Ejemplo n.º 1
0
def macdfix(close_ts, signalperiod=9): # fixed fastperiod=12 and slowperiod=26
    import talib
    close_np = close_ts.cpu().detach().numpy()
    close_df = pd.DataFrame(close_np)
    DIF = close_df.apply(lambda x: talib.MACDFIX(x, signalperiod=9)[0])
    DEA = close_df.apply(lambda x: talib.MACDFIX(x, signalperiod=9)[1])
    MACD = close_df.apply(lambda x: talib.MACDFIX(x, signalperiod=9)[2])
    
    DIF_ts = torch.tensor(DIF.values, dtype=close_ts.dtype, device=close_ts.device)
    DEA_ts = torch.tensor(DEA.values, dtype=close_ts.dtype, device=close_ts.device)
    MACD_ts = torch.tensor(MACD.values, dtype=close_ts.dtype, device=close_ts.device)
    
    return DIF_ts, DEA_ts, MACD_ts
Ejemplo n.º 2
0
    def MovingAverageConvergenceDivergence(self,
                                           fastperiod=12,
                                           slowperiod=26,
                                           signalperiod=9):
        """
        MACD - Moving Average Convergence/Divergence

        Parameters
        ----------
        fastperiod : TYPE, optional
            DESCRIPTION. The default is 12.
        slowperiod : TYPE, optional
            DESCRIPTION. The default is 26.
        signalperiod : TYPE, optional
            DESCRIPTION. The default is 9.

        Returns
        -------
        df : TYPE
            DESCRIPTION.

        """

        df = pd.DataFrame()

        df['macd'], df['signal'], df['history'] = ta.MACDFIX(
            self.data.close, 9)

        return df[-30:]
Ejemplo n.º 3
0
 def compMACDFIX(self):
     macd,ms,mc = talib.MACDFIX(self.close,signalperiod=self.lookback)
     self.removeNullID(macd)
     self.rawFeatures['MACD'] = macd
     
     FEATURE_SIZE_DICT['MACD'] = 1
     return
Ejemplo n.º 4
0
	def momentum(self):
		adx = talib.ADX(self.high,self.low,self.close,self.period)
		adxr = talib.ADXR(self.high,self.low,self.close,self.period)
		apo = talib.APO(self.high,self.low,self.close,self.period)
		aroondown, aroonup = talib.AROON(self.high, self.low, period)
		aroonosc = talib.AROONOSC(self.high,self.low,self.period)
		bop  = talib.BOP(self.opens,self.high,self.low,self.close)
		cci = talib.CCI(self.high,self.low,self.close,self.period)
		cmo = talib.CMO(self.close,self.period)
		dx = talib.DX(self.high,self.low,self.close,self.period)
		macd, macdsignal, macdhist = talib.MACD(self.close, fastperiod=period, slowperiod=period*5, signalperiod=period*2)
		macd1, macdsignal1, macdhist1 = talib.MACDEXT(self.close, fastperiod=12, fastmatype=0, slowperiod=26, slowmatype=0, signalperiod=9, signalmatype=0)
		macd2, macdsignal2, macdhist2 = talib.MACDFIX(self.close, signalperiod=9)
		mfi = talib.MFI(self.high, self.low, self.close, self.volume, timeperiod=14)
		minus_di = talib.MINUS_DI(self.high, self.low, self.close, timeperiod=14)
		minus_dm = talib.MINUS_DM(self.high, self.low, timeperiod=14)
		mom = talib.MOM(self.close, timeperiod=10)
		plus_di = talib.PLUS_DI(self.high, self.low, self.close, timeperiod=14)
		plus_dm = talib.PLUS_DM(self.high, self.low, timeperiod=14)
		ppo  = talib.PPO(self.close, fastperiod=12, slowperiod=26, matype=0)
		roc  = talib.ROC(self.close, timeperiod=10)
		rocp = talib.ROCP(self.close, timeperiod=10)
		rocr = talib.ROCR(self.close, timeperiod=10)
		rocr100 = talib.ROCR100(self.close, timeperiod=10)
		rsi =  talib.RSI(self.close, timeperiod=14)
		slowk, slowd = talib.STOCH(self.high, self.low, self.close, fastk_period=5, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0)
		fastk, fastd = talib.STOCHF(self.high, self.low, self.close, fastk_period=5, fastd_period=3, fastd_matype=0)
		fastk1, fastd1 = talib.STOCHRSI(self.close, timeperiod=14, fastk_period=5, fastd_period=3, fastd_matype=0)
		trix = talib.TRIX(self.close, timeperiod=30)
		ultosc = talib.ULTOSC(self.high, self.low, self.close, timeperiod1=7, timeperiod2=14, timeperiod3=28)
		willr = talib.WILLR(self.high, self.low, self.close, timeperiod=14)
Ejemplo n.º 5
0
 def MACDFIX(Close, signalperiod=9):
     macd, macdsignal, macdhist = pd.DataFrame(), pd.DataFrame(
     ), pd.DataFrame()
     for i in Close.columns:
         macd[i], macdsignal[i], macdhist[i] = ta.MACDFIX(
             Close[i], signalperiod)
     return macd, macdsignal, macdhist
Ejemplo n.º 6
0
 def MACDFIX(self, signalperiod=9):
     real_data = np.array([self.df.close], dtype='f8')
     # macd, macdsignal, macdhist = talib.MACDFIX(real_data[0], signalperiod=signalperiod)
     # return go.Scatter(
     #     x=self.df.index,
     #     y=macd,
     #     name='MACDFIX'
     # )
     return talib.MACDFIX(real_data[0], signalperiod=signalperiod)
Ejemplo n.º 7
0
def macd_vs_signal(closes):
    closes = np.array(list(closes), dtype=float)
    macd = talib.MACDFIX(closes)
    if macd[0][-1] > macd[1][-1]:
        ret_val = int(1)
    else:
        ret_val = int(0)

    return ret_val
Ejemplo n.º 8
0
def MACDFIX(close, signalperiod=9):
    ''' Moving Average Convergence/Divergence Fix 12/26

    分组: Momentum Indicator 动量指标

    简介:

    macd, macdsignal, macdhist = MACDFIX(close, signalperiod=9)
    '''
    return talib.MACDFIX(close, signalperiod)
Ejemplo n.º 9
0
def get_macdfix(ohlc):
    # MACD (先行 12 日移動平均、遅行 26 日移動平均、 9 日シグナル線) を求める
    macd, macdsignal, macdhist = ta.MACDFIX(ohlc['4_close'], signalperiod=9)

