Ejemplo n.º 1
0
def benchmark_nested_struct_fill_and_clear():
    a = ti.var(dt=ti.f32)
    N = 512

    @ti.layout
    def place():
        ti.root.pointer(ti.ij, [N, N]).dense(ti.ij, [8, 8]).place(a)

    @ti.kernel
    def fill():
        for i, j in ti.ndrange(N * 8, N * 8):
            a[i, j] = 2.0

    @ti.kernel
    def clear():
        for i, j in a.parent():
            ti.deactivate(a.parent().parent(), [i, j])

    def task():
        fill()
        clear()

    return ti.benchmark(task, repeat=30)
Ejemplo n.º 2
0
def test_grouped():
    ti.get_runtime().print_preprocessed = True
    val = ti.var(ti.i32)

    n = 4
    m = 8
    p = 16

    @ti.layout
    def values():
        ti.root.dense(ti.i, n).dense(ti.j, m).dense(ti.k, p).place(val)

    @ti.kernel
    def test():
        for I in ti.grouped(val):
            val[I] = I[0] + I[1] * 2 + I[2] * 3

    test()

    for i in range(n):
        for j in range(m):
            for k in range(p):
                assert val[i, j, k] == i + j * 2 + k * 3
Ejemplo n.º 3
0
def test_io_simple():
    n = 32

    x1 = ti.var(ti.f32, shape=(n, n))
    t1 = torch.tensor(2 * np.ones((n, n), dtype=np.float32))

    x2 = ti.Matrix(2, 3, ti.f32, shape=(n, n))
    t2 = torch.tensor(2 * np.ones((n, n, 2, 3), dtype=np.float32))

    x1.from_torch(t1)
    for i in range(n):
        for j in range(n):
            assert x1[i, j] == 2

    x2.from_torch(t2)
    for i in range(n):
        for j in range(n):
            for k in range(2):
                for l in range(3):
                    assert x2[i, j][k, l] == 2

    t3 = x2.to_torch()
    assert (t2 == t3).all()
Ejemplo n.º 4
0
def test_atomic_add_with_local_store_simplify2():
    # Test for the following LocalStoreStmt simplification case:
    #
    # local store [$a <- ...]
    # atomic add ($a, ...)
    #
    # Specifically, the local store should not be removed, because
    # atomic_add can return its value.
    x = ti.var(ti.i32)
    step = 42

    ti.root.dense(ti.i, n).place(x)

    @ti.kernel
    def func():
        for i in range(n):
            j = i
            x[i] = ti.atomic_add(j, step)

    func()

    for i in range(n):
        assert x[i] == i
Ejemplo n.º 5
0
def benchmark_nested_range_blocked():
    a = ti.var(dt=ti.f32)
    N = 512

    @ti.layout
    def place():
        ti.root.dense(ti.ij, [N, N]).dense(ti.ij, [8, 8]).place(a)

    @ti.kernel
    def fill():
        for X in range(N * N):
            for Y in range(64):
                a[X // N * 8 + Y // 8, X % N * 8 + Y % 8] = 2.0

    fill()

    ti.get_runtime().sync()
    t = time.time()
    for n in range(100):
        fill()
    elapsed = time.time() - t
    ti.get_runtime().sync()
    return elapsed / 100
Ejemplo n.º 6
0
def test_loop_arg_as_range():
    # Dynamic range loops are intended to make sure global tmps work
    x = ti.var(ti.i32)
    n = 1000

    @ti.layout
    def layout():
        ti.root.dense(ti.i, n).place(x)

    @ti.kernel
    def test(b: ti.i32, e: ti.i32):
        for i in range(b, e):
            x[i - b] = i

    pairs = [
        (0, n // 2),
        (n // 2, n),
        (-n // 2, -n // 3),
    ]
    for b, e in pairs:
        test(b, e)
        for i in range(b, e):
            assert x[i - b] == i
Ejemplo n.º 7
0
def test_numpy():
  val = ti.var(ti.i32)

  n = 4

  @ti.layout
  def values():
    ti.root.dense(ti.i, n).place(val)

