Ejemplo n.º 1
0
def add_trend_indicators(data: pd.DataFrame) -> pd.DataFrame:
    """Adds the trend indicators.

    Parameters
    ----------
    data : pd.DataFrame
        A dataframe with daily stock values. Must include: open, high,
        low, close and volume. It should also be sorted in a descending
        manner.

    Returns
    -------
    pd.DataFrame
        The input dataframe with the indicators added.
    """
    adx = ADXIndicator(data['high'], data['low'], data['close'])
    ema = EMAIndicator(data['close'])
    ema_200 = EMAIndicator(data['close'], n=200)
    ichimoku = IchimokuIndicator(data['high'], data['low'])
    macd = MACD(data['close'])
    sma = SMAIndicator(data['close'], n=14)
    sma_200 = SMAIndicator(data['close'], n=200)

    data.loc[:, 'adx'] = adx.adx()
    data.loc[:, 'adx_pos'] = adx.adx_pos()
    data.loc[:, 'adx_neg'] = adx.adx_neg()
    data.loc[:, 'ema'] = ema.ema_indicator()
    data.loc[:, 'ema_200'] = ema_200.ema_indicator()
    data.loc[:, 'ichimoku_a'] = ichimoku.ichimoku_a()
    data.loc[:, 'ichimoku_b'] = ichimoku.ichimoku_b()
    data.loc[:, 'ichimoku_base_line'] = ichimoku.ichimoku_base_line()
    data.loc[:, 'ichimoku_conversion_line'] = (
        ichimoku.ichimoku_conversion_line())
    data.loc[:, 'macd'] = macd.macd()
    data.loc[:, 'macd_diff'] = macd.macd_diff()
    data.loc[:, 'macd_signal'] = macd.macd_signal()
    data.loc[:, 'sma'] = sma.sma_indicator()
    data.loc[:, 'sma_200'] = sma_200.sma_indicator()

    return data
Ejemplo n.º 2
0
def add_trend_ta(
    df: pd.DataFrame,
    high: str,
    low: str,
    close: str,
    fillna: bool = False,
    colprefix: str = "",
    vectorized: bool = False,
) -> pd.DataFrame:
    """Add trend technical analysis features to dataframe.

    Args:
        df (pandas.core.frame.DataFrame): Dataframe base.
        high (str): Name of 'high' column.
        low (str): Name of 'low' column.
        close (str): Name of 'close' column.
        fillna(bool): if True, fill nan values.
        colprefix(str): Prefix column names inserted
        vectorized(bool): if True, use only vectorized functions indicators

    Returns:
        pandas.core.frame.DataFrame: Dataframe with new features.
    """

    # MACD
    indicator_macd = MACD(close=df[close],
                          window_slow=26,
                          window_fast=12,
                          window_sign=9,
                          fillna=fillna)
    df[f"{colprefix}trend_macd"] = indicator_macd.macd()
    df[f"{colprefix}trend_macd_signal"] = indicator_macd.macd_signal()
    df[f"{colprefix}trend_macd_diff"] = indicator_macd.macd_diff()

    # SMAs
    df[f"{colprefix}trend_sma_fast"] = SMAIndicator(
        close=df[close], window=12, fillna=fillna).sma_indicator()
    df[f"{colprefix}trend_sma_slow"] = SMAIndicator(
        close=df[close], window=26, fillna=fillna).sma_indicator()

    # EMAs
    df[f"{colprefix}trend_ema_fast"] = EMAIndicator(
        close=df[close], window=12, fillna=fillna).ema_indicator()
    df[f"{colprefix}trend_ema_slow"] = EMAIndicator(
        close=df[close], window=26, fillna=fillna).ema_indicator()

