Ejemplo n.º 1
0
    def plot_mmm(self,
                 ax,
                 index,
                 xscale=1.0,
                 yscale=1.0,
                 xlabel='',
                 ylabel='',
                 do_rate=False):

        tmid = (self.ts.t[:-1] + self.ts.t[1:]) / 2.0
        d = []
        for k in self.ts.j.hosts.keys():
            v = self.ts.assemble(index, k, 0)
            if do_rate:
                d.append(numpy.divide(numpy.diff(v), numpy.diff(self.ts.t)))
            else:
                d.append((v[:-1] + v[1:]) / 2.0)

        a = numpy.array(d)

        mn = []
        p25 = []
        p50 = []
        p75 = []
        mx = []
        for i in range(len(self.ts.t) - 1):
            mn.append(min(a[:, i]))
            p25.append(score(a[:, i], 25))
            p50.append(score(a[:, i], 50))
            p75.append(score(a[:, i], 75))
            mx.append(max(a[:, i]))

        mn = numpy.array(mn)
        p25 = numpy.array(p25)
        p50 = numpy.array(p50)
        p75 = numpy.array(p75)
        mx = numpy.array(mx)

        ax.hold = True
        ax.plot(tmid / xscale, mn / yscale, '--')
        ax.plot(tmid / xscale, p25 / yscale)
        ax.plot(tmid / xscale, p50 / yscale)
        ax.plot(tmid / xscale, p75 / yscale)
        ax.plot(tmid / xscale, mx / yscale, '--')

        self.setlabels(ax, index, xlabel, ylabel, yscale)
        ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=4))
        tspl_utils.adjust_yaxis_range(ax, 0.1)
Ejemplo n.º 2
0
  def plot_lines(self,ax,index,xscale=1.0,yscale=1.0,xlabel='',ylabel='',
                 do_rate=True):

    ax.hold=True

    for k in self.ts.j.hosts.keys():
      v=self.ts.assemble(index,k,0)
      if do_rate:
        val=numpy.divide(numpy.diff(v),numpy.diff(self.ts.t))
      else:
        val=(v[:-1]+v[1:])/(2.0)
      ax.step(self.ts.t/xscale,numpy.append(val,[val[-1]])/yscale,where="post")
    tspl_utils.adjust_yaxis_range(ax,0.1)
    ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=6))
    self.setlabels(ax,index,xlabel,ylabel,yscale)
    ax.set_xlim([0,self.ts.t[-1]/3600.])
Ejemplo n.º 3
0
  def plot_lines(self,ax,index,xscale=1.0,yscale=1.0,xlabel='',ylabel='',
                 do_rate=True):

    tmid=(self.ts.t[:-1]+self.ts.t[1:])/2.0
    ax.hold=True
    for k in self.ts.j.hosts.keys():

      v=self.ts.assemble(index,k,0)
      if do_rate:
        rate=numpy.divide(numpy.diff(v),numpy.diff(self.ts.t))
        ax.plot(tmid/xscale,rate/yscale)
      else:
        val=(v[:-1]+v[1:])/2.0
        ax.plot(tmid/xscale,val/yscale)
    tspl_utils.adjust_yaxis_range(ax,0.1)
    ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=6))
    self.setlabels(ax,index,xlabel,ylabel,yscale)
Ejemplo n.º 4
0
  def plot_mmm(self,ax,index,xscale=1.0,yscale=1.0,xlabel='',ylabel='',
               do_rate=False):

    tmid=(self.ts.t[:-1]+self.ts.t[1:])/2.0
    d=[]
    for k in self.ts.j.hosts.keys():
      v=self.ts.assemble(index,k,0)
      if do_rate:
        d.append(numpy.divide(numpy.diff(v),numpy.diff(self.ts.t)))
      else:
        d.append((v[:-1]+v[1:])/2.0)

    a=numpy.array(d)

