Ejemplo n.º 1
0
def audio2mel(audiopaths_and_text, melpaths_and_text, args):

    melpaths_and_text_list = load_filepaths_and_text(melpaths_and_text)
    audiopaths_and_text_list = load_filepaths_and_text(audiopaths_and_text)

    data_loader = TextMelLoader(audiopaths_and_text, args)

    for i in range(len(melpaths_and_text_list)):
        if i % 100 == 0:
            print("done", i, "/", len(melpaths_and_text_list))

        mel = data_loader.get_mel(audiopaths_and_text_list[i][0])
        torch.save(mel, melpaths_and_text_list[i][0])
Ejemplo n.º 2
0
def get_data_loader(model_name, audiopaths_and_text, args):
    if model_name == 'Tacotron2':
        data_loader = TextMelLoader(audiopaths_and_text, args)
    elif model_name == 'WaveGlow':
        data_loader = MelAudioLoader(audiopaths_and_text, args)
    else:
        raise NotImplementedError(
            "unknown data loader requested: {}".format(model_name))

    return data_loader
Ejemplo n.º 3
0
def get_data_loader(model_name,
                    dataset_path,
                    audiopaths_and_text,
                    args,
                    speaker_ids=None):
    if model_name == 'Tacotron2':
        if speaker_ids is not None:
            data_loader = TextMelLoader(dataset_path,
                                        audiopaths_and_text,
                                        args,
                                        speaker_ids=speaker_ids)
        else:
            data_loader = TextMelLoader(dataset_path, audiopaths_and_text,
                                        args)
    elif model_name == 'WaveGlow':
        data_loader = MelAudioLoader(dataset_path, audiopaths_and_text, args)
    else:
        raise NotImplementedError(
            "unknown data loader requested: {}".format(model_name))

    return data_loader
def audio2mel(dataset_path: str, audiopaths_and_text: str,
              melpaths_and_text: str, args: ArgumentParser) -> None:
    """Create mel spectrograms on disk from audio files.

    Args:
        dataset_path (str): Path to dataset
        audiopaths_and_text (str): Path to filelist with audio paths and text
        melpaths_and_text (str): Path to filelist with mel paths and text
        args (ArgumentParser): Namespace with arguments
    """

    melpaths_and_text_list = load_filepaths_and_text(dataset_path,
                                                     melpaths_and_text)
    audiopaths_and_text_list = load_filepaths_and_text(dataset_path,
                                                       audiopaths_and_text)
    data_loader = TextMelLoader(dataset_path, audiopaths_and_text, args)

    for i, melpath_and_text in enumerate(melpaths_and_text_list):
        if i % 100 == 0:
            print("done", i, "/", len(melpaths_and_text_list))
        mel = data_loader.get_mel(audiopaths_and_text_list[i][0])
        torch.save(mel, melpath_and_text[0])
Ejemplo n.º 5
0
def audio2mel(dataset_path,
              audiopaths_and_text,
              melpaths_and_text,
              args,
              use_intermed=None):

    melpaths_and_text_list = \
        load_filepaths_and_text(dataset_path, melpaths_and_text)

    audiopaths_and_text_list = \
        load_filepaths_and_text(dataset_path, audiopaths_and_text)

    # n = 10
    # print(f"The first {n} melpaths and text are {melpaths_and_text_list[:n]}")
    # print(f"The first {n} audiopaths and text are {audiopaths_and_text_list[:n]}")

    data_loader = TextMelLoader(dataset_path, audiopaths_and_text, args)
    for i in range(len(melpaths_and_text_list)):
        if i % 100 == 0:
            print("done", i, "/", len(melpaths_and_text_list))
        mel = data_loader.get_mel(audiopaths_and_text_list[i][0])
        torch.save(mel, melpaths_and_text_list[i][0])