    # Vortex Indicator
    indicator_vortex = VortexIndicator(high=df[high],
                                       low=df[low],
                                       close=df[close],
                                       window=14,
                                       fillna=fillna)
    df[f"{colprefix}trend_vortex_ind_pos"] = indicator_vortex.vortex_indicator_pos(
    )
    df[f"{colprefix}trend_vortex_ind_neg"] = indicator_vortex.vortex_indicator_neg(
    )
    df[f"{colprefix}trend_vortex_ind_diff"] = indicator_vortex.vortex_indicator_diff(
    )

    # TRIX Indicator
    df[f"{colprefix}trend_trix"] = TRIXIndicator(close=df[close],
                                                 window=15,
                                                 fillna=fillna).trix()

    # Mass Index
    df[f"{colprefix}trend_mass_index"] = MassIndex(high=df[high],
                                                   low=df[low],
                                                   window_fast=9,
                                                   window_slow=25,
                                                   fillna=fillna).mass_index()

    # DPO Indicator
    df[f"{colprefix}trend_dpo"] = DPOIndicator(close=df[close],
                                               window=20,
                                               fillna=fillna).dpo()

    # KST Indicator
    indicator_kst = KSTIndicator(
        close=df[close],
        roc1=10,
        roc2=15,
        roc3=20,
        roc4=30,
        window1=10,
        window2=10,
        window3=10,
        window4=15,
        nsig=9,
        fillna=fillna,
    )
    df[f"{colprefix}trend_kst"] = indicator_kst.kst()
    df[f"{colprefix}trend_kst_sig"] = indicator_kst.kst_sig()
    df[f"{colprefix}trend_kst_diff"] = indicator_kst.kst_diff()

    # Ichimoku Indicator
    indicator_ichi = IchimokuIndicator(
        high=df[high],
        low=df[low],
        window1=9,
        window2=26,
        window3=52,
        visual=False,
        fillna=fillna,
    )
    df[f"{colprefix}trend_ichimoku_conv"] = indicator_ichi.ichimoku_conversion_line(
    )
    df[f"{colprefix}trend_ichimoku_base"] = indicator_ichi.ichimoku_base_line()
    df[f"{colprefix}trend_ichimoku_a"] = indicator_ichi.ichimoku_a()
    df[f"{colprefix}trend_ichimoku_b"] = indicator_ichi.ichimoku_b()

    # Schaff Trend Cycle (STC)
    df[f"{colprefix}trend_stc"] = STCIndicator(
        close=df[close],
        window_slow=50,
        window_fast=23,
        cycle=10,
        smooth1=3,
        smooth2=3,
        fillna=fillna,
    ).stc()

    if not vectorized:
        # Average Directional Movement Index (ADX)
        indicator_adx = ADXIndicator(high=df[high],
                                     low=df[low],
                                     close=df[close],
                                     window=14,
                                     fillna=fillna)
        df[f"{colprefix}trend_adx"] = indicator_adx.adx()
        df[f"{colprefix}trend_adx_pos"] = indicator_adx.adx_pos()
        df[f"{colprefix}trend_adx_neg"] = indicator_adx.adx_neg()

        # CCI Indicator
        df[f"{colprefix}trend_cci"] = CCIIndicator(
            high=df[high],
            low=df[low],
            close=df[close],
            window=20,
            constant=0.015,
            fillna=fillna,
        ).cci()

        # Ichimoku Visual Indicator
        indicator_ichi_visual = IchimokuIndicator(
            high=df[high],
            low=df[low],
            window1=9,
            window2=26,
            window3=52,
            visual=True,
            fillna=fillna,
        )
        df[f"{colprefix}trend_visual_ichimoku_a"] = indicator_ichi_visual.ichimoku_a(
        )
        df[f"{colprefix}trend_visual_ichimoku_b"] = indicator_ichi_visual.ichimoku_b(
        )

        # Aroon Indicator
        indicator_aroon = AroonIndicator(close=df[close],
                                         window=25,
                                         fillna=fillna)
        df[f"{colprefix}trend_aroon_up"] = indicator_aroon.aroon_up()
        df[f"{colprefix}trend_aroon_down"] = indicator_aroon.aroon_down()
        df[f"{colprefix}trend_aroon_ind"] = indicator_aroon.aroon_indicator()

