def lagrangiana_3D(x, y, z, n):
    Lx = Matrix(lagrangiana_1D(x, n))
    Ly = Transpose(Matrix(lagrangiana_1D(y, n)))
    Lz = Transpose(Matrix(lagrangiana_1D(z, n)))
    Lxy = expandir_matriz((Lx * Ly))
    filas = Lxy.shape[0]
    Lxyz = []
    for i in range(filas):
        resultado = expandir_matriz((Lxy[:, i] * Lz))
        Lxyz = np.append(Lxyz, resultado)
    return Lxyz.reshape(filas, filas, filas)
Ejemplo n.º 2
0
def _insert_candidate_into_editor(editor: _EditArrayContraction,
                                  arg_with_ind: _ArgE, candidate: _ArgE,
                                  transpose1: bool, transpose2: bool):
    other = candidate.element
    other_index: int
    if transpose2:
        other = Transpose(other)
        other_index = candidate.indices[0]
    else:
        other_index = candidate.indices[1]
    new_element = (Transpose(arg_with_ind.element)
                   if transpose1 else arg_with_ind.element) * other
    editor.args_with_ind.remove(candidate)
    new_arge = _ArgE(new_element)
    return new_arge, other_index
Ejemplo n.º 3
0
Archivo: G1.py Proyecto: LeilaPrelat/E2
def new_ind_miller(old_ind_miller, old_VPP_RD, new_VPP_RD, dim):
    """
    Parameters
    ----------
    old_ind_miller : [h,k,l] ind de miller de la base vieja
    old_VPP_RD : coordenadas de los viejos vectores primitivos de la red directa 
    (ai,aj,ak)
    new_VPP_RD : coordenadas de los nuevos vectores primitivos de la red directa 
    (a1,a2,a3), quiero los indices de miller en esta base
    dim : dimension de los VPP de la RD 
        
    Returns
    -------
    new_ind_miller : [h,k,l] ind de miller de los new_VPP_RD
    """
    coordi, coordj, coordk = old_VPP_RD
    # ai = Vector(coordi,dim)
    # aj = Vector(coordj,dim)
    # ak = Vector(coordk,dim)

    #   print('VP viejos de la RR:', bi,bj,bk)
    bi, bj, bk = VP_RR(coordi, coordj, coordk)

    coord1, coord2, coord3 = new_VPP_RD
    # a1 = Vector(coord1,dim)
    # a2 = Vector(coord2,dim)
    # a3 = Vector(coord3,dim)

    #   print('VP nuevos de la RR:', b1,b2,b3)
    b1, b2, b3 = VP_RR(coord1, coord2, coord3)

    B_ijk = Matrix_coord([bi, bj, bk])  #base vieja
    B_xyz = Matrix_coord([b1, b2, b3])  #base nueva

    #    print('Cambio de base')

    BT_xyz = Transpose(B_xyz)  #transposer la matriz de coordenadas
    BT_ijk = Transpose(B_ijk)
    C_base = BT_xyz.inv() * BT_ijk
    C_base = np.matrix(C_base)

    ind_nuevo = np.array(C_base.dot(old_ind_miller))[0]

    return ind_nuevo
Ejemplo n.º 4
0
def Matrix_to_dictionary(mat_rep,basis):
    # Convert matrix representation of linear transformation to dictionary
    mat_rep = Transpose(mat_rep)
    dict_rep = {}
    n = len(basis)
    if mat_rep.rows != n or mat_rep.cols != n:
        raise ValueError('Matrix and Basis dimensions not equal for Matrix = ' + str(mat))
    n_range = list(range(n))
    for row in n_range:
        dict_rep[basis[row]] = S(0)
        for col in n_range:
            dict_rep[basis[row]] += mat_rep[row,col]*basis[col]
    return dict_rep
def get_inverse(position, orientation):
    """
    Given the desired position and orientation of the end effector, calculate the required joint angles
    :param position:
    :param orientation:
    :return:
    """
    wc = get_wrist_center(position, orientation)
    theta1, theta2, theta3 = get_first_three_joints(wc)

