Ejemplo n.º 1
0
def classify_image(cc, img_idx, C=1.0, gamma=0.0, cls=None):
  """
  Input: ClassifierConfig, img_idx
  Output: Score for given class; 20list of scores if cls=None
  """
  feat_vect = get_feature_vector(cc, img_idx)
  if cls == None:
    score = {}
    for cls_idx, cls in enumerate(cc.d.classes):
      print '\tclassify %s for %s on %d'%(cc.d.images[img_idx].name, cls, comm_rank)
      path = config.get_classifier_svm_name(cls, C, gamma)
      if os.path.exists(path):
        clf = load_svm(path)
        score[cls_idx] = svm_predict(feat_vect, clf)
  else:
    clf = load_svm(config.get_classifier_svm_name(cls))
    score = svm_predict(feat_vect, clf)
  return score
Ejemplo n.º 2
0
def classify_image(cc, img_idx, C=1.0, gamma=0.0, cls=None):
    """
  Input: ClassifierConfig, img_idx
  Output: Score for given class; 20list of scores if cls=None
  """
    feat_vect = get_feature_vector(cc, img_idx)
    if cls == None:
        score = {}
        for cls_idx, cls in enumerate(cc.d.classes):
            print '\tclassify %s for %s on %d' % (cc.d.images[img_idx].name,
                                                  cls, comm_rank)
            path = config.get_classifier_svm_name(cls, C, gamma)
            if os.path.exists(path):
                clf = load_svm(path)
                score[cls_idx] = svm_predict(feat_vect, clf)
    else:
        clf = load_svm(config.get_classifier_svm_name(cls))
        score = svm_predict(feat_vect, clf)
    return score
Ejemplo n.º 3
0
def classify_images(cc, images, C, gamma):
  res = np.zeros((images.shape[0], len(cc.d.classes)))
  for cls_idx, cls in enumerate(cc.d.classes):
    filename = config.get_classifier_svm_name(cls, C, gamma, cc.d.current_fold)
    if not os.path.exists(filename):
      continue
    clf = load_svm(filename, probability=False)
    for idx2, img_idx in enumerate(images):
      x = get_feature_vector(cc, img_idx)
      pred = svm_predict(x, clf)
      if pred.size > 0:
        res[idx2, cls_idx] = 1
  return res*2-1
Ejemplo n.º 4
0
def classify_images(cc, images, C, gamma):
    res = np.zeros((images.shape[0], len(cc.d.classes)))
    for cls_idx, cls in enumerate(cc.d.classes):
        filename = config.get_classifier_svm_name(cls, C, gamma,
                                                  cc.d.current_fold)
        if not os.path.exists(filename):
            continue
        clf = load_svm(filename, probability=False)
        for idx2, img_idx in enumerate(images):
            x = get_feature_vector(cc, img_idx)
            pred = svm_predict(x, clf)
            if pred.size > 0:
                res[idx2, cls_idx] = 1
    return res * 2 - 1