  @ti.kernel
  def test_numpy(arr: np.ndarray):
    for i in range(n):
      arr[i] = arr[i] ** 2

  a = np.array([4, 8, 1, 24], dtype=np.float32)
  
  for i in range(n):
    a[i] = i * 2

  test_numpy(a)
  
  for i in range(n):
    assert a[i] == i * i * 4
Ejemplo n.º 8
0
def with_data_type(dt):
  val = ti.var(ti.i32)

  n = 4

  @ti.layout
  def values():
    ti.root.dense(ti.i, n).place(val)

  @ti.kernel
  def test_numpy(arr: ti.ext_arr()):
    for i in range(n):
      arr[i] = arr[i]**2

  a = np.array([4, 8, 1, 24], dtype=dt)

  for i in range(n):
    a[i] = i * 2

  test_numpy(a)

  for i in range(n):
    assert a[i] == i * i * 4
Ejemplo n.º 9
0
 def __init__(
     self,
     nx,  # domain size
     ny,
     niu,  # viscosity of fluid
     bc_type,  # [left,top,right,bottom] boundary conditions: 0 -> Dirichlet ; 1 -> Neumann
     bc_value,  # if bc_type = 0, we need to specify the velocity in bc_value
     cy=0,  # whether to place a cylindrical obstacle
     cy_para=[0.0, 0.0, 0.0],  # location and radius of the cylinder
     steps=60000):  # total steps to run
     self.nx = nx  # by convention, dx = dy = dt = 1.0 (lattice units)
     self.ny = ny
     self.niu = niu
     self.tau = 3.0 * niu + 0.5
     self.inv_tau = 1.0 / self.tau
     self.rho = ti.var(dt=ti.f32, shape=(nx, ny))
     self.vel = ti.Vector(2, dt=ti.f32, shape=(nx, ny))
     self.mask = ti.var(dt=ti.f32, shape=(nx, ny))
     self.f_old = ti.Vector(9, dt=ti.f32, shape=(nx, ny))
     self.f_new = ti.Vector(9, dt=ti.f32, shape=(nx, ny))
     self.w = ti.var(dt=ti.f32, shape=9)
     self.e = ti.var(dt=ti.i32, shape=(9, 2))
     self.bc_type = ti.var(dt=ti.i32, shape=4)
     self.bc_value = ti.var(dt=ti.f32, shape=(4, 2))
     self.cy = cy
     self.cy_para = ti.var(dt=ti.f32, shape=3)
     self.bc_type.from_numpy(np.array(bc_type, dtype=np.int32))
     self.bc_value.from_numpy(np.array(bc_value, dtype=np.float32))
     self.cy_para.from_numpy(np.array(cy_para, dtype=np.float32))
     self.steps = steps
     arr = np.array([
         4.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 36.0,
         1.0 / 36.0, 1.0 / 36.0, 1.0 / 36.0
     ],
                    dtype=np.float32)
     self.w.from_numpy(arr)
     arr = np.array([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], [1, 1],
                     [-1, 1], [-1, -1], [1, -1]],
                    dtype=np.int32)
     self.e.from_numpy(arr)
Ejemplo n.º 10
0
def test_argument_error():
    x = ti.var(ti.i32)

    @ti.layout
    def layout():
        ti.root.place(x)

    try:

        @ti.kernel
        def set_i32_notype(v):
            pass
    except ti.KernelDefError:
        pass

    try:

        @ti.kernel
        def set_i32_args(*args):
            pass
    except ti.KernelDefError:
        pass

    try:

        @ti.kernel
        def set_i32_kwargs(**kwargs):
            pass
    except ti.KernelDefError:
        pass

    @ti.kernel
    def set_i32(v: ti.i32):
        x[None] = v

    set_i32(123)
    assert x[None] == 123
Ejemplo n.º 11
0
def test_local_store_in_nested_for_and_if():
    # See https://github.com/taichi-dev/taichi/pull/862.
    val = ti.var(ti.i32, shape=(3, 3, 3))