    ohlc = ohlc.assign(
        macdfix=macd
        , macdsignalfix=macdsignal
        , macdhistfix=macdhist
    )
    return ohlc
Ejemplo n.º 10
0
 def get_quota(self):
     #stock_amount = cral_CNstock_order_ana.main()
     close = self.__df['close']
     high_prices = self.__df['high'].values
     low_prices = self.__df['low'].values
     close_prices = close.values
     ma5 = talib.MA(close_prices,5)
     ma10 = talib.MA(close_prices,10)
     ma20 = talib.MA(close_prices,20)
     ma30 = talib.MA(close_prices,30)
     K, D = talib.STOCH(high_prices,low_prices,close_prices, fastk_period=9, slowk_period=3)
     J = K * 3 - D * 2
     sar = talib.SAR(high_prices, low_prices, acceleration=0.05, maximum=0.2)
     sar = pd.DataFrame(sar-close)
     sar.index = self.__df.date
     atr = talib.ATR(high_prices,low_prices,close_prices)
     natr = talib.NATR(high_prices,low_prices,close_prices)
     trange = talib.TRANGE(high_prices,low_prices,close_prices)
     cci = talib.CCI(high_prices,low_prices,close_prices,14)
     dif, dea, bar = talib.MACDFIX(close_prices)
     bar = bar * 2
     df_all = self.__df.drop(['code','open','low', 'high','volume'],axis=1).set_index('date')
     df_all.insert(0,'ma5',ma5)
     df_all.insert(0,'ma10',ma10)
     df_all.insert(0,'ma20',ma20)
     df_all.insert(0,'ma30',ma30)
     df_all.insert(0,'K',K)
     df_all.insert(0,'D',D)
     df_all.insert(0,'J',J)
     df_all.insert(0,'cci',cci)
     df_all.insert(0,'bar',bar)
     df_all.insert(0,'dif',dif)
     df_all.insert(0,'dea',dea)
     df_all.insert(0,'sar',sar)
     #df_all = pd.concat([df_all,stock_amount],axis=1)
     df_yesterday = df_all.T
     index_c = df_all.index
     added = [np.nan] * len(df_all.columns)
     df_yesterday.insert(0, len(df_yesterday.columns), added)
     df_yesterday = df_yesterday.T
     df_yesterday = df_yesterday.drop(df_all.index[len(df_all.index)-1])
     df_yesterday.insert(0, 'index_c', index_c)
     df_yesterday = df_yesterday.set_index('index_c')
     df_dif = df_all - df_yesterday
     df_dif_close_plus_one_day = df_dif.copy()
     for i in range(len(df_dif_close_plus_one_day['close'])-1):
         df_dif_close_plus_one_day['close'][i] = df_dif_close_plus_one_day['close'][i+1]
     df_dif_close_plus_one_day['close'][len(df_dif_close_plus_one_day['close'])-1] = np.nan
     df_dif = df_dif.dropna(axis=0,how='any')
     df_dif_close_plus_one_day = df_dif_close_plus_one_day.dropna(axis=0,how='any')
     return df_dif, df_dif_close_plus_one_day
Ejemplo n.º 11
0
    def tech_indicator(self) -> pd.DataFrame:
        cp = self.df.copy()
        close = cp.close.values
        open_price = cp.close.values
        high = cp.close.values
        low = cp.low.values
        volume = cp.volume.values

        cp['SMA_5'] = talib.SMA(close, 5)
        cp['upper'], cp['middle'], cp['low'] = talib.BBANDS(close,
                                                            matype=MA_Type.T3)
        cp['slowk'], cp['slowd'] = talib.STOCH(high,
                                               low,
                                               close,
                                               fastk_period=9,
                                               slowk_period=3,
                                               slowk_matype=0,
                                               slowd_period=3,
                                               slowd_matype=0)
        cp['slowk_slowd'] = cp['slowk'] - cp['slowd']
        cp['CCI'] = talib.CCI(high, low, close, timeperoid=10)
        cp['DIF'], cp['DEA'], cp['HIST'] = talib.MACD(close,
                                                      fastperiod=12,
                                                      slowperiod=26,
                                                      signalperiod=9)
        cp['BAR'] = (cp['DIF'] - cp['DEA']) * 2

        cp['macdext'], cp['signal_xt'], cp['hist_xt'] = talib.MACDFIX(
            close, signalperiod=9)

        cp['RSI'] = talib.RSI(close, timepriod=14)
        cp['AROON_DOWN'], cp['AROON_UP'] = talib.AROON(high,
                                                       low,
                                                       timeperiod=14)

        cp['upperband'], cp['middleband'], cp['lowerband'] = talib.BBANDS(
            close, timepriod=5, nbdevup=2, nbdevdn=2, matype=0)

        cp['AD'] = talib.AD(high, low, close, volume)
        cp['ADX'] = talib.ADX(high, low, close, timeperiod=14)
        cp['ADXR'] = talib.ADXR(high, low, close, timeperiod=14)
        cp['OBV'] = talib.OBV(close, volume)

        return cp
Ejemplo n.º 12
0
def corr_rate_calc(code):
    df = pd.read_sql(
        'select * from day_k_data where code="' + code +
        '" order by date asc;', engine)
    ma5 = talib.MA(df['close'].values, 5)
    ma10 = talib.MA(df['close'].values, 10)
    ma20 = talib.MA(df['close'].values, 20)
    ma30 = talib.MA(df['close'].values, 30)
    K, D = talib.STOCH(df['high'].values,
                       df['low'].values,
                       df['close'].values,
                       fastk_period=9,
                       slowk_period=3)
    J = K * 3 - D * 2
    atr = talib.ATR(df['high'].values, df['low'].values, df['close'].values)
    natr = talib.NATR(df['high'].values, df['low'].values, df['close'].values)
    trange = talib.TRANGE(df['high'].values, df['low'].values,
                          df['close'].values)
    cci = talib.CCI(df['high'].values, df['low'].values, df['close'].values,
                    14)
    dif, dea, bar = talib.MACDFIX(df['close'].values)
    bar = bar * 2
    df = df.drop(['code', 'open', 'low', 'high'], axis=1).set_index('date')
    df.insert(0, 'ma5', ma5)
    df.insert(0, 'ma10', ma10)
    df.insert(0, 'ma20', ma20)
    df.insert(0, 'ma30', ma30)
    df.insert(0, 'K', K)
    df.insert(0, 'D', D)
    df.insert(0, 'J', J)
    df.insert(0, 'cci', cci)
    df.insert(0, 'bar', bar)
    df.insert(0, 'dif', dif)
    df.insert(0, 'dea', dea)
    df_yesterday = df.T
    index_c = df.index
    added = [0] * len(df.columns)
    df_yesterday.insert(0, len(df_yesterday.columns), added)
    df_yesterday = df_yesterday.T
    df_yesterday = df_yesterday.drop(df.index[len(df.index) - 1])
    df_yesterday.insert(0, 'index_c', index_c)
    df_yesterday = df_yesterday.set_index('index_c')
    dfd = df - df_yesterday
    return dfd.corr()
Ejemplo n.º 13
0
    def macd3():
        for i in range(len(ForexTraderSwitch.curr_pair_list)):
            close=(ForexTraderSwitch.curr_pair_history_data[i]['closeAsk'].values+\
                   ForexTraderSwitch.curr_pair_history_data[i]['closeBid'].values)/2