    r0_3 = (T0_1 * T1_2 * T2_3).evalf(subs={q1: theta1, q2: theta2, q3: theta3})[:3, :3]
    r0_6 = get_corrected_total_rotation(orientation)
    r3_6 = Transpose(r0_3) * r0_6
    theta4, theta5, theta6 = wrist_angles_from_transform(r3_6)
    return theta1, theta2, theta3, theta4, theta5, theta6
Ejemplo n.º 6
0
def Dictionary_to_Matrix(dict_rep, ga):
    """ Convert dictionary representation of linear transformation to matrix """
    lst_mat = []  # list representation of sympy matrix
    for e_row in ga.basis:
        lst_mat_row = len(ga.basis) * [S.Zero]

        element = dict_rep.get(e_row, S.Zero)
        if isinstance(element, mv.Mv):
            element = element.obj
        for coef, base in metric.linear_expand_terms(element):
            index = ga.basis.index(base)
            lst_mat_row[index] = coef

        lst_mat.append(lst_mat_row)
    # expand the transpose
    return Transpose(Matrix(lst_mat)).doit()
Ejemplo n.º 7
0
 def _normalize(self):
     # Normalization of trace of matrix products. Use transposition and
     # cyclic properties of traces to make sure the arguments of the matrix
     # product are sorted and the first argument is not a trasposition.
     from sympy import MatMul, Transpose, default_sort_key
     trace_arg = self.arg
     if isinstance(trace_arg, MatMul):
         indmin = min(range(len(trace_arg.args)),
                      key=lambda x: default_sort_key(trace_arg.args[x]))
         if isinstance(trace_arg.args[indmin], Transpose):
             trace_arg = Transpose(trace_arg).doit()
             indmin = min(range(len(trace_arg.args)),
                          key=lambda x: default_sort_key(trace_arg.args[x]))
         trace_arg = MatMul.fromiter(trace_arg.args[indmin:] +
                                     trace_arg.args[:indmin])
         return Trace(trace_arg)
     return self
Ejemplo n.º 8
0
def Dictionary_to_Matrix(dict_rep, ga):
    # Convert dictionary representation of linear transformation to matrix
    basis = list(dict_rep.keys())
    n = len(basis)
    n_range = list(range(n))
    lst_mat = []  # list representation of sympy matrix
    for row in n_range:
        e_row = ga.basis[row]
        lst_mat_row = n * [S(0)]

        if e_row in basis:  # If not in basis row all zeros
            (coefs,bases) = metric.linear_expand(dict_rep[e_row])
            for (coef,base) in zip(coefs,bases):
                index = basis.index(base)
                lst_mat_row[index] = coef

        lst_mat.append(lst_mat_row)
    return Transpose(Matrix(lst_mat))
Ejemplo n.º 9
0
def Dictionary_to_Matrix(dict_rep, ga):
    """ Convert dictionary representation of linear transformation to matrix """
    basis = list(dict_rep.keys())
    n = len(basis)
    n_range = list(range(n))
    lst_mat = []  # list representation of sympy matrix
    for row in n_range:
        e_row = ga.basis[row]
        lst_mat_row = n * [S.Zero]

        if e_row in basis:  # If not in basis row all zeros
            element = dict_rep[e_row]
            if isinstance(element, mv.Mv):
                element = element.obj
            coefs, bases = metric.linear_expand(element)
            for coef, base in zip(coefs, bases):
                index = ga.basis.index(base)
                lst_mat_row[index] = coef

        lst_mat.append(lst_mat_row)
    return Transpose(Matrix(lst_mat))
Ejemplo n.º 10
0
     ])

Ry = Matrix([
      [cos(theta),0,sin(theta)],
      [0,         1,     0],
      [-sin(theta),0,cos(theta)]
     ])

Rz = Matrix([
      [cos(psi),-sin(psi),0],
      [sin(psi),cos(psi),0],
      [0,          0,    1]
     ])

R = Rz*Rx*Ry
R_T = Transpose(R)
R_dot = diff(R,t)

w_b = R_dot*R_T

print(simplify(w_b))
# print(simplify(R_T*R))