    @ti.kernel
    def func():
        ti.serialize()
        for i, j, k in val:
            if i < 2 and j < 2 and k < 2:
                a = 0
                for di, dj, dk in ti.ndrange((0, 2), (0, 2), (0, 2)):
                    if val[i + di, j + dj, k + dk] == 1:
                        a = val[i + di, j + dj, k + dk]

                for di, dj, dk in ti.ndrange((0, 2), (0, 2), (0, 2)):
                    val[i + di, j + dj, k + dk] = a

    val[1, 1, 1] = 1
    func()

    for i in range(3):
        for j in range(3):
            for k in range(3):
                assert (val[i, j, k] == 1)
Ejemplo n.º 12
0
def test_numpy_2d_transpose():
    val = ti.var(ti.i32)

    n = 8
    m = 8

    ti.root.dense(ti.ij, (n, m)).place(val)

    @ti.kernel
    def test_numpy(arr: ti.ext_arr()):
        for i in ti.grouped(val):
            val[i] = arr[i]

    a = np.empty(shape=(n, m), dtype=np.int32)

    for i in range(n):
        for j in range(m):
            a[i, j] = i * j + i * 4

    test_numpy(a.transpose())

    for i in range(n):
        for j in range(m):
            assert val[i, j] == i * j + j * 4
Ejemplo n.º 13
0
def test_pointer2():
    x = ti.var(ti.f32)

    n = 16

    @ti.layout
    def place():
        ti.root.dense(ti.i, n).pointer().dense(ti.i, n).place(x)

    @ti.kernel
    def func():
        for i in range(n * n):
            x[i] = 1.0

    @ti.kernel
    def set10():
        x[10] = 10.0

    @ti.kernel
    def clear():
        for i in x.parent().parent():
            ti.deactivate(x.parent().parent(), i)

    func()
    clear()

    for i in range(n * n):
        assert x[i] == 0.0

    set10()

    for i in range(n * n):
        if i != 10:
            assert x[i] == 0.0
        else:
            assert x[i] == 10.0
Ejemplo n.º 14
0
def test_scope():
    # In the future the following code should throw an exception at the python front end
    # instead of crashing the compiler
    return
    ti.runtime.print_preprocessed = True
    for arch in [ti.x86_64, ti.cuda]:
        # ti.reset()
        ti.cfg.arch = arch
        x = ti.var(ti.f32)

        N = 1

        @ti.layout
        def place():
            ti.root.dense(ti.i, N).place(x)

        @ti.kernel
        def func():
            if 1 > 0:
                val = 1

            ti.print(val)

        func()
Ejemplo n.º 15
0
def test_static_grouped_ndrange():
    val = ti.var(ti.i32)

    n = 4
    m = 8

    ti.root.dense(ti.ij, (n, m)).place(val)

    x0 = 2
    y0 = 3
    x1 = 1
    y1 = 6

    @ti.kernel
    def test():
        for I in ti.static(ti.grouped(ti.ndrange((x0, y0), (x1, y1)))):
            val[I] = I[0] + I[1] * 2

    test()

    for i in range(n):
        for j in range(m):
            assert val[i, j] == (i +
                                 j * 2 if x0 <= i < y0 and x1 <= j < y1 else 0)
Ejemplo n.º 16
0
def test_bitmasked_offset_child():
    x = ti.var(ti.i32)
    x2 = ti.var(ti.i32)
    y = ti.var(ti.i32)
    y2 = ti.var(ti.i32)
    y3 = ti.var(ti.i32)
    z = ti.var(ti.i32)
    s = ti.var(ti.i32, shape=())

    n = 16
    # Offset children:
    # * In |bm|'s cell: |bm2| has a non-zero offset
    # * In |bm2|'s cell: |z| has a non-zero offset
    # * We iterate over |z| to test the listgen handles offsets correctly
    bm = ti.root.bitmasked(ti.i, n)
    bm.dense(ti.i, 16).place(x, x2)
    bm2 = bm.bitmasked(ti.i, 4)

    bm2.dense(ti.i, 4).place(y, y2, y3)
    bm2.bitmasked(ti.i, 4).place(z)