            DIF, DEA, BAR = talib.MACDFIX(close, signalperiod=9)
            #print("DIF %s DEA %s" % (DIF[-1], DEA[-1]))
            ForexTraderSwitch.signal[i, 6] = DEA[-2]
            ForexTraderSwitch.signal[i, 7] = DEA[-1]
            ForexTraderSwitch.signal[i, 8] = DIF[-2]
            ForexTraderSwitch.signal[i, 9] = DIF[-1]
            if DIF[-1] > 0 and DEA[-1] > 0 and DIF[-2] < DEA[-2] and DIF[
                    -1] > DEA[-1]:
                #trader.create_buy_order(ticker,units)
                ForexTraderSwitch.order[i, 4, 1] = 1
            elif DIF[-1] < 0 and DEA[-1] < 0 and DIF[-2] > DEA[-2] and DIF[
                    -1] < DEA[-1]:
                #trader.create_sell_order(ticker,units)
                ForexTraderSwitch.order[i, 4, 2] = 1
            else:
                #print("No trade made")
                ForexTraderSwitch.order[i, 4, 0] = 1
Ejemplo n.º 14
0
def corr_calc(code):
    df = pd.read_sql(
        'select * from day_k_data where code="' + code +
        '" order by date asc;', engine)
    ma5 = talib.MA(df['close'].values, 5)
    ma10 = talib.MA(df['close'].values, 10)
    ma20 = talib.MA(df['close'].values, 20)
    ma30 = talib.MA(df['close'].values, 30)
    K, D = talib.STOCH(df['high'].values,
                       df['low'].values,
                       df['close'].values,
                       fastk_period=9,
                       slowk_period=3)
    J = K * 3 - D * 2
    atr = talib.ATR(df['high'].values, df['low'].values, df['close'].values)
    natr = talib.NATR(df['high'].values, df['low'].values, df['close'].values)
    trange = talib.TRANGE(df['high'].values, df['low'].values,
                          df['close'].values)
    cci = talib.CCI(df['high'].values, df['low'].values, df['close'].values,
                    14)
    dif, dea, bar = talib.MACDFIX(df['close'].values)
    bar = bar * 2
    df = df.drop(['code', 'open', 'low', 'high'], axis=1).set_index('date')
    #df = df.drop(['code'],axis=1).set_index('date')
    df.insert(0, 'ma5', ma5)
    df.insert(0, 'ma10', ma10)
    df.insert(0, 'ma20', ma20)
    df.insert(0, 'ma30', ma30)
    df.insert(0, 'K', K)
    df.insert(0, 'D', D)
    df.insert(0, 'J', J)
    df.insert(0, 'cci', cci)
    df.insert(0, 'bar', bar)
    df.insert(0, 'dif', dif)
    df.insert(0, 'dea', dea)
    print df.corr()
Ejemplo n.º 15
0
    def calculate(self, para):

        self.t = self.inputdata[:, 0]
        self.op = self.inputdata[:, 1]
        self.high = self.inputdata[:, 2]
        self.low = self.inputdata[:, 3]
        self.close = self.inputdata[:, 4]
        #adjusted close
        self.close1 = self.inputdata[:, 5]
        self.volume = self.inputdata[:, 6]
        #Overlap study

        #Overlap Studies
        #Overlap Studies
        if para is 'BBANDS':  #Bollinger Bands
            upperband, middleband, lowerband = ta.BBANDS(self.close,
                                                         timeperiod=self.tp,
                                                         nbdevup=2,
                                                         nbdevdn=2,
                                                         matype=0)
            self.output = [upperband, middleband, lowerband]

        elif para is 'DEMA':  #Double Exponential Moving Average
            self.output = ta.DEMA(self.close, timeperiod=self.tp)

        elif para is 'EMA':  #Exponential Moving Average
            self.output = ta.EMA(self.close, timeperiod=self.tp)

        elif para is 'HT_TRENDLINE':  #Hilbert Transform - Instantaneous Trendline
            self.output = ta.HT_TRENDLINE(self.close)

        elif para is 'KAMA':  #Kaufman Adaptive Moving Average
            self.output = ta.KAMA(self.close, timeperiod=self.tp)

        elif para is 'MA':  #Moving average
            self.output = ta.MA(self.close, timeperiod=self.tp, matype=0)

        elif para is 'MAMA':  #MESA Adaptive Moving Average
            mama, fama = ta.MAMA(self.close, fastlimit=0, slowlimit=0)

        elif para is 'MAVP':  #Moving average with variable period
            self.output = ta.MAVP(self.close,
                                  periods=10,
                                  minperiod=self.tp,
                                  maxperiod=self.tp1,
                                  matype=0)

        elif para is 'MIDPOINT':  #MidPoint over period
            self.output = ta.MIDPOINT(self.close, timeperiod=self.tp)

        elif para is 'MIDPRICE':  #Midpoint Price over period
            self.output = ta.MIDPRICE(self.high, self.low, timeperiod=self.tp)

        elif para is 'SAR':  #Parabolic SAR
            self.output = ta.SAR(self.high,
                                 self.low,
                                 acceleration=0,
                                 maximum=0)

        elif para is 'SAREXT':  #Parabolic SAR - Extended
            self.output = ta.SAREXT(self.high,
                                    self.low,
                                    startvalue=0,
                                    offsetonreverse=0,
                                    accelerationinitlong=0,
                                    accelerationlong=0,
                                    accelerationmaxlong=0,
                                    accelerationinitshort=0,
                                    accelerationshort=0,
                                    accelerationmaxshort=0)

        elif para is 'SMA':  #Simple Moving Average
            self.output = ta.SMA(self.close, timeperiod=self.tp)

        elif para is 'T3':  #Triple Exponential Moving Average (T3)
            self.output = ta.T3(self.close, timeperiod=self.tp, vfactor=0)

        elif para is 'TEMA':  #Triple Exponential Moving Average
            self.output = ta.TEMA(self.close, timeperiod=self.tp)

        elif para is 'TRIMA':  #Triangular Moving Average
            self.output = ta.TRIMA(self.close, timeperiod=self.tp)

        elif para is 'WMA':  #Weighted Moving Average
            self.output = ta.WMA(self.close, timeperiod=self.tp)

        #Momentum Indicators
        elif para is 'ADX':  #Average Directional Movement Index
            self.output = ta.ADX(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'ADXR':  #Average Directional Movement Index Rating
            self.output = ta.ADXR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'APO':  #Absolute Price Oscillator
            self.output = ta.APO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'AROON':  #Aroon
            aroondown, aroonup = ta.AROON(self.high,
                                          self.low,
                                          timeperiod=self.tp)
            self.output = [aroondown, aroonup]

        elif para is 'AROONOSC':  #Aroon Oscillator
            self.output = ta.AROONOSC(self.high, self.low, timeperiod=self.tp)

        elif para is 'BOP':  #Balance Of Power
            self.output = ta.BOP(self.op, self.high, self.low, self.close)

        elif para is 'CCI':  #Commodity Channel Index
            self.output = ta.CCI(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'CMO':  #Chande Momentum Oscillator
            self.output = ta.CMO(self.close, timeperiod=self.tp)

        elif para is 'DX':  #Directional Movement Index
            self.output = ta.DX(self.high,
                                self.low,
                                self.close,
                                timeperiod=self.tp)

        elif para is 'MACD':  #Moving Average Convergence/Divergence
            macd, macdsignal, macdhist = ta.MACD(self.close,
                                                 fastperiod=12,
                                                 slowperiod=26,
                                                 signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDEXT':  #MACD with controllable MA type
            macd, macdsignal, macdhist = ta.MACDEXT(self.close,
                                                    fastperiod=12,
                                                    fastmatype=0,
                                                    slowperiod=26,
                                                    slowmatype=0,
                                                    signalperiod=9,
                                                    signalmatype=0)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MACDFIX':  #Moving Average Convergence/Divergence Fix 12/26
            macd, macdsignal, macdhist = ta.MACDFIX(self.close, signalperiod=9)
            self.output = [macd, macdsignal, macdhist]
        elif para is 'MFI':  #Money Flow Index
            self.output = ta.MFI(self.high,
                                 self.low,
                                 self.close,
                                 self.volume,
                                 timeperiod=self.tp)

