def test_build_table__with_pandas_DataFrame():
    df = pd.DataFrame(dict(a=[1, 2, 3], b=["c", "d", "e"]))
    table = build_table("test", "syn123", df)

    for i, row in enumerate(table):
        assert_equals(row[0], (i+1))
        assert_equals(row[1], ["c", "d", "e"][i])
    assert_equals(len(table), 3)
    headers = [
        {'name': 'a', 'columnType': 'INTEGER'},
        {'name': 'b', 'columnType': 'STRING'}
    ]
    assert_equals(headers, table.headers)
def test_build_table__with_pandas_DataFrame():
    df = pd.DataFrame(dict(a=[1, 2, 3], b=["c", "d", "e"]))
    table = build_table("test", "syn123", df)

    for i, row in enumerate(table):
        assert row[0] == (i + 1)
        assert row[1] == ["c", "d", "e"][i]
    assert len(table) == 3
    headers = [
        {'name': 'a', 'columnType': 'INTEGER'},
        {'name': 'b', 'columnType': 'STRING'}
    ]
    assert headers == table.headers
Ejemplo n.º 3
0
def test_build_table__with_pandas_DataFrame():
    df = pd.DataFrame(dict(a=[1, 2, 3], b=["c", "d", "e"]))
    table = build_table("test", "syn123", df)

    for i, row in enumerate(table):
        assert_equals(row[0], (i + 1))
        assert_equals(row[1], ["c", "d", "e"][i])
    assert_equals(len(table), 3)
    headers = [{
        'name': 'a',
        'columnType': 'INTEGER'
    }, {
        'name': 'b',
        'columnType': 'STRING'
    }]
    assert_equals(headers, table.headers)
def test_build_table__with_csv():
    string_io = StringIOContextManager('a,b\n'
                                       '1,c\n'
                                       '2,d\n'
                                       '3,e')
    with patch.object(synapseclient.table, "as_table_columns",
                      return_value=[Column(name="a", columnType="INTEGER"),
                                    Column(name="b", columnType="STRING")]),\
         patch.object(io, "open", return_value=string_io):
        table = build_table("test", "syn123", "some_file_name")
        for col, row in enumerate(table):
            assert_equals(row[0], (col + 1))
            assert_equals(row[1], ["c", "d", "e"][col])
        assert_equals(len(table), 3)
        headers = [
            {'name': 'a', 'columnType': 'INTEGER'},
            {'name': 'b', 'columnType': 'STRING'}
        ]
        assert_equals(headers, table.headers)
Ejemplo n.º 5
0
def test_build_table__with_csv():
    string_io = StringIOContextManager('a,b\n' '1,c\n' '2,d\n' '3,e')
    with patch.object(synapseclient.table, "as_table_columns",
                      return_value=[Column(name="a", columnType="INTEGER"),
                                    Column(name="b", columnType="STRING")]),\
         patch.object(io, "open", return_value=string_io):
        table = build_table("test", "syn123", "some_file_name")
        for col, row in enumerate(table):
            assert_equals(row[0], (col + 1))
            assert_equals(row[1], ["c", "d", "e"][col])
        assert_equals(len(table), 3)
        headers = [{
            'name': 'a',
            'columnType': 'INTEGER'
        }, {
            'name': 'b',
            'columnType': 'STRING'
        }]
        assert_equals(headers, table.headers)
Ejemplo n.º 6
0
def main():

    gfile = '../../data/igraphPPI.pkl'
    g = pickle.load(open(gfile, 'rb'))  #hyp.make_graph_from_dict(gfile)

    args = parser.parse_args()
    beta = 0.5
    proteomics_dictionary = significant_prots(data, 'AML sample', 'Gene',
                                              'LogFoldChange')
    gene_dictionary = tumor_genes(data, 'AML sample', 'Gene', 'Tumor VAF')
    if args.fromFile is None:
        hyphae = dict()
        hyphae['mutations'] = hyphalNetwork(gene_dictionary, g.copy(), beta)
        hyphae['proteomics'] = hyphalNetwork(proteomics_dictionary, g.copy(),
                                             beta)
        for key, this_hyp in hyphae.items():
            this_hyp._to_file(key + '_amlPatientData_hypha.pkl')
    else:
        hyphae = loadFromFile(args.fromFile)

        #now compute graph distances to ascertain fidelity
    if args.getDist:
        res = hyStats.compute_all_distances(hyphae)
        res.to_csv('amlNetworkdistances.csv')
        tab = table.build_table("AML Network Distances", 'syn22128879', res)
        syn.store(tab)
        nmi = hyStats.compute_all_nmi(hyphae, g)
        nmi.to_csv('amlNMI.csv')
        syn.store(File('amlNMI.csv', parent='syn22269875'))
        #store distances
    for key, this_hyp in hyphae.items():
        node_stats = this_hyp.node_stats()
        node_stats.to_csv(key + '_nodelist.csv')
        tab = table.build_table("AML Network Nodes", 'syn22128879', node_stats)
        syn.store(tab)
        if args.doEnrich:
            if len(this_hyp.forest_enrichment) == 0:
                for_e = hyEnrich.go_enrich_forests(this_hyp)  #SG, ncbi)
                this_hyp.assign_enrichment(for_e, type='forest')
                for_e.to_csv(key + 'enrichedForestGoTerms.csv')
                syn.store(
                    File(key + 'enrichedForestGoTerms.csv',
                         parent='syn22269875'))
                this_hyp._to_file(key + '_amlPatientData_hypha.pkl')
            if len(this_hyp.community_enrichment) == 0:
                com_e = hyEnrich.go_enrich_communities(this_hyp)
                this_hyp.assign_enrichment(com_e, type='community')
                com_e.to_csv(key + 'enrichedCommunityGOterms.csv')
                syn.store(
                    File(key + 'enrichedCommunityGOterms.csv',
                         parent='syn22269875'))
                this_hyp._to_file(key + '_amlPatientData_hypha.pkl')
            ##next: compare enrichment between patients mapped to communities
        this_hyp.community_stats(prefix=key).to_csv(key +
                                                    '_communityStats.csv')
        this_hyp.forest_stats().to_csv(key + '_TreeStats.csv')
        for files in [
                key + '_amlPatientData_hypha.pkl', key + '_communityStats.csv',
                key + '_TreeStats.csv'
        ]:
            syn.store(File(files, parent='syn22269875'))