def makemask(self): for i in range(1,len(self.mask)): mask = copy.deepcopy(self.mask) mask[i][-1] = "gray=1001" #tableio.print2d(mask) maskfile = self.maskfile.replace("000",str(i)) maskimagefile = self.maskimagefile.replace("000",str(i)) tableio.write(mask,maskfile) print "Your maskfile was saved as",maskfile call(["rtkdrawgeometricphantom","--phantomfile",maskfile,"--dimension",self.sizeinvox,"--spacing",self.spacingstr,"--output",maskimagefile]) call(["clitkCropImage","-i",maskimagefile,"-o",maskimagefile,"--BG=-1000"]) call(["clitkBinarizeImage","-i",maskimagefile,"-o",maskimagefile,"-l","0.5","-u","1.5"]) #the intensity egion that is 1, and not 0 #call(["clitkImageConvert","-i",maskimagefile,"-o",maskimagefile,"-c"]) print "Your mask was saved as",maskimagefile
def makemask(self): for i in range(1, len(self.mask)): mask = copy.deepcopy(self.mask) mask[i][-1] = "gray=1001" #tableio.print2d(mask) maskfile = self.maskfile.replace("000", str(i)) maskimagefile = self.maskimagefile.replace("000", str(i)) tableio.write(mask, maskfile) print "Your maskfile was saved as", maskfile call([ "rtkdrawgeometricphantom", "--phantomfile", maskfile, "--dimension", self.sizeinvox, "--spacing", self.spacingstr, "--output", maskimagefile ]) call([ "clitkCropImage", "-i", maskimagefile, "-o", maskimagefile, "--BG=-1000" ]) call([ "clitkBinarizeImage", "-i", maskimagefile, "-o", maskimagefile, "-l", "0.5", "-u", "1.5" ]) #the intensity egion that is 1, and not 0 #call(["clitkImageConvert","-i",maskimagefile,"-o",maskimagefile,"-c"]) print "Your mask was saved as", maskimagefile
for haha in ['iba', 'ipnl']: if (haha + 'lyso' in line or haha + 'bgo' in line) and haha + '-' in typ: print(haha, line, typ) ctsetsets.append( auger.getctset(numprot, line[2:10], line[2:10], typ, addnoise=addnoise, precolli=precolli)) if haha + 'zinv' in line and haha + '-' in typ: print(haha, line, typ) ctsetsets.append( auger.getctset(numprot, line[2:10], line[2:10], typ, addnoise=addnoise, precolli=precolli)) assert (len(ctsetsets) == 3) megaplot(ctsetsets, 'PMMA_phantom') print 'Mean detection yield in', typ, 'study over', sum( [ctset['totnprim'] for ctset in ctsetsets]), 'primaries in', sum([ ctset['nreal'] for ctset in ctsetsets ]), 'realisations:', sum([ctset['detyieldmu'] for ctset in ctsetsets]) tableio.print2d(resultstable) tableio.write(resultstable, 'resultstable.tsv')
def writedensityfile(self,filename): tableio.write(self.density,filename)
def writephantomfile(self,filename): tableio.write(self.phantom,filename)
def writephantomfile(self, filename): tableio.write(self.phantom, filename)
def writedensityfile(self, filename): tableio.write(self.density, filename)
parser.add_argument('--dump', action='store_true') parser.add_argument('--scatter', action='store_true') parser.add_argument('files', nargs='*') # This is it!! args = parser.parse_args() if len(args.files)<1: print "no files given or found. exiting..." quit() print "openening",args.files rtplan = rtplan.rtplan(args.files,norm2nprim=(not args.nonorm),MSWtoprotons=(not args.nomu),noproc=(args.noproc)) outname = args.files[0][:-4]+('nonorm' if args.nonorm else '')+('nomu' if args.nomu else '')+('noproc' if args.noproc else '')+('scatter' if args.scatter else '')+'-plot.pdf' if args.dump: write(rtplan.spots,outname+'spots.txt') write(rtplan.layers,outname+'layers.txt') write(rtplan.fields,outname+'fields.txt') spotdata=rtplan.getspotdata() layerdata=rtplan.getlayerdata() MSW=[] for spot in rtplan.spots: MSW.append(spot[-1]) #spot_weight_mean = np.median(MSW) spot_weight_mean = np.mean(MSW) nrfields=len(rtplan.fields)
'ipnl-auger-tof-1.root', 'iba-auger-tof-1.root', 'ipnl-auger-notof-1.root', 'iba-auger-notof-1.root', 'ipnl-auger-tof-3.root', 'iba-auger-tof-3.root', 'ipnl-auger-notof-3.root', 'iba-auger-notof-3.root'] # typs=['ipnl-auger-tof-1.root','iba-auger-tof-1.root','ipnl-auger-notof-3.root','iba-auger-notof-3.root'] dirs = subprocess.check_output(['find . -iname "*autogen*" | sort -k1.13'],shell=True).split('\n')[:-1] numprots = [1e9,1e8,1e7,1e6] for typ in typs: ctsetsets = [] for line,numprot in zip(dirs,[item for item in numprots for i in range(len(typs)/4)]): for haha in ['iba','ipnl']: if haha+'lyso' in line and haha+'-' in typ: print (haha,line,typ) ctsetsets.append( auger.getctset(numprot,line[2:10],line[2:10],typ,addnoise=addnoise) ) if haha+'zinv' in line and haha+'-' in typ: print (haha,line,typ) ctsetsets.append( auger.getctset(numprot,line[2:10],line[2:10],typ,addnoise=addnoise) ) assert(len(ctsetsets)==4) megaplot(ctsetsets,'PMMA_phantom') print 'Mean detection yield in',typ,'study over',sum([ctset['totnprim'] for ctset in ctsetsets]),'primaries in',sum([ctset['nreal'] for ctset in ctsetsets]),'realisations:',sum([ctset['detyieldmu'] for ctset in ctsetsets]) tableio.print2d(resultstable) tableio.write(resultstable,'resultstable.tsv')