        elif para is 'MINUS_DI':  #Minus Directional Indicator
            self.output = ta.MINUS_DI(self.high,
                                      self.low,
                                      self.close,
                                      timeperiod=self.tp)

        elif para is 'MINUS_DM':  #Minus Directional Movement
            self.output = ta.MINUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'MOM':  #Momentum
            self.output = ta.MOM(self.close, timeperiod=10)

        elif para is 'PLUS_DI':  #Plus Directional Indicator
            self.output = ta.PLUS_DI(self.high,
                                     self.low,
                                     self.close,
                                     timeperiod=self.tp)

        elif para is 'PLUS_DM':  #Plus Directional Movement
            self.output = ta.PLUS_DM(self.high, self.low, timeperiod=self.tp)

        elif para is 'PPO':  #Percentage Price Oscillator
            self.output = ta.PPO(self.close,
                                 fastperiod=12,
                                 slowperiod=26,
                                 matype=0)

        elif para is 'ROC':  #Rate of change : ((price/prevPrice)-1)*100
            self.output = ta.ROC(self.close, timeperiod=10)

        elif para is 'ROCP':  #Rate of change Percentage: (price-prevPrice)/prevPrice
            self.output = ta.ROCP(self.close, timeperiod=10)

        elif para is 'ROCR':  #Rate of change ratio: (price/prevPrice)
            self.output = ta.ROCR(self.close, timeperiod=10)

        elif para is 'ROCR100':  #Rate of change ratio 100 scale: (price/prevPrice)*100
            self.output = ta.ROCR100(self.close, timeperiod=10)

        elif para is 'RSI':  #Relative Strength Index
            self.output = ta.RSI(self.close, timeperiod=self.tp)

        elif para is 'STOCH':  #Stochastic
            slowk, slowd = ta.STOCH(self.high,
                                    self.low,
                                    self.close,
                                    fastk_period=5,
                                    slowk_period=3,
                                    slowk_matype=0,
                                    slowd_period=3,
                                    slowd_matype=0)
            self.output = [slowk, slowd]

        elif para is 'STOCHF':  #Stochastic Fast
            fastk, fastd = ta.STOCHF(self.high,
                                     self.low,
                                     self.close,
                                     fastk_period=5,
                                     fastd_period=3,
                                     fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'STOCHRSI':  #Stochastic Relative Strength Index
            fastk, fastd = ta.STOCHRSI(self.close,
                                       timeperiod=self.tp,
                                       fastk_period=5,
                                       fastd_period=3,
                                       fastd_matype=0)
            self.output = [fastk, fastd]

        elif para is 'TRIX':  #1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
            self.output = ta.TRIX(self.close, timeperiod=self.tp)

        elif para is 'ULTOSC':  #Ultimate Oscillator
            self.output = ta.ULTOSC(self.high,
                                    self.low,
                                    self.close,
                                    timeperiod1=self.tp,
                                    timeperiod2=self.tp1,
                                    timeperiod3=self.tp2)

        elif para is 'WILLR':  #Williams' %R
            self.output = ta.WILLR(self.high,
                                   self.low,
                                   self.close,
                                   timeperiod=self.tp)

        # Volume Indicators    : #
        elif para is 'AD':  #Chaikin A/D Line
            self.output = ta.AD(self.high, self.low, self.close, self.volume)

        elif para is 'ADOSC':  #Chaikin A/D Oscillator
            self.output = ta.ADOSC(self.high,
                                   self.low,
                                   self.close,
                                   self.volume,
                                   fastperiod=3,
                                   slowperiod=10)

        elif para is 'OBV':  #On Balance Volume
            self.output = ta.OBV(self.close, self.volume)

    # Volatility Indicators: #
        elif para is 'ATR':  #Average True Range
            self.output = ta.ATR(self.high,
                                 self.low,
                                 self.close,
                                 timeperiod=self.tp)

        elif para is 'NATR':  #Normalized Average True Range
            self.output = ta.NATR(self.high,
                                  self.low,
                                  self.close,
                                  timeperiod=self.tp)

        elif para is 'TRANGE':  #True Range
            self.output = ta.TRANGE(self.high, self.low, self.close)

        #Price Transform      : #
        elif para is 'AVGPRICE':  #Average Price
            self.output = ta.AVGPRICE(self.op, self.high, self.low, self.close)

        elif para is 'MEDPRICE':  #Median Price
            self.output = ta.MEDPRICE(self.high, self.low)

        elif para is 'TYPPRICE':  #Typical Price
            self.output = ta.TYPPRICE(self.high, self.low, self.close)

        elif para is 'WCLPRICE':  #Weighted Close Price
            self.output = ta.WCLPRICE(self.high, self.low, self.close)

        #Cycle Indicators     : #
        elif para is 'HT_DCPERIOD':  #Hilbert Transform - Dominant Cycle Period
            self.output = ta.HT_DCPERIOD(self.close)

        elif para is 'HT_DCPHASE':  #Hilbert Transform - Dominant Cycle Phase
            self.output = ta.HT_DCPHASE(self.close)

        elif para is 'HT_PHASOR':  #Hilbert Transform - Phasor Components
            inphase, quadrature = ta.HT_PHASOR(self.close)
            self.output = [inphase, quadrature]

        elif para is 'HT_SINE':  #Hilbert Transform - SineWave #2
            sine, leadsine = ta.HT_SINE(self.close)
            self.output = [sine, leadsine]

        elif para is 'HT_TRENDMODE':  #Hilbert Transform - Trend vs Cycle Mode
            self.integer = ta.HT_TRENDMODE(self.close)

        #Pattern Recognition  : #
        elif para is 'CDL2CROWS':  #Two Crows
            self.integer = ta.CDL2CROWS(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDL3BLACKCROWS':  #Three Black Crows
            self.integer = ta.CDL3BLACKCROWS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3INSIDE':  #Three Inside Up/Down
            self.integer = ta.CDL3INSIDE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDL3LINESTRIKE':  #Three-Line Strike
            self.integer = ta.CDL3LINESTRIKE(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDL3OUTSIDE':  #Three Outside Up/Down
            self.integer = ta.CDL3OUTSIDE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDL3STARSINSOUTH':  #Three Stars In The South
            self.integer = ta.CDL3STARSINSOUTH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDL3WHITESOLDIERS':  #Three Advancing White Soldiers
            self.integer = ta.CDL3WHITESOLDIERS(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLABANDONEDBABY':  #Abandoned Baby
            self.integer = ta.CDLABANDONEDBABY(self.op,
                                               self.high,
                                               self.low,
                                               self.close,
                                               penetration=0)

        elif para is 'CDLBELTHOLD':  #Belt-hold
            self.integer = ta.CDLBELTHOLD(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLBREAKAWAY':  #Breakaway
            self.integer = ta.CDLBREAKAWAY(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLCLOSINGMARUBOZU':  #Closing Marubozu
            self.integer = ta.CDLCLOSINGMARUBOZU(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLCONCEALBABYSWALL':  #Concealing Baby Swallow
            self.integer = ta.CDLCONCEALBABYSWALL(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLCOUNTERATTACK':  #Counterattack
            self.integer = ta.CDLCOUNTERATTACK(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLDARKCLOUDCOVER':  #Dark Cloud Cover
            self.integer = ta.CDLDARKCLOUDCOVER(self.op,
                                                self.high,
                                                self.low,
                                                self.close,
                                                penetration=0)

        elif para is 'CDLDOJI':  #Doji
            self.integer = ta.CDLDOJI(self.op, self.high, self.low, self.close)