    mn=[]
    p25=[]
    p50=[]
    p75=[]
    mx=[]
    for i in range(len(self.ts.t)-1):
      mn.append(min(a[:,i]))
      p25.append(score(a[:,i],25))
      p50.append(score(a[:,i],50))
      p75.append(score(a[:,i],75))
      mx.append(max(a[:,i]))

    mn=numpy.array(mn)
    p25=numpy.array(p25)
    p50=numpy.array(p50)
    p75=numpy.array(p75)
    mx=numpy.array(mx)

    ax.hold=True
    ax.plot(tmid/xscale,mn/yscale,'--')
    ax.plot(tmid/xscale,p25/yscale)
    ax.plot(tmid/xscale,p50/yscale)
    ax.plot(tmid/xscale,p75/yscale)
    ax.plot(tmid/xscale,mx/yscale,'--')

    self.setlabels(ax,index,xlabel,ylabel,yscale)
    ax.yaxis.set_major_locator( matplotlib.ticker.MaxNLocator(nbins=4))
    tspl_utils.adjust_yaxis_range(ax,0.1)
Ejemplo n.º 5
0
  def plot(self,jobid,job_data=None):
    self.setup(jobid,job_data=job_data)

    ts = self.ts
    self.fig = Figure(figsize=(10,8),dpi=80)
    self.ax=self.fig.add_subplot(1,1,1)
    self.ax=[self.ax]
    self.fig.subplots_adjust(hspace=0.35)

    markers = ('o','x','+','^','s','8','p',
                 'h','*','D','<','>','v','d','.')

    colors  = ('b','g','r','c','m','k','y')
    tmid=(self.ts.t[:-1]+self.ts.t[1:])/2.0
    cnt=0
    for v in ts.data:
      for host in v:
        for vals in v[host]:
          rate=numpy.diff(vals)/numpy.diff(ts.t)
          c=colors[cnt % len(colors)]
          m=markers[cnt % len(markers)]

          self.ax[0].plot(tmid/3600., rate, marker=m,
                  markeredgecolor=c, linestyle='-', color=c,
                  markerfacecolor='None', label=self.k2[cnt])
          self.ax[0].hold=True
      cnt=cnt+1

    self.ax[0].set_ylabel('Meta Data Rate (op/s)')
    tspl_utils.adjust_yaxis_range(self.ax[0],0.1)

    handles,labels=self.ax[0].get_legend_handles_labels()
    new_handles={}
    for h,l in zip(handles,labels):
      new_handles[l]=h

    box = self.ax[0].get_position()
    self.ax[0].set_position([box.x0, box.y0, box.width * 0.9, box.height])
    self.ax[0].legend(new_handles.values(),new_handles.keys(),prop={'size':8},
                      bbox_to_anchor=(1.05,1), borderaxespad=0., loc=2)

    self.output('metadata')
Ejemplo n.º 6
0
    def plot_lines(self,
                   ax,
                   index,
                   xscale=1.0,
                   yscale=1.0,
                   xlabel='',
                   ylabel='',
                   do_rate=True):

        ax.hold = True

        for k in self.ts.j.hosts.keys():
            v = self.ts.assemble(index, k, 0)
            if do_rate:
                val = numpy.divide(numpy.diff(v), numpy.diff(self.ts.t))
            else:
                val = (v[:-1] + v[1:]) / (2.0)
            ax.step(self.ts.t / xscale,
                    numpy.append(val, [val[-1]]) / yscale,
                    where="post")
        tspl_utils.adjust_yaxis_range(ax, 0.1)
        ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(nbins=6))
        self.setlabels(ax, index, xlabel, ylabel, yscale)
        ax.set_xlim([0, self.ts.t[-1] / 3600.])
Ejemplo n.º 7
0
  def plot(self,jobid,job_data=None):
    if not self.setup(jobid,job_data=job_data): return
    wayness=self.ts.wayness
    if self.lariat_data != 'pass':
      if self.lariat_data.wayness and self.lariat_data.wayness < self.ts.wayness:
        wayness=self.lariat_data.wayness
    