        # PSAR Indicator
        indicator_psar = PSARIndicator(
            high=df[high],
            low=df[low],
            close=df[close],
            step=0.02,
            max_step=0.20,
            fillna=fillna,
        )
        # df[f'{colprefix}trend_psar'] = indicator.psar()
        df[f"{colprefix}trend_psar_up"] = indicator_psar.psar_up()
        df[f"{colprefix}trend_psar_down"] = indicator_psar.psar_down()
        df[f"{colprefix}trend_psar_up_indicator"] = indicator_psar.psar_up_indicator(
        )
        df[f"{colprefix}trend_psar_down_indicator"] = indicator_psar.psar_down_indicator(
        )

    return df
Ejemplo n.º 3
0
def add_trend_ta(df: pd.DataFrame,
                 high: str,
                 low: str,
                 close: str,
                 fillna: bool = False,
                 colprefix: str = ""):
    """Add trend technical analysis features to dataframe.

    Args:
        df (pandas.core.frame.DataFrame): Dataframe base.
        high (str): Name of 'high' column.
        low (str): Name of 'low' column.
        close (str): Name of 'close' column.
        fillna(bool): if True, fill nan values.
        colprefix(str): Prefix column names inserted

    Returns:
        pandas.core.frame.DataFrame: Dataframe with new features.
    """

    # MACD
    indicator_macd = MACD(close=df[close],
                          n_fast=12,
                          n_slow=26,
                          n_sign=9,
                          fillna=fillna)
    df[f'{colprefix}trend_macd'] = indicator_macd.macd()
    df[f'{colprefix}trend_macd_signal'] = indicator_macd.macd_signal()
    df[f'{colprefix}trend_macd_diff'] = indicator_macd.macd_diff()

    # EMAs
    df[f'{colprefix}trend_ema_fast'] = EMAIndicator(
        close=df[close], n=12, fillna=fillna).ema_indicator()
    df[f'{colprefix}trend_ema_slow'] = EMAIndicator(
        close=df[close], n=26, fillna=fillna).ema_indicator()

    # Average Directional Movement Index (ADX)
    indicator = ADXIndicator(high=df[high],
                             low=df[low],
                             close=df[close],
                             n=14,
                             fillna=fillna)
    df[f'{colprefix}trend_adx'] = indicator.adx()
    df[f'{colprefix}trend_adx_pos'] = indicator.adx_pos()
    df[f'{colprefix}trend_adx_neg'] = indicator.adx_neg()

    # Vortex Indicator
    indicator = VortexIndicator(high=df[high],
                                low=df[low],
                                close=df[close],
                                n=14,
                                fillna=fillna)
    df[f'{colprefix}trend_vortex_ind_pos'] = indicator.vortex_indicator_pos()
    df[f'{colprefix}trend_vortex_ind_neg'] = indicator.vortex_indicator_neg()
    df[f'{colprefix}trend_vortex_ind_diff'] = indicator.vortex_indicator_diff()

    # TRIX Indicator
    indicator = TRIXIndicator(close=df[close], n=15, fillna=fillna)
    df[f'{colprefix}trend_trix'] = indicator.trix()

    # Mass Index
    indicator = MassIndex(high=df[high],
                          low=df[low],
                          n=9,
                          n2=25,
                          fillna=fillna)
    df[f'{colprefix}trend_mass_index'] = indicator.mass_index()

    # CCI Indicator
    indicator = CCIIndicator(high=df[high],
                             low=df[low],
                             close=df[close],
                             n=20,
                             c=0.015,
                             fillna=fillna)
    df[f'{colprefix}trend_cci'] = indicator.cci()

    # DPO Indicator
    indicator = DPOIndicator(close=df[close], n=20, fillna=fillna)
    df[f'{colprefix}trend_dpo'] = indicator.dpo()