        elif para is 'CDLDOJISTAR':  #Doji Star
            self.integer = ta.CDLDOJISTAR(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLDRAGONFLYDOJI':  #Dragonfly Doji
            self.integer = ta.CDLDRAGONFLYDOJI(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLENGULFING':  #Engulfing Pattern
            self.integer = ta.CDLENGULFING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLEVENINGDOJISTAR':  #Evening Doji Star
            self.integer = ta.CDLEVENINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLEVENINGSTAR':  #Evening Star
            self.integer = ta.CDLEVENINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLGAPSIDESIDEWHITE':  #Up/Down-gap side-by-side white lines
            self.integer = ta.CDLGAPSIDESIDEWHITE(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLGRAVESTONEDOJI':  #Gravestone Doji
            self.integer = ta.CDLGRAVESTONEDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLHAMMER':  #Hammer
            self.integer = ta.CDLHAMMER(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHANGINGMAN':  #Hanging Man
            self.integer = ta.CDLHANGINGMAN(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHARAMI':  #Harami Pattern
            self.integer = ta.CDLHARAMI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLHARAMICROSS':  #Harami Cross Pattern
            self.integer = ta.CDLHARAMICROSS(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLHIGHWAVE':  #High-Wave Candle
            self.integer = ta.CDLHIGHWAVE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLHIKKAKE':  #Hikkake Pattern
            self.integer = ta.CDLHIKKAKE(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLHIKKAKEMOD':  #Modified Hikkake Pattern
            self.integer = ta.CDLHIKKAKEMOD(self.op, self.high, self.low,
                                            self.close)

        elif para is 'CDLHOMINGPIGEON':  #Homing Pigeon
            self.integer = ta.CDLHOMINGPIGEON(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLIDENTICAL3CROWS':  #Identical Three Crows
            self.integer = ta.CDLIDENTICAL3CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLINNECK':  #In-Neck Pattern
            self.integer = ta.CDLINNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLINVERTEDHAMMER':  #Inverted Hammer
            self.integer = ta.CDLINVERTEDHAMMER(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLKICKING':  #Kicking
            self.integer = ta.CDLKICKING(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLKICKINGBYLENGTH':  #Kicking - bull/bear determined by the longer marubozu
            self.integer = ta.CDLKICKINGBYLENGTH(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLLADDERBOTTOM':  #Ladder Bottom
            self.integer = ta.CDLLADDERBOTTOM(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLLONGLEGGEDDOJI':  #Long Legged Doji
            self.integer = ta.CDLLONGLEGGEDDOJI(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLLONGLINE':  #Long Line Candle
            self.integer = ta.CDLLONGLINE(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMARUBOZU':  #Marubozu
            self.integer = ta.CDLMARUBOZU(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLMATCHINGLOW':  #Matching Low
            self.integer = ta.CDLMATCHINGLOW(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLMATHOLD':  #Mat Hold
            self.integer = ta.CDLMATHOLD(self.op,
                                         self.high,
                                         self.low,
                                         self.close,
                                         penetration=0)

        elif para is 'CDLMORNINGDOJISTAR':  #Morning Doji Star
            self.integer = ta.CDLMORNINGDOJISTAR(self.op,
                                                 self.high,
                                                 self.low,
                                                 self.close,
                                                 penetration=0)

        elif para is 'CDLMORNINGSTAR':  #Morning Star
            self.integer = ta.CDLMORNINGSTAR(self.op,
                                             self.high,
                                             self.low,
                                             self.close,
                                             penetration=0)

        elif para is 'CDLONNECK':  #On-Neck Pattern
            self.integer = ta.CDLONNECK(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLPIERCING':  #Piercing Pattern
            self.integer = ta.CDLPIERCING(self.op, self.high, self.low,
                                          self.close)

        elif para is 'CDLRICKSHAWMAN':  #Rickshaw Man
            self.integer = ta.CDLRICKSHAWMAN(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLRISEFALL3METHODS':  #Rising/Falling Three Methods
            self.integer = ta.CDLRISEFALL3METHODS(self.op, self.high, self.low,
                                                  self.close)

        elif para is 'CDLSEPARATINGLINES':  #Separating Lines
            self.integer = ta.CDLSEPARATINGLINES(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLSHOOTINGSTAR':  #Shooting Star
            self.integer = ta.CDLSHOOTINGSTAR(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLSHORTLINE':  #Short Line Candle
            self.integer = ta.CDLSHORTLINE(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLSPINNINGTOP':  #Spinning Top
            self.integer = ta.CDLSPINNINGTOP(self.op, self.high, self.low,
                                             self.close)

        elif para is 'CDLSTALLEDPATTERN':  #Stalled Pattern
            self.integer = ta.CDLSTALLEDPATTERN(self.op, self.high, self.low,
                                                self.close)

        elif para is 'CDLSTICKSANDWICH':  #Stick Sandwich
            self.integer = ta.CDLSTICKSANDWICH(self.op, self.high, self.low,
                                               self.close)

        elif para is 'CDLTAKURI':  #Takuri (Dragonfly Doji with very long lower shadow)
            self.integer = ta.CDLTAKURI(self.op, self.high, self.low,
                                        self.close)

        elif para is 'CDLTASUKIGAP':  #Tasuki Gap
            self.integer = ta.CDLTASUKIGAP(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTHRUSTING':  #Thrusting Pattern
            self.integer = ta.CDLTHRUSTING(self.op, self.high, self.low,
                                           self.close)

        elif para is 'CDLTRISTAR':  #Tristar Pattern
            self.integer = ta.CDLTRISTAR(self.op, self.high, self.low,
                                         self.close)

        elif para is 'CDLUNIQUE3RIVER':  #Unique 3 River
            self.integer = ta.CDLUNIQUE3RIVER(self.op, self.high, self.low,
                                              self.close)

        elif para is 'CDLUPSIDEGAP2CROWS':  #Upside Gap Two Crows
            self.integer = ta.CDLUPSIDEGAP2CROWS(self.op, self.high, self.low,
                                                 self.close)

        elif para is 'CDLXSIDEGAP3METHODS':  #Upside/Downside Gap Three Methods
            self.integer = ta.CDLXSIDEGAP3METHODS(self.op, self.high, self.low,
                                                  self.close)

        #Statistic Functions  : #
        elif para is 'BETA':  #Beta
            self.output = ta.BETA(self.high, self.low, timeperiod=5)

        elif para is 'CORREL':  #Pearson's Correlation Coefficient (r)
            self.output = ta.CORREL(self.high, self.low, timeperiod=self.tp)

        elif para is 'LINEARREG':  #Linear Regression
            self.output = ta.LINEARREG(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_ANGLE':  #Linear Regression Angle
            self.output = ta.LINEARREG_ANGLE(self.close, timeperiod=self.tp)

        elif para is 'LINEARREG_INTERCEPT':  #Linear Regression Intercept
            self.output = ta.LINEARREG_INTERCEPT(self.close,
                                                 timeperiod=self.tp)

        elif para is 'LINEARREG_SLOPE':  #Linear Regression Slope
            self.output = ta.LINEARREG_SLOPE(self.close, timeperiod=self.tp)

        elif para is 'STDDEV':  #Standard Deviation
            self.output = ta.STDDEV(self.close, timeperiod=5, nbdev=1)

        elif para is 'TSF':  #Time Series Forecast
            self.output = ta.TSF(self.close, timeperiod=self.tp)

        elif para is 'VAR':  #Variance
            self.output = ta.VAR(self.close, timeperiod=5, nbdev=1)

        else:
            print('You issued command:' + para)
Ejemplo n.º 16
0
def TALIB_MACDFIX(close, signalperiod=9):
    '''00355,2,3'''
    return talib.MACDFIX(close, signalperiod)
        macd, macdsignal, macdhist = ta.MACD(close,
                                             fastperiod=12,
                                             slowperiod=26,
                                             signalperiod=9)