# # phi_d = Matrix([[phi_dot],[0],[0]])
# # t_d = Matrix([[0],[theta_dot],[0]])
# # psi_d = Matrix([[0],[0],[psi_dot]])
#
# phi_d = Matrix([[1],[0],[0]])
# t_d = Matrix([[0],[1],[0]])
# psi_d = Matrix([[0],[0],[1]])
def lagrangiana_2D(x, y, n):
    Lx = Matrix(lagrangiana_1D(x, n))
    Ly = Transpose(Matrix(lagrangiana_1D(y, n)))
    Lxy = expandir_matriz((Lx * Ly))
    return Lxy
Ejemplo n.º 12
0
    Symbol: lambda e, s: d(e) if (e in s) else 0,
    MatrixSymbol: lambda e, s: d(e) if (e in s) else ZeroMatrix(*e.shape),
    SymmetricMatrixSymbol: lambda e, s: d(e) if (e in s) else ZeroMatrix(*e.shape),
    Add: lambda e, s: Add(*[_matDiff_apply(arg, s) for arg in e.args]),
    Mul: lambda e, s: _matDiff_apply(e.args[0], s) if len(e.args)==1 else Mul(_matDiff_apply(e.args[0],s),Mul(*e.args[1:])) + Mul(e.args[0], _matDiff_apply(Mul(*e.args[1:]),s)),
    MatAdd: lambda e, s: MatAdd(*[_matDiff_apply(arg, s) for arg in e.args]),
    MatMul: lambda e, s: _matDiff_apply(e.args[0], s) if len(e.args)==1 else MatMul(_matDiff_apply(e.args[0],s),MatMul(*e.args[1:])) + MatMul(e.args[0], _matDiff_apply(MatMul(*e.args[1:]),s)),
    Kron: lambda e, s: _matDiff_apply(e.args[0],s) if len(e.args)==1 else Kron(_matDiff_apply(e.args[0],s),Kron(*e.args[1:]))
                  + Kron(e.args[0],_matDiff_apply(Kron(*e.args[1:]),s)),
    Determinant: lambda e, s: MatMul(Determinant(e.args[0]), Trace(e.args[0].I*_matDiff_apply(e.args[0], s))), 
    # inverse always has 1 arg, so we index
    Inverse: lambda e, s: -Inverse(e.args[0]) * _matDiff_apply(e.args[0], s) * Inverse(e.args[0]),
    # trace always has 1 arg
    Trace: lambda e, s: Trace(_matDiff_apply(e.args[0], s)),
    # transpose also always has 1 arg, index
    Transpose: lambda e, s: Transpose(_matDiff_apply(e.args[0], s))
    }


def _matDiff_apply(expr, syms):
    if expr.__class__ in list(MATRIX_DIFF_RULES.keys()):
        return MATRIX_DIFF_RULES[expr.__class__](expr, syms)
    elif expr.is_constant():
        return 0
    else:
        raise TypeError("Don't know how to differentiate class %s", expr.__class__) 


def _diff_to_grad(expr, s):
    # if expr is a trace, sum of traces, or scalar times a trace, we can do it
    # scalar times a trace 
Ejemplo n.º 13
0
 def _eval_transpose(self):
     from sympy import Transpose
     return self.func(self.function, Transpose(self.expr).doit())
Ejemplo n.º 14
0
def identify_hadamard_products(expr: Union[ArrayContraction, ArrayDiagonal]):
    mapping = _get_mapping_from_subranks(expr.subranks)

    editor: _EditArrayContraction
    if isinstance(expr, ArrayContraction):
        editor = _EditArrayContraction(expr)
    elif isinstance(expr, ArrayDiagonal):
        if isinstance(expr.expr, ArrayContraction):
            editor = _EditArrayContraction(expr.expr)
            diagonalized = ArrayContraction._push_indices_down(
                expr.expr.contraction_indices, expr.diagonal_indices)
        elif isinstance(expr.expr, ArrayTensorProduct):
            editor = _EditArrayContraction(None)
            editor.args_with_ind = [
                _ArgE(arg) for i, arg in enumerate(expr.expr.args)
            ]
            diagonalized = expr.diagonal_indices
        else:
            raise NotImplementedError("not implemented")

        # Trick: add diagonalized indices as negative indices into the editor object:
        for i, e in enumerate(diagonalized):
            for j in e:
                arg_pos, rel_pos = mapping[j]
                editor.args_with_ind[arg_pos].indices[rel_pos] = -1 - i

    map_contr_to_args: Dict[FrozenSet, List[_ArgE]] = defaultdict(list)
    map_ind_to_inds = defaultdict(int)
    for arg_with_ind in editor.args_with_ind:
        for ind in arg_with_ind.indices:
            map_ind_to_inds[ind] += 1
        if None in arg_with_ind.indices:
            continue
        map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind)

    k: FrozenSet[int]
    v: List[_ArgE]
    for k, v in map_contr_to_args.items():
        if len(k) != 2:
            # Hadamard product only defined for matrices:
            continue
        if len(v) == 1:
            # Hadamard product with a single argument makes no sense:
            continue
        for ind in k:
            if map_ind_to_inds[ind] <= 2:
                # There is no other contraction, skip:
                continue