    # KST Indicator
    indicator = KSTIndicator(close=df[close],
                             r1=10,
                             r2=15,
                             r3=20,
                             r4=30,
                             n1=10,
                             n2=10,
                             n3=10,
                             n4=15,
                             nsig=9,
                             fillna=fillna)
    df[f'{colprefix}trend_kst'] = indicator.kst()
    df[f'{colprefix}trend_kst_sig'] = indicator.kst_sig()
    df[f'{colprefix}trend_kst_diff'] = indicator.kst_diff()

    # Ichimoku Indicator
    indicator = IchimokuIndicator(high=df[high],
                                  low=df[low],
                                  n1=9,
                                  n2=26,
                                  n3=52,
                                  visual=False,
                                  fillna=fillna)
    df[f'{colprefix}trend_ichimoku_a'] = indicator.ichimoku_a()
    df[f'{colprefix}trend_ichimoku_b'] = indicator.ichimoku_b()
    indicator = IchimokuIndicator(high=df[high],
                                  low=df[low],
                                  n1=9,
                                  n2=26,
                                  n3=52,
                                  visual=True,
                                  fillna=fillna)
    df[f'{colprefix}trend_visual_ichimoku_a'] = indicator.ichimoku_a()
    df[f'{colprefix}trend_visual_ichimoku_b'] = indicator.ichimoku_b()

    # Aroon Indicator
    indicator = AroonIndicator(close=df[close], n=25, fillna=fillna)
    df[f'{colprefix}trend_aroon_up'] = indicator.aroon_up()
    df[f'{colprefix}trend_aroon_down'] = indicator.aroon_down()
    df[f'{colprefix}trend_aroon_ind'] = indicator.aroon_indicator()

    # PSAR Indicator
    indicator = PSARIndicator(high=df[high],
                              low=df[low],
                              close=df[close],
                              step=0.02,
                              max_step=0.20,
                              fillna=fillna)
    df[f'{colprefix}trend_psar'] = indicator.psar()
    df[f'{colprefix}trend_psar_up'] = indicator.psar_up()
    df[f'{colprefix}trend_psar_down'] = indicator.psar_down()
    df[f'{colprefix}trend_psar_up_indicator'] = indicator.psar_up_indicator()
    df[f'{colprefix}trend_psar_down_indicator'] = indicator.psar_down_indicator(
    )