    if self.wide:
      self.fig = Figure(figsize=(15.5,12),dpi=110)
      self.ax=self.fig.add_subplot(6,2,2)
      cols = 2
      shift = 2
    else:
      self.fig = Figure(figsize=(8,12),dpi=110)
      self.ax=self.fig.add_subplot(6,1,1)
      cols = 1
      shift = 1
    if self.mode == 'hist':
      plot=self.plot_thist
    elif self.mode == 'percentile':
      plot=self.plot_mmm
    else:
      plot=self.plot_lines

    k1_tmp=self.k1[self.ts.pmc_type]
    k2_tmp=self.k2[self.ts.pmc_type]

    # Plot key 1 for flops
    ax = self.fig.add_subplot(6,cols,1*shift)
    schema = self.ts.j.get_schema(self.ts.pmc_type)

    for host_name in self.ts.j.hosts.keys():
      stats = self.ts.j.aggregate_stats(self.ts.pmc_type,host_names=[host_name])
      if self.ts.pmc_type == 'intel_snb' :    
        if 'SSE_D_ALL' in schema:
          flops = stats[0][:,schema['SSE_D_ALL'].index]+4*stats[0][:,schema['SIMD_D_256'].index]          
        elif 'SSE_DOUBLE_SCALAR' in schema:
          flops = stats[0][:,schema['SSE_DOUBLE_SCALAR'].index]+2*stats[0][:,schema['SSE_DOUBLE_PACKED'].index]+4*stats[0][:,schema['SIMD_DOUBLE_256'].index]          
        else: print("FLOP stats not available for JOBID",self.ts.j.id)
      elif self.ts.pmc_type == 'intel_pmc3' or self.ts.pmc_type == 'intel_nhm' or self.ts.pmc_type == 'intel_wtm':
        if 'FP_COMP_OPS_EXE_SSE_PACKED' in schema and 'FP_COMP_OPS_EXE_SSE_SCALAR' in schema:
          flops = 2*stats[0][:,schema['FP_COMP_OPS_EXE_SSE_PACKED'].index]+stats[0][:,schema['FP_COMP_OPS_EXE_SSE_SCALAR'].index]
        else: print("FLOP stats not available for JOBID",self.ts.j.id)
      elif self.ts.pmc_type == 'intel_hsw' :
        print('Haswell does not support FLOP counters')
      else: 
        print(self.ts.pmc_type + ' not currently supported')
        continue

      try:
        flops = numpy.diff(flops)/numpy.diff(self.ts.t)/1.0e9
        ax.step(self.ts.t/3600., numpy.append(flops,[flops[-1]]), where="post")
        ax.set_ylabel('Dbl GFLOPS')
        ax.set_xlim([0.,self.ts.t[-1]/3600.])
        tspl_utils.adjust_yaxis_range(ax,0.1)
      except: print("FLOP plot not available for JOBID",self.ts.j.id)
    # Plot key 2
    if self.ts.pmc_type == 'intel_snb' or self.ts.pmc_type == 'intel_hsw':
      idx0=k2_tmp.index('CAS_READS')
      idx1=k2_tmp.index('CAS_WRITES')
    if self.ts.pmc_type == 'intel_pmc3' or self.ts.pmc_type == 'intel_nhm' or self.ts.pmc_type == 'intel_wtm' :
      idx0=k2_tmp.index('MEM_UNCORE_RETIRED_REMOTE_DRAM')
      idx1=k2_tmp.index('MEM_UNCORE_RETIRED_LOCAL_DRAM')
    try: 
      plot(self.fig.add_subplot(6,cols,2*shift), [idx0,idx1], 3600., 1.0/64.0*1024.*1024.*1024., ylabel='Total Mem BW GB/s')
    except:
      pass
    #Plot key 3
    idx0=k2_tmp.index('MemUsed')
    idx1=k2_tmp.index('FilePages')
    idx2=k2_tmp.index('Slab')

    plot(self.fig.add_subplot(6,cols,3*shift), [idx0,-idx1,-idx2], 3600.,2.**30.0, ylabel='Memory Usage GB',do_rate=False)