        # Check if expression is a trace:
        if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]):
            # This is a trace
            continue

        # This is a Hadamard product:

        def check_transpose(x):
            x = [i if i >= 0 else -1 - i for i in x]
            return x == sorted(x)

        hp = hadamard_product(*[
            i.element if check_transpose(i.indices) else Transpose(i.element)
            for i in v
        ])
        hp_indices = v[0].indices
        if not check_transpose(v[0].indices):
            hp_indices = list(reversed(hp_indices))
        editor.insert_after(v[0], _ArgE(hp, hp_indices))
        for i in v:
            editor.args_with_ind.remove(i)

    # Count the ranks of the arguments:
    counter = 0
    # Create a collector for the new diagonal indices:
    diag_indices = defaultdict(list)

    count_index_freq = Counter()
    for arg_with_ind in editor.args_with_ind:
        count_index_freq.update(Counter(arg_with_ind.indices))

    free_index_count = count_index_freq[None]

    # Construct the inverse permutation:
    inv_perm1 = []
    inv_perm2 = []
    # Keep track of which diagonal indices have already been processed:
    done = set([])

    # Counter for the diagonal indices:
    counter4 = 0

    for arg_with_ind in editor.args_with_ind:
        # If some diagonalization axes have been removed, they should be
        # permuted in order to keep the permutation.
        # Add permutation here
        counter2 = 0  # counter for the indices
        for i in arg_with_ind.indices:
            if i is None:
                inv_perm1.append(counter4)
                counter2 += 1
                counter4 += 1
                continue
            if i >= 0:
                continue
            # Reconstruct the diagonal indices:
            diag_indices[-1 - i].append(counter + counter2)
            if count_index_freq[i] == 1 and i not in done:
                inv_perm1.append(free_index_count - 1 - i)
                done.add(i)
            elif i not in done:
                inv_perm2.append(free_index_count - 1 - i)
                done.add(i)
            counter2 += 1
        # Remove negative indices to restore a proper editor object:
        arg_with_ind.indices = [
            i if i is not None and i >= 0 else None
            for i in arg_with_ind.indices
        ]
        counter += len([i for i in arg_with_ind.indices if i is None or i < 0])

    inverse_permutation = inv_perm1 + inv_perm2
    permutation = _af_invert(inverse_permutation)

    if isinstance(expr, ArrayContraction):
        return editor.to_array_contraction()
    else:
        # Get the diagonal indices after the detection of HadamardProduct in the expression:
        diag_indices_filtered = [
            tuple(v) for v in diag_indices.values() if len(v) > 1
        ]

        expr1 = editor.to_array_contraction()
        expr2 = ArrayDiagonal(expr1, *diag_indices_filtered)
        expr3 = PermuteDims(expr2, permutation)
        return expr3
Ejemplo n.º 15
0
def _a2m_transpose(arg):
    if isinstance(arg, _CodegenArrayAbstract):
        return PermuteDims(arg, [1, 0])
    else:
        from sympy import Transpose
        return Transpose(arg).doit()
def test_arrayexpr_convert_matrix_to_array():

    expr = M * N
    result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
    assert convert_matrix_to_array(expr) == result

    expr = M * N * M
    result = ArrayContraction(ArrayTensorProduct(M, N, M), (1, 2), (3, 4))
    assert convert_matrix_to_array(expr) == result

    expr = Transpose(M)
    assert convert_matrix_to_array(expr) == PermuteDims(M, [1, 0])

    expr = M * Transpose(N)
    assert convert_matrix_to_array(expr) == ArrayContraction(
        ArrayTensorProduct(M, PermuteDims(N, [1, 0])), (1, 2))

    expr = 3 * M * N
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = 3 * M + N * M.T * M + 4 * k * N
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = Inverse(M) * N
    rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
    assert expr == rexpr

    expr = M**2
    rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
    assert expr == rexpr

