) == 2 * y * f(0)

    e = Subs(y ** 2 * f(x), x, y)
    assert e.diff(y) == e.doit().diff(y) == y ** 2 * Derivative(f(y), y) + 2 * y * f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0)
    e1 = Subs(z * f(x), x, 1)
    e2 = Subs(z * f(y), y, 1)
    assert e1 + e2 == 2 * e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z * f(x + 1), x, 1) not in [e1, e2]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
    assert (
        Subs(f(x) * cos(y) + z, (x, y), (0, pi / 3)).n(1)
        == Subs(f(x) * cos(y) + z, (x, y), (0, pi / 3)).evalf(1)
        == z + Rational("1/2").n(1) * f(0)
    )
Ejemplo n.º 9
0
def test_Subs():
    assert Subs(1, (), ()) is S.One
    # check null subs influence on hashing
    assert Subs(x, y, z) != Subs(x, y, 1)
    # neutral subs works
    assert Subs(x, x, 1).subs(x, y).has(y)
    # self mapping var/point
    assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x)
    assert Subs(x, x, 0).has(x)  # it's a structural answer
    assert not Subs(x, x, 0).free_symbols
    assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1))
    assert Subs(x, (x, ), (0, )) == Subs(x, x, 0)
    assert Subs(x, x, 0) == Subs(y, y, 0)
    assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
    assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y, z), (x, y, z), (0, 0, 1))
    assert Subs(x, y, 2).subs(x, y).doit() == 2
    assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
    raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x) * y, (x, y), (0, 1)) == Subs(f(y) * x, (y, x), (0, 1))
    assert Subs(f(x) * y, (x, y), (1, 1)) == Subs(f(y) * x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y * f(x), x, y).subs(y, 2) == Subs(2 * f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2 * y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == {y, z}

    assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
        2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2 * f(x), x, 0).diff(y) == 2 * y * f(0)

    e = Subs(y**2 * f(x), x, y)
    assert e.diff(y) == e.doit().diff(
        y) == y**2 * Derivative(f(y), y) + 2 * y * f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2 * Subs(f(x), x, 0)
    e1 = Subs(z * f(x), x, 1)
    e2 = Subs(z * f(y), y, 1)
    assert e1 + e2 == 2 * e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z * f(x + 1), x, 1) not in [e1, e2]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
    assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x,
                                                      x + y)
    assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
        Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
        z + Rational('1/2').n(2)*f(0)

    assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
    assert (x * f(x).diff(x).subs(x, 0)).subs(
        x, y) == y * f(x).diff(x).subs(x, 0)
    assert Subs(Derivative(g(x)**2, g(x), x), g(x),
                exp(x)).doit() == 2 * exp(x)
    assert Subs(Derivative(g(x)**2, g(x), x), g(x),
                exp(x)).doit(deep=False) == 2 * Derivative(exp(x), x)
    assert Derivative(
        f(x, g(x)),
        x).doit() == Derivative(f(x, g(x)), g(x)) * Derivative(g(x), x) + Subs(
            Derivative(f(y, g(x)), y), y, x)
Ejemplo n.º 10
0
def test_Subs():
    assert Subs(1, (), ()) is S.One
    # check null subs influence on hashing
    assert Subs(x, y, z) != Subs(x, y, 1)
    # neutral subs works
    assert Subs(x, x, 1).subs(x, y).has(y)
    # self mapping var/point
    assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x)
    assert Subs(x, x, 0).has(x)  # it's a structural answer
    assert not Subs(x, x, 0).free_symbols
    assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1))
    assert Subs(x, (x,), (0,)) == Subs(x, x, 0)
    assert Subs(x, x, 0) == Subs(y, y, 0)
    assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0)
    assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0)
    assert Subs(f(x), x, 0).doit() == f(0)
    assert Subs(f(x**2), x**2, 0).doit() == f(0)
    assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y, z), (x, y, z), (0, 0, 1))
    assert Subs(x, y, 2).subs(x, y).doit() == 2
    assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \
        Subs(f(x, y) + z, (x, y, z), (0, 1, 0))
    assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1)
    assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1)
    raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1)))
    raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1)))

    assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2
    assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1)

    assert Subs(f(x), x, 0) == Subs(f(y), y, 0)
    assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0))
    assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1))
    assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1))

    assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0)
    assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0)
    assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2)
    assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y

    assert Subs(f(x), x, 0).free_symbols == set([])
    assert Subs(f(x, y), x, z).free_symbols == {y, z}

    assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0)
    assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0)
    assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \
        2*Subs(Derivative(f(x, 2), x), x, 0)
    assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0)

    e = Subs(y**2*f(x), x, y)
    assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y)

    assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0)
    e1 = Subs(z*f(x), x, 1)
    e2 = Subs(z*f(y), y, 1)
    assert e1 + e2 == 2*e1
    assert e1.__hash__() == e2.__hash__()
    assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ]
    assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x))
    assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x),
        x, x + y)
    assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \
        Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \
        z + Rational('1/2').n(2)*f(0)

    assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0)
    assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0)
    assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
        ).doit() == 2*exp(x)
    assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x)
        ).doit(deep=False) == 2*Derivative(exp(x), x)

    assert Derivative(f(x, g(x)), x).doit() == Derivative(g(x), x
        )*Subs(Derivative(f(x, y), y), y, g(x)
        ) + Subs(Derivative(f(y, g(x)), y), y, x)