    # Plot lnet sum rate
    idx0=k1_tmp.index('lnet')
    idx1=idx0 + k1_tmp[idx0+1:].index('lnet') + 1
    plot(self.fig.add_subplot(6,cols,4*shift), [idx0,idx1], 3600., 1024.**2, ylabel='Total lnet MB/s')

    # Plot remaining IB sum rate
    if self.ts.pmc_type == 'intel_snb' or self.ts.pmc_type == 'intel_hsw':
      idx2=k1_tmp.index('ib_sw')
      idx3=idx2 + k1_tmp[idx2+1:].index('ib_sw') + 1
    if self.ts.pmc_type == 'intel_pmc3' or self.ts.pmc_type == 'intel_nhm' or self.ts.pmc_type == 'intel_wtm':
      idx2=k1_tmp.index('ib_ext')
      idx3=idx2 + k1_tmp[idx2+1:].index('ib_ext') + 1

    plot(self.fig.add_subplot(6,cols,5*shift),[idx2,idx3,-idx0,-idx1],3600.,2.**20,
         ylabel='Total (ib-lnet) MB/s') 

    #Plot CPU user time
    idx0=k2_tmp.index('user')
    plot(self.fig.add_subplot(6,cols,6*shift),[idx0],3600.,wayness*100.,
         xlabel='Time (hr)',
         ylabel='Total cpu user\nfraction')

    self.fig.subplots_adjust(hspace=0.35)
    self.output('master')
Ejemplo n.º 8
0
  def plot(self,jobid,job_data=None):
    if not self.setup(jobid,job_data=job_data): return

    if self.wide:
      self.fig = Figure(figsize=(15.5,12),dpi=110)
      self.ax=self.fig.add_subplot(6,2,2)
      cols = 2
      shift = 2
    else:
      self.fig = Figure(figsize=(8,12),dpi=110)
      self.ax=self.fig.add_subplot(6,1,1)
      cols = 1
      shift = 1
    if self.mode == 'hist':
      plot=self.plot_thist
    elif self.mode == 'percentile':
      plot=self.plot_mmm
    else:
      plot=self.plot_lines

    k1_tmp=self.k1[self.ts.pmc_type]
    k2_tmp=self.k2[self.ts.pmc_type]
    processor_schema = self.ts.j.schemas[self.ts.pmc_type]
    # Plot key 1 for flops
    plot_ctr = 0
    try:
      if 'SSE_D_ALL' in processor_schema and 'SIMD_D_256' in processor_schema:
        idx0 = k2_tmp.index('SSE_D_ALL')
        idx1 = None
        idx2 = k2_tmp.index('SIMD_D_256')
      elif 'SSE_DOUBLE_SCALAR' in processor_schema and 'SSE_DOUBLE_PACKED' in processor_schema and 'SIMD_DOUBLE_256' in processor_schema:
        idx0 = k2_tmp.index('SSE_DOUBLE_SCALAR')
        idx1 = k2_tmp.index('SSE_DOUBLE_PACKED')
        idx2 = k2_tmp.index('SIMD_DOUBLE_256')
      elif 'FP_COMP_OPS_EXE_SSE_PACKED' in processor_schema and 'FP_COMP_OPS_EXE_SSE_SCALAR' in processor_schema:
        idx0 = k2_tmp.index('FP_COMP_OPS_EXE_SSE_SCALAR')
        idx1 = k2_tmp.index('FP_COMP_OPS_EXE_SSE_PACKED')
        idx2 = None
      else: 
        print("FLOP stats not available for JOBID",self.ts.j.id)
        raise
      plot_ctr += 1
      ax = self.fig.add_subplot(6,cols,plot_ctr*shift)      
      for host_name in self.ts.j.hosts.keys():
        flops = self.ts.assemble([idx0],host_name,0)
        if idx1: flops += 2*self.ts.assemble([idx1],host_name,0)
        if idx2: flops += 4*self.ts.assemble([idx2],host_name,0)
        
