Ejemplo n.º 1
0
  def testToAndFromDeltas(self):
    # Test converting to and from deltas representation of the tangent space
    # element.
    what = initializers.random_tensor((2, 3, 4), 4, dtype=self.dtype)
    where = initializers.random_tensor((2, 3, 4), 3, dtype=self.dtype)
    projected = riemannian.project(what, where)

    deltas = riemannian.tangent_space_to_deltas(projected)
    reconstructed_projected = riemannian.deltas_to_tangent_space(deltas, where)
    # Tangent space element norm can be computed from deltas norm.
    projected_normsq_desired = ops.frobenius_norm_squared(projected)
    projected_normsq_actual = tf.add_n([tf.reduce_sum(c * c) for c in deltas])
    desired_val, actual_val = self.evaluate((ops.full(projected),
                                        ops.full(reconstructed_projected)))
    self.assertAllClose(desired_val, actual_val)
    desired_val, actual_val = self.evaluate((projected_normsq_desired,
                                        projected_normsq_actual))
    self.assertAllClose(desired_val, actual_val)
Ejemplo n.º 2
0
        def augmented_outer_func(deltas_outer):
            def augmented_inner_func(deltas_inner):
                x_projection = riemannian.deltas_to_tangent_space(
                    deltas_inner, x, left, right)
                return func(x_projection)

            function_value, cores_grad = value_and_grad(
                augmented_inner_func, deltas_outer)
            if runtime_check:
                assert_op = _is_invariant_to_input_transforms(
                    function_value, func(x))
            else:
                assert_op = tf.no_op()
            with tf.control_dependencies([assert_op]):
                vector_projected = riemannian.project(vector, x)
            vec_deltas = riemannian.tangent_space_to_deltas(vector_projected)
            products = [
                tf.reduce_sum(a * b) for a, b in zip(cores_grad, vec_deltas)
            ]
            return tf.add_n(products)
Ejemplo n.º 3
0
  def testToAndFromDeltasBatch(self):
    # Test converting to and from deltas representation of the tangent space
    # element in the batch case.
    what = initializers.random_matrix_batch(((2, 3, 4), (3, 3, 3)), 4,
                                            batch_size=3, dtype=self.dtype)
    where = initializers.random_matrix(((2, 3, 4), (3, 3, 3)), 3,
                                       dtype=self.dtype)
    projected = riemannian.project(what, where)

    deltas = riemannian.tangent_space_to_deltas(projected)
    reconstructed_projected = riemannian.deltas_to_tangent_space(deltas, where)
    # Tangent space element norm can be computed from deltas norm.
    projected_normsq_desired = ops.frobenius_norm_squared(projected)
    d_normssq = [tf.reduce_sum(tf.reshape(c, (3, -1)) ** 2, 1) for c in deltas]
    projected_normsq_actual = tf.add_n(d_normssq)

    desired_val, actual_val = self.evaluate((ops.full(projected),
                                        ops.full(reconstructed_projected)))
    self.assertAllClose(desired_val, actual_val)
    desired_val, actual_val = self.evaluate((projected_normsq_desired,
                                        projected_normsq_actual))
    self.assertAllClose(desired_val, actual_val)
Ejemplo n.º 4
0
def hessian_vector_product(func,
                           x,
                           vector,
                           name='t3f_hessian_vector_product',
                           runtime_check=True):
    """P_x [d^2f/dx^2] P_x vector, i.e. Riemannian hessian by vector product.

    Computes
      P_x [d^2f/dx^2] P_x vector
    where P_x is projection onto the tangent space of TT at point x and
    d^2f/dx^2 is the Hessian of the function.

    Note that the true Riemannian hessian also includes the manifold curvature
    term which is ignored here.

    Warning: this is experimental feature and it may not work for some function,
    e.g. ones that include QR or SVD decomposition (t3f.project, t3f.round) or
    for functions that work with TT-cores directly (in contrast to working with
    TT-object only via t3f functions). In this cases this function can silently
    return wrong results!

    Example:
        # Quadratic form with matrix A: <x, A x>.
        # It's gradient is (A + A.T) x, it's Hessian is (A + A.T)
        # It's Riemannian Hessian by vector product is
        #     proj_vec = t3f.project(vector, x)
        #     t3f.project(t3f.matmul(A + t3f.transpose(A), proj_vec), x)
        f = lambda x: t3f.bilinear_form(A, x, x)
        res = t3f.hessian_vector_product(f, x, vector)

    Args:
        func: function that takes TensorTrain object as input and outputs a number.
        x: point at which to compute the Hessian and on which tangent space to
          project the gradient.
      vector: `TensorTrain` object which to multiply be the Hessian.
      name: string, name of the Op.
      runtime_check: [True] whether to do a sanity check that the passed
        function is invariant to different TT representations (otherwise
        the Rieamnnian gradient doesn't even exist). It makes things slower,
        but helps catching bugs, so turn it off during production deployment.

    Returns:
        `TensorTrain`, result of the Riemannian hessian by vector product.

    See also:
        t3f.gradients
    """
    all_cores = list(x.tt_cores) + list(vector.tt_cores)
    with tf.name_scope(name, values=all_cores):
        left = decompositions.orthogonalize_tt_cores(x)
        right = decompositions.orthogonalize_tt_cores(left,
                                                      left_to_right=False)
        deltas = [right.tt_cores[0]]
        deltas += [tf.zeros_like(cc) for cc in right.tt_cores[1:]]
        x_projection = riemannian.deltas_to_tangent_space(
            deltas, x, left, right)
        function_value = func(x_projection)
        if runtime_check:
            assert_op = _is_invariant_to_input_transforms(
                function_value, func(x))
        else:
            assert_op = tf.no_op()
        with tf.control_dependencies([assert_op]):
            vector_projected = riemannian.project(vector, x)
        cores_grad = tf.gradients(function_value, deltas)
        vec_deltas = riemannian.tangent_space_to_deltas(vector_projected)
        products = [
            tf.reduce_sum(a * b) for a, b in zip(cores_grad, vec_deltas)
        ]
        grad_times_vec = tf.add_n(products)
        second_cores_grad = tf.gradients(grad_times_vec, deltas)
        final_deltas = _enforce_gauge_conditions(second_cores_grad, left)
        return riemannian.deltas_to_tangent_space(final_deltas, x, left, right)