def testSVMSK2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:.9 * n_samples] y_train = y_digits[:.9 * n_samples] X_test = X_digits[.9 * n_samples:] y_test = y_digits[.9 * n_samples:] svm = SVM(sqlCtx, is_multi_class=True, transferUsingDF=True) score = svm.fit(X_train, y_train).score(X_test, y_test) self.failUnless(score > 0.9)
def test_svm(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sqlCtx, is_multi_class=True) score = svm.fit(X_train, y_train).score(X_test, y_test) self.failUnless(score > 0.9)
def test_svm_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, transferUsingDF=True) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 )
def test_svm(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, tol=0.0001) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) accuracy = accuracy_score(sklearn_predicted, mllearn_predicted) evaluation = 'test_svm accuracy_score(sklearn_predicted, mllearn_predicted) was {}'.format(accuracy) self.failUnless(accuracy > 0.95, evaluation)
def test_svm(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, tol=0.0001) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless( test_accuracy_score(sklearn_predicted, mllearn_predicted, y_test, 0.95))