    @ti.kernel
    def func():
        for _ in z:
            s[None] += 1

    z[0] = 1
    z[7] = 1
    z[42] = 1
    z[53] = 1
    z[88] = 1
    z[101] = 1
    z[233] = 1

    func()
    assert s[None] == 7
Ejemplo n.º 17
0
    def __init__(self):

        self.dim = 2
        self.inf = 1e10
        self.epsilon = 1e-5

        self.on = 100
        self.vn = 1000
        self.en = 1000
        self.node = ti.Vector(self.dim,
                              dt=ti.f32,
                              shape=self.vn,
                              needs_grad=True)
        self.prev_node = ti.Vector(self.dim, dt=ti.f32, shape=self.vn)
        self.prev_t_node = ti.Vector(self.dim, dt=ti.f32, shape=self.vn)
        self.bar_node = ti.Vector(self.dim, dt=ti.f32, shape=self.vn)
        self.p = ti.Vector(self.dim, dt=ti.f32, shape=self.vn)
        self.element = ti.Vector(self.dim + 1, dt=ti.i32, shape=self.en)

        #  the end index of i's object
        self.vn_object_index = ti.var(dt=ti.i32, shape=self.on)
        self.en_object_index = ti.var(dt=ti.i32, shape=self.on)
        self.count = ti.var(dt=ti.i32, shape=())

        #  the inverse obj id of each node and ele
        self.node_obj_idx = ti.var(dt=ti.i32, shape=self.vn)
        self.element_obj_idx = ti.var(dt=ti.i32, shape=self.en)

        ## for simulation
        self.E = 6000  # Young modulus
        self.nu = 0.4  # Poisson's ratio: nu \in [0, 0.5)
        self.mu = self.E / (2 * (1 + self.nu))
        self.la = self.E * self.nu / ((1 + self.nu) * (1 - 2 * self.nu))
        self.dt = 5e-3
        self.bar_d = 0.1
        self.k = 1  # contact stiffness

        # self.velocity = ti.Vector(self.dim, dt=ti.f32, shape=self.vn)
        self.node_mass = ti.var(dt=ti.f32, shape=self.vn)
        self.element_mass = ti.var(dt=ti.f32, shape=self.en)
        self.element_volume = ti.var(dt=ti.f32, shape=self.en)
        self.energy = ti.var(dt=ti.f32, shape=(), needs_grad=True)
        self.prev_energy = ti.var(dt=ti.f32, shape=())
        self.B = ti.Matrix(self.dim, self.dim, dt=ti.f32, shape=self.en)
        self.neighbor_element_count = ti.var(dt=ti.i32, shape=self.vn)

        ## for rendering
        self.begin_point = ti.Vector(self.dim, ti.f32, shape=(self.en * 3))
        self.end_point = ti.Vector(self.dim, ti.f32, shape=(self.en * 3))
        self.node_energy = ti.var(dt=ti.f32, shape=self.vn)
        self.edge_energy = ti.var(dt=ti.f32, shape=(self.en * 3))
        self.score = 0
        self.rendering_u0 = ti.var(dt=ti.f32, shape=())
        self.rendering_u1 = ti.var(dt=ti.f32, shape=())
        self.rendering_u2 = ti.var(dt=ti.f32, shape=())
        self.rendering_u3 = ti.var(dt=ti.f32, shape=())
        self.game_over = ti.var(dt=ti.i32, shape=())
        ## the controlled object
        self.ctrl_obj = ti.var(dt=ti.i32, shape=())
        self.move_d = ti.var(dt=ti.f32, shape=())
        self.ctrl_obj[None] = -1
        self.move_d[None] = 1e-3
Ejemplo n.º 18
0
import taichi as ti
quality = 2 # Use a larger value for higher-res simulations
n_particles, n_grid = 9000 * quality ** 2, 128 * quality
dx, inv_dx = 1 / n_grid, float(n_grid)
dt = 1e-4 / quality
p_vol, p_rho = (dx * 0.5)**2, 1
p_mass = p_vol * p_rho
E, nu = 0.1e4, 0.2 # Young's modulus and Poisson's ratio
mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / ((1+nu) * (1 - 2 * nu)) # Lame parameters

x = ti.Vector(2, dt=ti.f32, shape=n_particles) # position
v = ti.Vector(2, dt=ti.f32, shape=n_particles) # velocity
C = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles) # affine velocity field
F = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles) # deformation gradient
material = ti.var(dt=ti.i32, shape=n_particles) # material id
Jp = ti.var(dt=ti.f32, shape=n_particles) # plastic deformation
grid_v = ti.Vector(2, dt=ti.f32, shape=(n_grid, n_grid)) # grid node momemtum/velocity
grid_m = ti.var(dt=ti.f32, shape=(n_grid, n_grid)) # grid node mass
ti.cfg.arch = ti.cuda # Try to run on GPU