        #MACDEXT - MACD with controllable MA type
        macd, macdsignal, macdhist = ta.MACDEXT(close,
                                                fastperiod=12,
                                                fastmatype=0,
                                                slowperiod=26,
                                                slowmatype=0,
                                                signalperiod=9,
                                                signalmatype=0)

        #MACDFIX - Moving Average Convergence/Divergence Fix 12/26
        macd, macdsignal, macdhist = ta.MACDFIX(close, signalperiod=9)

        #MFI - Money Flow Index
        mfi = ta.MFI(high, low, close, volume, timeperiod=14)

        #MINUS_DI - Minus Directional Indicator
        minus_di = ta.MINUS_DI(high, low, close, timeperiod=14)

        #MINUS_DM - Minus Directional Movement
        minus_dm = ta.MINUS_DM(high, low, timeperiod=14)

        #MOM - Momentum
        mom = ta.MOM(close, timeperiod=10)

        #PLUS_DI - Plus Directional Indicator
        plus_di = ta.PLUS_DI(high, low, close, timeperiod=14)
def momentum_process(event):
    print(event.widget.get())
    momentum = event.widget.get()

    upperband, middleband, lowerband = ta.BBANDS(close,
                                                 timeperiod=5,
                                                 nbdevup=2,
                                                 nbdevdn=2,
                                                 matype=0)
    fig, axes = plt.subplots(2, 1, sharex=True)
    ax1, ax2 = axes[0], axes[1]
    axes[0].plot(close, 'rd-', markersize=3)
    axes[0].plot(upperband, 'y-')
    axes[0].plot(middleband, 'b-')
    axes[0].plot(lowerband, 'y-')
    axes[0].set_title(momentum, fontproperties='SimHei')

    if momentum == '绝对价格振荡器':
        real = ta.APO(close, fastperiod=12, slowperiod=26, matype=0)
        axes[1].plot(real, 'r-')
    elif momentum == '钱德动量摆动指标':
        real = ta.CMO(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif momentum == '移动平均收敛/散度':
        macd, macdsignal, macdhist = ta.MACD(close,
                                             fastperiod=12,
                                             slowperiod=26,
                                             signalperiod=9)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '带可控MA类型的MACD':
        macd, macdsignal, macdhist = ta.MACDEXT(close,
                                                fastperiod=12,
                                                fastmatype=0,
                                                slowperiod=26,
                                                slowmatype=0,
                                                signalperiod=9,
                                                signalmatype=0)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '移动平均收敛/散度 固定 12/26':
        macd, macdsignal, macdhist = ta.MACDFIX(close, signalperiod=9)
        axes[1].plot(macd, 'r-')
        axes[1].plot(macdsignal, 'g-')
        axes[1].plot(macdhist, 'b-')
    elif momentum == '动量':
        real = ta.MOM(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '比例价格振荡器':
        real = ta.PPO(close, fastperiod=12, slowperiod=26, matype=0)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率':
        real = ta.ROC(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率百分比':
        real = ta.ROCP(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率的比率':
        real = ta.ROCR(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '变化率的比率100倍':
        real = ta.ROCR100(close, timeperiod=10)
        axes[1].plot(real, 'r-')
    elif momentum == '相对强弱指数':
        real = ta.RSI(close, timeperiod=14)
        axes[1].plot(real, 'r-')
    elif momentum == '随机相对强弱指标':
        fastk, fastd = ta.STROCHRSI(close,
                                    timeperiod=14,
                                    fastk_period=5,
                                    fasted_period=3,
                                    fasted_matype=0)
        axes[1].plot(fastk, 'r-')
        axes[1].plot(fastd, 'r-')
    elif momentum == '三重光滑EMA的日变化率':
        real = ta.TRIX(close, timeperiod=30)
        axes[1].plot(real, 'r-')

    plt.show()
Ejemplo n.º 19
0
def parse(code,start_date='0'):
    df = pd.read_sql('select * from day_k_data where code="'+code+'" order by date asc;',engine)
    buy_price   = {}
    buy_date  = {}
    sell_price  = {}
    sell_date = {}
    is_buy = {}
    rate = {}
    profit = {}
    profit['based'] = {}
    ma5 = talib.MA(df['close'].values,5)
    ma10 = talib.MA(df['close'].values,10)
    ma20 = talib.MA(df['close'].values,20)
    ma30 = talib.MA(df['close'].values,30)
    K, D = talib.STOCH(df['high'].values,df['low'].values,df['close'].values, fastk_period=9, slowk_period=3)
    J = K * 3 - D * 2
    atr = talib.ATR(df['high'].values,df['low'].values,df['close'].values)
    natr = talib.NATR(df['high'].values,df['low'].values,df['close'].values)
    trange = talib.TRANGE(df['high'].values,df['low'].values,df['close'].values)
    cci = talib.CCI(df['high'].values,df['low'].values,df['close'].values,14)
    dif, dea, bar = talib.MACDFIX(df['close'].values)
    bar = bar * 2
    close = df['close']
    start_date_open = 0
    for idx in range(len(ma10)):
        if df.date[idx] < start_date:
            continue
        ma10_buy = 0
        ma10_sell = 0
        bar_buy = 0
        bar_sell = 0
        cci_buy = 0
        cci_sell = 0
        dif_buy = 0
        dif_sell = 0
        K_buy = 0
        K_sell = 0
        close_val = close[idx]
        ma10_val = ma10[idx]
        ma20_val = ma20[idx]
        ma5_val = ma5[idx]
        cci_val = cci[idx]
        dif_val = dif[idx]
        dea_val = dea[idx]
        bar_val = bar[idx]
        K_val = K[idx]
        D_val = D[idx]
        J_val = J[idx]
        if start_date_open == 0:
            start_date_open = close_val
        if idx>=1:
            bar_val_y = bar[idx-1]
            dif_val_y = dif[idx-1]
            dea_val_y = dea[idx-1]
            cci_val_y = cci[idx-1]
            K_val_y = K[idx-1]
            if df.date[idx-1] not in profit['based']:
                profit['based'][df.date[idx-1]] = 1.0
            profit['based'][df.date[idx]] = profit['based'][df.date[idx-1]] * close[idx] / close[idx-1]
        else:
            bar_val_y = 0
            dif_val_y = 0
            dea_val_y = 0
            cci_val_y = 0
            K_val_y = 0

        if close_val > ma10_val:
            ma10_buy = 1

        if bar_val>0 and bar_val>bar_val_y:
            bar_buy = 1

        if cci_val>=100 and cci_val>cci_val_y:
            cci_buy = 1

        if dif_val>dea_val and dif_val>dif_val_y:
            dif_buy = 1

        if K_val>D_val and K_val>K_val_y:
            K_buy = 1

        if close_val<ma10_val:
            ma10_sell = 1

        if bar_val<0 and bar_val<bar_val_y:
            bar_sell = 1

        if cci_val<=100 and cci_val<cci_val_y:
            cci_sell = 1

        if dif_val<dea_val and dif_val<dif_val_y:
            dif_sell = 1

        if K_val<D_val and K_val<K_val_y:
            K_sell = 1
            
        for elm1 in container:

            ih, ij, ik, il, im = elm1
            ma10_buy_t = ma10_buy
            bar_buy_t = bar_buy
            cci_buy_t = cci_buy
            dif_buy_t = dif_buy
            K_buy_t = K_buy

            temp = 1

            if ih == 0:
                ma10_buy_t = temp
            if ij == 0:
                bar_buy_t = temp
            if ik == 0:
                cci_buy_t = temp
            if il == 0:
                dif_buy_t = temp
            if im == 0:
                K_buy_t = temp

            for elm2 in container:
                ihs, ijs, iks, ils, ims = elm2
                bar_sell_t = bar_sell
                cci_sell_t = cci_sell
                dif_sell_t = dif_sell
                ma10_sell_t = ma10_sell
                K_sell_t = K_sell
                temp = 0
                if ihs == 0:
                    ma10_sell_t = temp
                if ijs == 0:
                    bar_sell_t = temp
                if iks == 0:
                    cci_sell_t = temp
                if ils == 0:
                    dif_sell_t = temp
                if ims == 0:
                    K_sell_t = temp                                            

                s_type = str(ih)+str(ij)+str(ik)+str(il)+str(im)+'b|s'+str(ihs)+str(ijs)+str(iks)+str(ils)+str(ims)

                if s_type not in buy_price:
                    buy_price[s_type] = []
                    buy_date[s_type] = []
                    sell_price[s_type] = []
                    sell_date[s_type] = []
                    is_buy[s_type] = 0

                if ma10_buy_t * bar_buy_t * cci_buy_t * dif_buy_t * K_buy_t:
                    if is_buy[s_type] == 0:
                        is_buy[s_type] = 1
                        buy_price[s_type].append(close_val)
                        buy_date[s_type].append(df.date[idx])
                        continue

                if ma10_sell_t or bar_sell_t or cci_sell_t or dif_sell_t or K_sell_t: 
                    if is_buy[s_type] == 1:
                        is_buy[s_type] = 0
                        sell_price[s_type].append(close_val)
                        sell_date[s_type].append(df.date[idx])
    
    rate['based'] = close[len(close)-1] * (1 - 0.002) / start_date_open
    for s_type in sell_price:
        rate[s_type] = 1.0 
        profit[s_type] = {}
        for i in range(len(buy_price[s_type])):
            try:
                rate[s_type] = rate[s_type] * (sell_price[s_type][i] * (1 - 0.002) / buy_price[s_type][i])
                profit[s_type][buy_date[s_type][i]] = rate[s_type]
                #print s_type,"buy date : %s, buy price : %.2f, sell date : %s, sell price: %.2f" %(buy_date[s_type][i], buy_price[s_type][i], sell_date[s_type][i], sell_price[s_type][i])
            except:
                rate[s_type] = rate[s_type] * (close[len(close)-1] * (1 - 0.002) / buy_price[s_type][len(buy_price[s_type])-1])
                profit[s_type][buy_date[s_type][i]] = rate[s_type]
    rate = sorted(rate.items(),key=lambda x:x[1],reverse=True)
    return rate,profit
Ejemplo n.º 20
0
def MACDFIX(data, **kwargs):
    _check_talib_presence()
    prices = _extract_series(data)
    return talib.MACDFIX(prices, **kwargs)
Ejemplo n.º 21
0
def build_talib_factors(df_ftr, tp=10):
    tporg = tp
    mul = 2
    rtn_divisor = [1, 1 / 8]
    # momentum
    df_ftr['BOP'] = ta.BOP(df_ftr.open.values, df_ftr.high.values,
                           df_ftr.low.values, df_ftr.close.values)
    # volatility
    df_ftr['TRANGE'] = ta.TRANGE(df_ftr.high.values, df_ftr.low.values,
                                 df_ftr.close.values)
    # volume
    df_ftr['AD'] = ta.AD(df_ftr.high.values, df_ftr.low.values,
                         df_ftr.close.values, df_ftr.volume.values)

    #    df_ftr['AD_ANGLE']=ta.LINEARREG_ANGLE(df_ftr['AD'].values, timeperiod=tp) too little variation

    # overlap
    df_ftr['OBV'] = ta.OBV(df_ftr.close.values, df_ftr.volume.values)

    for i in range(len(rtn_divisor)):
        tp = int(tporg // rtn_divisor[i])
        if tp <= 3:
            continue
        x = str(i)
        ######## self defined
        df_ftr['rtn_disper'] = df_ftr['high'] - df_ftr['low']
        df_ftr['rtn_disper_rolling' + x] = df_ftr['rtn_disper'].rolling(
            int(tp)).mean()
        ######## momentum indicators
        # see descriptoin for the values df_ftr['close_slope' + x] and others see the freq it falls into the ranges
        df_ftr['close_slope' + x] = ta.LINEARREG_SLOPE(df_ftr['close'].values,
                                                       timeperiod=tp)
        df_ftr['close_slope_std' + x] = df_ftr['close_slope' + x].rolling(
            int(tp)).std()

        # rsi
        df_ftr['rsi' + x] = ta.RSI(df_ftr.close.values, timeperiod=tp)
        df_ftr['rsi_mean' +
               x] = ta.SUM(df_ftr['rsi' + x].values, timeperiod=tp) / tp

        df_ftr['storsi' +
               x] = (df_ftr['rsi' + x] - df_ftr['rsi' + x].rolling(tp).min()
                     ) / (df_ftr['rsi' + x].rolling(tp).max() -
                          df_ftr['rsi' + x].rolling(tp).min())

        # stochastic
        df_ftr['slowk' + x], df_ftr['slowd' + x] = ta.STOCH(
            df_ftr.high.values,
            df_ftr.low.values,
            df_ftr.close.values,
            fastk_period=round(tp * mul),
            slowk_period=tp,
            slowk_matype=0,
            slowd_period=tp,
            slowd_matype=0)  # slowd is slow sto, slowk is fast sto
        df_ftr['slowj'] = (3 * df_ftr['slowd' + x]) - (2 * df_ftr['slowk' + x])

        df_ftr['fastk' + x], df_ftr['fastd' + x] = ta.STOCHF(
            df_ftr.high.values,
            df_ftr.low.values,
            df_ftr.close.values,
            fastk_period=tp,
            fastd_period=tp // mul,
            fastd_matype=0)

        df_ftr['mom' + x] = ta.MOM(df_ftr.close.values, timeperiod=tp)
        # directional change
        df_ftr['plus_di' + x] = ta.PLUS_DI(df_ftr.high.values,
                                           df_ftr.low.values,
                                           df_ftr.close.values,
                                           timeperiod=tp)
        df_ftr['plus_dm' + x] = ta.PLUS_DM(df_ftr.high.values,
                                           df_ftr.low.values,
                                           timeperiod=tp)
        df_ftr['MINUS_DI' + x] = ta.MINUS_DI(df_ftr.high.values,
                                             df_ftr.low.values,
                                             df_ftr.close.values,
                                             timeperiod=tp)
        df_ftr['MINUS_DM' + x] = ta.MINUS_DM(df_ftr.high.values,
                                             df_ftr.low.values,
                                             timeperiod=tp)

        df_ftr['plus_minus_di' +
               x] = df_ftr['plus_di' + x] - df_ftr['MINUS_DI' + x]

        df_ftr['DX' + x] = ta.DX(df_ftr.high.values,
                                 df_ftr.low.values,
                                 df_ftr.close.values,
                                 timeperiod=tp)
        df_ftr['ADX' + x] = ta.ADX(df_ftr.high.values,
                                   df_ftr.low.values,
                                   df_ftr.close.values,
                                   timeperiod=tp)
        df_ftr['ADXR' + x] = ta.ADXR(df_ftr.high.values,
                                     df_ftr.low.values,
                                     df_ftr.close.values,
                                     timeperiod=tp)