    expr = M * (2 * N + 3 * M)
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = Trace(M)
    result = ArrayContraction(M, (0, 1))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(M)
    result = ArrayContraction(ArrayTensorProduct(3, M), (0, 1))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(Trace(M) * M)
    result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(M)**2
    result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardProduct(M, N)
    result = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M, 2)
    result = ArrayDiagonal(ArrayTensorProduct(M, M), (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = M**2
    assert isinstance(expr, MatPow)
    assert convert_matrix_to_array(expr) == ArrayContraction(
        ArrayTensorProduct(M, M), (1, 2))

    expr = a.T * b
    cg = convert_matrix_to_array(expr)
    assert cg == ArrayContraction(ArrayTensorProduct(a, b), (0, 2))
Ejemplo n.º 17
0
# + {"slideshow": {"slide_type": "fragment"}}
x, y, z = sym.symbols('x y z')
Matrix([sin(x) + y, cos(y) + x, z]).jacobian([x, y, z])

# + [markdown] {"slideshow": {"slide_type": "slide"}}
# ## Matrix symbols
#
# SymPy can also operate on matrices of symbolic dimension ($n \times m$). `MatrixSymbol("M", n, m)` creates a matrix $M$ of shape $n \times m$. 

# + {"slideshow": {"slide_type": "fragment"}}
from sympy import MatrixSymbol, Transpose

n, m = sym.symbols('n m', integer=True)
M = MatrixSymbol("M", n, m)
b = MatrixSymbol("b", m, 1)
Transpose(M*b)

# + {"slideshow": {"slide_type": "fragment"}}
Transpose(M*b).doit()

# + [markdown] {"slideshow": {"slide_type": "slide"}}
# ## Solving systems of equations
#
# `solve` solves equations symbolically (not numerically). The return value is a list of solutions. It automatically assumes that it is equal to 0.

# + {"slideshow": {"slide_type": "fragment"}}
from sympy import Eq, solve
solve(Eq(x**2, 4), x)

# + {"slideshow": {"slide_type": "fragment"}}
solve(x**2 + 3*x - 3, x)
Ejemplo n.º 18
0
def _support_function_tp1_recognize(contraction_indices, args):
    subranks = [get_rank(i) for i in args]
    coeff = reduce(lambda x, y: x * y,
                   [arg for arg, srank in zip(args, subranks) if srank == 0],
                   S.One)
    mapping = _get_mapping_from_subranks(subranks)
    new_contraction_indices = list(contraction_indices)
    newargs = args[:]  # make a copy of the list
    removed = [None for i in newargs]
    cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
    new_perms = [
        list(range(cumul[i], cumul[i + 1])) for i, arg in enumerate(args)
    ]
    for pi, contraction_pair in enumerate(contraction_indices):
        if len(contraction_pair) != 2:
            continue
        i1, i2 = contraction_pair
        a1, e1 = mapping[i1]
        a2, e2 = mapping[i2]
        while removed[a1] is not None:
            a1, e1 = removed[a1]
        while removed[a2] is not None:
            a2, e2 = removed[a2]
        if a1 == a2:
            trace_arg = newargs[a1]
            newargs[a1] = Trace(trace_arg)._normalize()
            new_contraction_indices[pi] = None
            continue
        if not isinstance(newargs[a1], MatrixExpr) or not isinstance(
                newargs[a2], MatrixExpr):
            continue
        arg1 = newargs[a1]
        arg2 = newargs[a2]
        if (e1 == 1 and e2 == 1) or (e1 == 0 and e2 == 0):
            arg2 = Transpose(arg2)
        if e1 == 1:
            argnew = arg1 * arg2
        else:
            argnew = arg2 * arg1
        removed[a2] = a1, e1
        new_perms[a1][e1] = new_perms[a2][1 - e2]
        new_perms[a2] = None
        newargs[a1] = argnew
        newargs[a2] = None
        new_contraction_indices[pi] = None
    new_contraction_indices = [
        i for i in new_contraction_indices if i is not None
    ]
    newargs2 = [arg for arg in newargs if arg is not None]
    if len(newargs2) == 0:
        return coeff
    tp = _a2m_tensor_product(*newargs2)
    tc = ArrayContraction(tp, *new_contraction_indices)
    new_perms2 = ArrayContraction._push_indices_up(
        contraction_indices, [i for i in new_perms if i is not None])
    permutation = _af_invert(
        [j for i in new_perms2 for j in i if j is not None])
    if permutation == [1, 0] and len(newargs2) == 1:
        return Transpose(newargs2[0]).doit()
    tperm = PermuteDims(tc, permutation)
    return tperm