@ti.kernel
def substep():
  for i, j in ti.ndrange(n_grid, n_grid):
    grid_v[i, j] = [0, 0]
    grid_m[i, j] = 0
  for p in range(n_particles): # Particle state update and scatter to grid (P2G)
    base = (x[p] * inv_dx - 0.5).cast(int)
    fx = x[p] * inv_dx - base.cast(float)
    # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
    w = [0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1), 0.5 * ti.sqr(fx - 0.5)]
    F[p] = (ti.Matrix.identity(ti.f32, 2) + dt * C[p]) @ F[p] # deformation gradient update
Ejemplo n.º 19
0
 def on_init(self, n=512):
     self.n = n
     self.title = 'Julia Set'
     self.img = ti.var(ti.f32, (self.n * 2, self.n))
     self.colormap = cm.get_cmap('magma')
     self.define_input()
Ejemplo n.º 20
0
import taichi as ti

ti.init()

x = ti.var(ti.i32)
y = ti.var(ti.i32)

ti.root.pointer(ti.ij, 4).dense(ti.ij, 8).place(x, y)


@ti.kernel
def copy():
    for i, j in y:
        x[i, j] = y[i, j]


copy()
Ejemplo n.º 21
0
import time
from matplotlib.pyplot import cm
import taichi as tc

real = ti.f32
ti.set_default_fp(real)

max_steps = 4096
vis_interval = 4
output_vis_interval = 16
steps = 204
assert steps * 2 <= max_steps

vis_resolution = 1024

scalar = lambda: ti.var(dt=real)
vec = lambda: ti.Vector(2, dt=real)

loss = scalar()

x = vec()
v = vec()

goal = [0.9, 0.15]

n_objects = 1
ground_height = 0.1


@ti.layout
def place():
Ejemplo n.º 22
0
import taichi as ti

ti.init(arch=ti.cpu)

n = 320
pixels = ti.var(dt=ti.f32, shape=(n * 2, n))

@ti.func
def complex_sqr(z):
  return ti.Vector([z[0] ** 2 - z[1] ** 2, z[1] * z[0] * 2])

@ti.kernel
S 
  for i, j in pixels: # 对于所有像素,并行执行
    c = ti.Vector([-0.8, ti.sin(t) * 0.2])
    z = ti.Vector([float(i) / n - 1, float(j) / n - 0.5]) * 2
    iterations = 0
    while z.norm() < 20 and iterations < 50:
      z = complex_sqr(z) + c
      iterations += 1
    pixels[i, j] = 1 - iterations * 0.02

gui = ti.GUI("Fractal", (n * 2, n))

for i in range(1000000):
  paint(i * 0.03)
  gui.set_image(pixels)
  gui.show()
Ejemplo n.º 23
0
dim = 2
n_particles = 8192
n_grid = 128
dx = 1 / n_grid
inv_dx = 1 / dx
dt = 2.0e-4
p_vol = (dx * 0.5)**2
p_rho = 1
p_mass = p_vol * p_rho
E = 400

x = ti.Vector(dim, dt=ti.f32, shape=n_particles)
v = ti.Vector(dim, dt=ti.f32, shape=n_particles)
C = ti.Matrix(dim, dim, dt=ti.f32, shape=n_particles)
J = ti.var(dt=ti.f32, shape=n_particles)
grid_v = ti.Vector(dim, dt=ti.f32, shape=(n_grid, n_grid))
grid_m = ti.var(dt=ti.f32, shape=(n_grid, n_grid))

ti.cfg.arch = ti.cuda


@ti.kernel
def substep():
    for p in x:
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        w = [
            0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1),
            0.5 * ti.sqr(fx - 0.5)
        ]
Ejemplo n.º 24
0
import taichi as ti
import taichi_glsl as ts
import taichi_three as t3
ti.init(ti.opengl, kernel_profiler=True)

scene = t3.Scene()
model = t3.Model()
scene.add_model(model)