        flops = numpy.diff(flops)/numpy.diff(self.ts.t)/1.0e9
        ax.step(self.ts.t/3600., numpy.append(flops, [flops[-1]]), 
                where="post")

      ax.set_ylabel('Dbl GFLOPS')
      ax.set_xlim([0.,self.ts.t[-1]/3600.])
      tspl_utils.adjust_yaxis_range(ax,0.1)
    except: 
      print sys.exc_info()[0]
      print("FLOP plot not available for JOBID",self.ts.j.id)

    # Plot key 2
    try:
      if 'CAS_READS' in k2_tmp and 'CAS_WRITES' in k2_tmp:
        idx0=k2_tmp.index('CAS_READS')
        idx1=k2_tmp.index('CAS_WRITES')
      elif 'MEM_UNCORE_RETIRED_REMOTE_DRAM' in k2_tmp and 'MEM_UNCORE_RETIRED_LOCAL_DRAM' in k2_tmp:
        idx0=k2_tmp.index('MEM_UNCORE_RETIRED_REMOTE_DRAM')
        idx1=k2_tmp.index('MEM_UNCORE_RETIRED_LOCAL_DRAM')
      else:
        print(self.ts.pmc_type + ' missing Memory Bandwidth data' + ' for jobid ' + self.ts.j.id )
        raise      
      plot_ctr += 1
      plot(self.fig.add_subplot(6,cols,plot_ctr*shift), [idx0,idx1], 3600., 
           1.0/64.0*1024.*1024.*1024., ylabel='Total Mem BW GB/s')
    except:
      print(self.ts.pmc_type + ' missing Memory Bandwidth plot' + ' for jobid ' + self.ts.j.id )

    #Plot key 3
    idx0=k2_tmp.index('MemUsed')
    idx1=k2_tmp.index('FilePages')
    idx2=k2_tmp.index('Slab')
    plot_ctr += 1
    plot(self.fig.add_subplot(6,cols,plot_ctr*shift), [idx0,-idx1,-idx2], 3600.,2.**30.0, 
         ylabel='Memory Usage GB',do_rate=False)

    # Plot lnet sum rate
    idx0=k1_tmp.index('lnet')
    idx1=idx0 + k1_tmp[idx0+1:].index('lnet') + 1
    plot_ctr += 1
    plot(self.fig.add_subplot(6,cols,plot_ctr*shift), [idx0,idx1], 3600., 1024.**2, ylabel='Total lnet MB/s')

    # Plot remaining IB sum rate
    if 'ib_ext' in self.ts.j.hosts.values()[0].stats:
      try:
        idx2=k1_tmp.index('ib_sw')
        idx3=idx2 + k1_tmp[idx2+1:].index('ib_sw') + 1
      except:
        idx2=k1_tmp.index('ib_ext')
        idx3=idx2 + k1_tmp[idx2+1:].index('ib_ext') + 1
      try:
        plot_ctr += 1
        plot(self.fig.add_subplot(6,cols,plot_ctr*shift),[idx2,idx3,-idx0,-idx1],3600.,2.**20,
             ylabel='Total (ib-lnet) MB/s') 
      except: pass

    #Plot CPU user time
    idx0 = [k2_tmp.index('user')]
    plot_ctr += 1

    wayness = len(self.ts.j.hosts.values()[0].stats['cpu'].keys())
    plot(self.fig.add_subplot(6,cols,plot_ctr*shift),idx0,3600.,wayness,
         xlabel='Time (hr)',
         ylabel='cpu usage %')
    
    self.fig.subplots_adjust(hspace=0.35)
    self.output('master')