    return df
Ejemplo n.º 4
0
    def handle(self, *args, **options):
        # import pdb
        # pdb.set_trace()
        if not options['update']:
            NSETechnical.objects.all().delete()
        symbols = Symbol.objects.all()
        for symbol in symbols:
            nse_history_data = NSEHistoricalData.objects.filter(
                symbol__symbol_name=symbol).order_by('timestamp')
            if not nse_history_data:
                continue
            nse_technical = pd.DataFrame(
                list(
                    nse_history_data.values('timestamp', 'open', 'high', 'low',
                                            'close', 'total_traded_quantity')))
            '''
                Moving average convergence divergence
            '''
            indicator_macd = MACD(close=nse_technical['close'],
                                  window_slow=26,
                                  window_fast=12,
                                  window_sign=9,
                                  fillna=False)
            nse_technical["trend_macd"] = indicator_macd.macd()
            nse_technical["trend_macd_signal"] = indicator_macd.macd_signal()
            nse_technical["trend_macd_diff"] = indicator_macd.macd_diff()
            '''
                Simple Moving Average
            '''
            nse_technical["trend_sma_fast"] = SMAIndicator(
                close=nse_technical['close'], window=12,
                fillna=False).sma_indicator()
            nse_technical["trend_sma_slow"] = SMAIndicator(
                close=nse_technical['close'], window=26,
                fillna=False).sma_indicator()
            '''
                Exponential Moving Average
            '''
            nse_technical["trend_ema_fast"] = EMAIndicator(
                close=nse_technical['close'], window=12,
                fillna=False).ema_indicator()
            nse_technical["trend_ema_slow"] = EMAIndicator(
                close=nse_technical['close'], window=26,
                fillna=False).ema_indicator()
            '''
                Ichimoku Indicator
            '''
            indicator_ichi = IchimokuIndicator(
                high=nse_technical['high'],
                low=nse_technical['low'],
                window1=9,
                window2=26,
                window3=52,
                visual=False,
                fillna=False,
            )
            nse_technical[
                "trend_ichimoku_conv"] = indicator_ichi.ichimoku_conversion_line(
                )
            nse_technical[
                "trend_ichimoku_base"] = indicator_ichi.ichimoku_base_line()
            nse_technical["trend_ichimoku_a"] = indicator_ichi.ichimoku_a()
            nse_technical["trend_ichimoku_b"] = indicator_ichi.ichimoku_b()
            indicator_ichi_visual = IchimokuIndicator(
                high=nse_technical['high'],
                low=nse_technical['low'],
                window1=9,
                window2=26,
                window3=52,
                visual=True,
                fillna=False,
            )
            nse_technical[
                "trend_visual_ichimoku_a"] = indicator_ichi_visual.ichimoku_a(
                )
            nse_technical[
                "trend_visual_ichimoku_b"] = indicator_ichi_visual.ichimoku_b(
                )
            '''
                Bollinger Band
            '''
            indicator_bb = BollingerBands(close=nse_technical['close'],
                                          window=20,
                                          window_dev=2,
                                          fillna=False)
            nse_technical["volatility_bbm"] = indicator_bb.bollinger_mavg()
            nse_technical["volatility_bbh"] = indicator_bb.bollinger_hband()
            nse_technical["volatility_bbl"] = indicator_bb.bollinger_lband()
            nse_technical["volatility_bbw"] = indicator_bb.bollinger_wband()
            nse_technical["volatility_bbp"] = indicator_bb.bollinger_pband()
            nse_technical[
                "volatility_bbhi"] = indicator_bb.bollinger_hband_indicator()
            nse_technical[
                "volatility_bbli"] = indicator_bb.bollinger_lband_indicator()
            '''
                Accumulation Distribution Index
            '''
            nse_technical["volume_adi"] = AccDistIndexIndicator(
                high=nse_technical['high'],
                low=nse_technical['low'],
                close=nse_technical['close'],
                volume=nse_technical['total_traded_quantity'],
                fillna=False).acc_dist_index()
            '''
                Money Flow Index
            '''
            nse_technical["volume_mfi"] = MFIIndicator(
                high=nse_technical['high'],
                low=nse_technical['low'],
                close=nse_technical['close'],
                volume=nse_technical['total_traded_quantity'],
                window=14,
                fillna=False,
            ).money_flow_index()
            '''
                Relative Strength Index (RSI)
            '''
            nse_technical["momentum_rsi"] = RSIIndicator(
                close=nse_technical['close'], window=14, fillna=False).rsi()
            '''
                Stoch RSI (StochRSI)
            '''
            indicator_srsi = StochRSIIndicator(close=nse_technical['close'],
                                               window=14,
                                               smooth1=3,
                                               smooth2=3,
                                               fillna=False)
            nse_technical["momentum_stoch_rsi"] = indicator_srsi.stochrsi()
            nse_technical["momentum_stoch_rsi_k"] = indicator_srsi.stochrsi_k()
            nse_technical["momentum_stoch_rsi_d"] = indicator_srsi.stochrsi_d()