N = 2**12
faces = t3.Face.var()
vertices = t3.Vertex.var()
ti.root.dense(ti.i, N * 3).place(vertices)
ti.root.dense(ti.i, N).place(faces)
vertices_len = ti.var(ti.i32, ())
faces_len = ti.var(ti.i32, ())

model.set_vertices(vertices)
model.add_geometry(faces)


@ti.func
def glVertex(pos):
    l = ti.atomic_add(vertices_len[None], 1)
    vertices.pos[l] = pos
    return l


@ti.func
def glFace(idx):
    l = ti.atomic_add(faces_len[None], 1)
Ejemplo n.º 25
0
import taichi as ti
import random

n = 8
x = ti.var(dt=ti.f32)
y = ti.var(dt=ti.f32)
L = ti.var(dt=ti.f32)

@ti.layout
def data():
  ti.root.dense(ti.i, n).place(x, y, x.grad, y.grad) # place gradient tensors
  ti.root.place(L, L.grad)

@ti.kernel
def reduce():
  global L
  for i in range(n):
    ti.atomic_add(L, 0.5 * (x[i] - y[i]) ** 2)

# Initialize vectors
for i in range(n):
  x[i] = random.random()
  y[i] = random.random()

@ti.kernel
def update():
  for i in x:
    x[i] -= x.grad[i] * 0.1

# Optimize with 100 gradient descent iterations
for k in range(100):
Ejemplo n.º 26
0
lambda_epsilon = 100.0
pbf_num_iters = 5
corr_deltaQ_coeff = 0.3
corrK = 0.001
# Need ti.pow()
# corrN = 4.0
neighbor_radius = h * 1.05

poly6_factor = 315.0 / 64.0 / np.pi
spiky_grad_factor = -45.0 / np.pi

old_positions = ti.Vector(dim, dt=ti.f32)
positions = ti.Vector(dim, dt=ti.f32)
velocities = ti.Vector(dim, dt=ti.f32)
# Once taichi supports clear(), we can get rid of grid_num_particles
grid_num_particles = ti.var(ti.i32)
grid2particles = ti.var(ti.i32)
particle_num_neighbors = ti.var(ti.i32)
particle_neighbors = ti.var(ti.i32)
lambdas = ti.var(ti.f32)
position_deltas = ti.Vector(dim, dt=ti.f32)
# 0: x-pos, 1: timestep in sin()
board_states = ti.Vector(2, dt=ti.f32)


@ti.layout
def layout():
    ti.root.dense(ti.i, num_particles).place(old_positions, positions,
                                             velocities)
    grid_snode = ti.root.dense(ti.ij, grid_size)
    grid_snode.place(grid_num_particles)
Ejemplo n.º 27
0
import taichi as ti
ti.init()

a = ti.var(dt=ti.f32, shape=(42, 63))

Ejemplo n.º 28
0
import cv2
import os

real = ti.f32
ti.set_default_fp(real)
# ti.cfg.print_ir = True

max_steps = 4096
vis_interval = 256
output_vis_interval = 8
steps = 2048 // 2
assert steps * 2 <= max_steps

vis_resolution = 1024

scalar = lambda: ti.var(dt=real)
vec = lambda: ti.Vector(2, dt=real)

loss = scalar()

x = vec()
v = vec()
v_inc = vec()

head_id = 10
goal = vec()

n_objects = 0
# target_ball = 0
elasticity = 0.0
ground_height = 0.1
Ejemplo n.º 29
0
 def __init__(self, n, m):
     self.n = n
     self.m = m
     self.val = ti.var(ti.f32, shape=(n, m))
Ejemplo n.º 30
0
 def __init__(self, n, m, increment):
     self.n = n
     self.m = m
     self.val = ti.var(ti.f32)
     self.total = ti.var(ti.f32)
     self.increment = increment