            nse_technical.replace({np.nan: None}, inplace=True)
            nse_technical.replace([np.inf, -np.inf], None, inplace=True)
            list_to_create = []
            list_to_update = []
            for index in range(len(nse_history_data) - 1, -1, -1):
                data = nse_history_data[index]
                if data.technicals:
                    break
                technical = NSETechnical(
                    nse_historical_data=data,
                    trend_macd=nse_technical['trend_macd'][index],
                    trend_macd_signal=nse_technical['trend_macd_signal']
                    [index],
                    trend_macd_diff=nse_technical['trend_macd_diff'][index],
                    trend_sma_fast=nse_technical['trend_sma_fast'][index],
                    trend_sma_slow=nse_technical['trend_sma_slow'][index],
                    trend_ema_fast=nse_technical['trend_ema_fast'][index],
                    trend_ema_slow=nse_technical['trend_ema_slow'][index],
                    trend_ichimoku_conv=nse_technical['trend_ichimoku_conv']
                    [index],
                    trend_ichimoku_base=nse_technical['trend_ichimoku_base']
                    [index],
                    trend_ichimoku_a=nse_technical['trend_ichimoku_a'][index],
                    trend_ichimoku_b=nse_technical['trend_ichimoku_b'][index],
                    trend_visual_ichimoku_a=nse_technical[
                        'trend_visual_ichimoku_a'][index],
                    trend_visual_ichimoku_b=nse_technical[
                        'trend_visual_ichimoku_b'][index],
                    volatility_bbm=nse_technical['volatility_bbm'][index],
                    volatility_bbh=nse_technical['volatility_bbh'][index],
                    volatility_bbl=nse_technical['volatility_bbl'][index],
                    volatility_bbw=nse_technical['volatility_bbw'][index],
                    volatility_bbp=nse_technical['volatility_bbp'][index],
                    volatility_bbhi=nse_technical['volatility_bbhi'][index],
                    volatility_bbli=nse_technical['volatility_bbli'][index],
                    volume_adi=nse_technical['volume_adi'][index],
                    volume_mfi=nse_technical['volume_mfi'][index],
                    momentum_rsi=nse_technical['momentum_rsi'][index],
                    momentum_stoch_rsi=nse_technical['momentum_stoch_rsi']
                    [index],
                    momentum_stoch_rsi_k=nse_technical['momentum_stoch_rsi_k']
                    [index],
                    momentum_stoch_rsi_d=nse_technical['momentum_stoch_rsi_d']
                    [index])
                data.technicals = True
                list_to_update.append(data)
                list_to_create.append(technical)
            NSETechnical.objects.bulk_create(list_to_create)
            NSEHistoricalData.objects.bulk_update(list_to_update,
                                                  ['technicals'])
            print(f"Technicals updated for {symbol}")
Ejemplo n.º 5
0
from ta.trend import MACD
from ta.momentum import RSIIndicator
from keras.models import Sequential
from keras.layers import Conv1D, MaxPool1D, Bidirectional, LSTM, Dropout, TimeDistributed
from keras.layers import Dense, GlobalAveragePooling2D
from ta.trend import IchimokuIndicator
from sklearn.linear_model import LinearRegression
from ta import add_all_ta_features
from ta.utils import dropna
import matplotlib.pyplot as plt
filename = 'AAPL'
stock = pd.read_csv('Data/' + filename + '.csv')
indicator_bb = BollingerBands(close=stock["Close"], n=20, ndev=2)
macd = MACD(close=stock["Close"])
rsi = RSIIndicator(close=stock["Close"])
ichi = IchimokuIndicator(high=stock["High"], low=stock["Low"])
stock['macd'] = macd.macd()
stock['rsi'] = rsi.rsi()
stock['bb_bbm'] = indicator_bb.bollinger_mavg()
stock['bb_bbh'] = indicator_bb.bollinger_hband()
stock['bb_bbl'] = indicator_bb.bollinger_lband()
stock['ichi_a'] = ichi.ichimoku_a()
stock['ichi_b'] = ichi.ichimoku_b()
stock['ichi_base'] = ichi.ichimoku_base_line()
stock['ichi_conv'] = ichi.ichimoku_conversion_line()
stock = stock.fillna(0)
print(stock)
scaler = preprocessing.MinMaxScaler()
scaled_values = scaler.fit_transform(stock.iloc[:, 1:4])
stock.iloc[:, 1:4] = scaled_values