        # MACD
        df_ftr['MACD' + x], df_ftr['macdsignal' +
                                   x], df_ftr['macdhist' + x] = ta.MACD(
                                       df_ftr.close.values,
                                       fastperiod=tp,
                                       slowperiod=round(tp * 2),
                                       signalperiod=tp // mul)
        # http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:moving_average_convergence_divergence_macd

        # Aroon
        # https://tradingsim.com/blog/aroon-indicator/
        df_ftr['aroondown' + x], df_ftr['aroonup' + x] = ta.AROON(
            df_ftr.high.values, df_ftr.low.values, timeperiod=tp)
        df_ftr['AROONOSC' + x] = ta.AROONOSC(df_ftr.high.values,
                                             df_ftr.low.values,
                                             timeperiod=tp)

        # Chande Momentum Oscillator
        # https://www.investopedia.com/terms/c/chandemomentumoscillator.asp
        df_ftr['CMO' + x] = ta.CMO(df_ftr.close.values, timeperiod=tp)

        # Money Flow Index
        # http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi
        df_ftr['MFI' + x] = ta.MFI(df_ftr.high.values,
                                   df_ftr.low.values,
                                   df_ftr.close.values,
                                   df_ftr.volume.values,
                                   timeperiod=tp)
        df_ftr['MFI_slope' + x] = ta.LINEARREG_SLOPE(df_ftr['MFI' + x].values,
                                                     timeperiod=tp)

        # MACD with controllable MA type
        df_ftr['macdEXT' + x], df_ftr['macdEXTsignal' +
                                      x], df_ftr['macdEXThist' +
                                                 x] = ta.MACDEXT(
                                                     df_ftr.close.values,
                                                     fastperiod=tp // mul,
                                                     fastmatype=0,
                                                     slowperiod=tp,
                                                     slowmatype=0,
                                                     signalperiod=9,
                                                     signalmatype=0)
        df_ftr['macdEXT_slope' + x] = ta.LINEARREG_SLOPE(df_ftr['macdEXT' +
                                                                x].values,
                                                         timeperiod=tp)

        df_ftr['macdFIX' + x], df_ftr['macdFIXsignal' +
                                      x], df_ftr['macdFIXhist' +
                                                 x] = ta.MACDFIX(
                                                     df_ftr.close.values,
                                                     signalperiod=9)

        # Stochastic Relative Strength Index
        df_ftr['fastkRSI' + x], df_ftr['fastdRSI' + x] = ta.STOCHRSI(
            df_ftr.close.values,
            timeperiod=tp,
            fastk_period=tp // 2,
            fastd_period=tp // (mul * 2),
            fastd_matype=0)

        # volatility
        df_ftr['ATR' + x] = ta.ATR(df_ftr.high.values,
                                   df_ftr.low.values,
                                   df_ftr.close.values,
                                   timeperiod=tp)
        df_ftr['NATR' + x] = ta.NATR(df_ftr.high.values,
                                     df_ftr.low.values,
                                     df_ftr.close.values,
                                     timeperiod=tp)

        # volume

        df_ftr['ADOSC' + x] = ta.ADOSC(df_ftr.high.values,
                                       df_ftr.low.values,
                                       df_ftr.close.values,
                                       df_ftr.volume.values,
                                       fastperiod=tp,
                                       slowperiod=tp * mul)

        df_ftr['AD_SLOPE' + x] = ta.LINEARREG_SLOPE(df_ftr['AD'].values,
                                                    timeperiod=tp)
        df_ftr['AD_SLOPE_std' + x] = df_ftr['AD_SLOPE' + x].rolling(
            int(tp * 20)).std()

        df_ftr['OBV_slope' + x] = ta.LINEARREG_SLOPE(df_ftr['OBV'].values,
                                                     timeperiod=tp)

        # cycle
        df_ftr['HT_DCPERIOD' +
               x] = df_ftr['HT_DCPERIOD'].pct_change(periods=int(tp)).values
        df_ftr['HT_TRENDLINE' + x] = pd.DataFrame(
            ta.HT_TRENDLINE(
                df_ftr.close.values)).pct_change(periods=int(tp)).values

        # statistics
        df_ftr['STDDEV' + x] = ta.STDDEV(df_ftr.close.values,
                                         timeperiod=tp,
                                         nbdev=1)
        # NbDev = How may deviations you want this function to return (normally = 1).
        df_ftr[
            'TSF' +
            x] = ta.TSF(df_ftr.close.values, timeperiod=tp) / df_ftr.close - 1
        df_ftr['BETA' + x] = ta.BETA(df_ftr.high.values,
                                     df_ftr.low.values,
                                     timeperiod=tp)
        df_ftr['LINEARREG_SLOPE' + x] = ta.LINEARREG_SLOPE(df_ftr.close.values,
                                                           timeperiod=tp)
        df_ftr['CORREL' + x] = ta.CORREL(df_ftr.high.values,
                                         df_ftr.low.values,
                                         timeperiod=tp)

        # candle indicators - pattern recognition - unused features

    df_ftr = df_ftr.replace([np.inf, -np.inf], np.nan)

    col = list(df_ftr.columns.values)
    df_ftr.to_pickle(r'../data/ftr_ta.pkl')
Ejemplo n.º 22
0
def MACDFIX(Series, timeperiod=9):
    macd, macdsignal, macdhist = talib.MACDFIX(Series.values, timeperiod)
    return pd.Series(macd, index=Series.index), pd.Series(
        macdsignal, index=Series.index), pd.Series(macdhist,
                                                   index=Series.index)
Ejemplo n.º 23
0
 aroondown_real, aroonup_real = talib.AROON(
     resorted['high'], resorted['low'])
 aroonosc_real = talib.AROONOSC(resorted['high'],
                                resorted['low'])
 bop_real = talib.BOP(resorted['open'], resorted['high'],
                      resorted['low'], resorted['close'])
 cci_real = talib.CCI(resorted['high'], resorted['low'],
                      resorted['close'])
 cmo_real = talib.CMO(resorted['close'])
 dx_real = talib.DX(resorted['high'], resorted['low'],
                    resorted['close'])
 macd_real, macdsignal_real, macdhist_real = talib.MACD(
     resorted['close'])
 macdext_real, macdsignalext_real, macdhistext_real = talib.MACDEXT(
     resorted['close'])
 macdfix_real, macdsignalfix_real, macdhistfix_real = talib.MACDFIX(
     resorted['close'])
 mfi_real = talib.MFI(resorted['high'], resorted['low'],
                      resorted['close'], resorted['volume'])
 minus_di_real = talib.MINUS_DI(resorted['high'],
                                resorted['low'],
                                resorted['close'])
 minus_dm_real = talib.MINUS_DM(resorted['high'],
                                resorted['low'])
 mom_real = talib.MOM(resorted['close'])
 plus_di_real = talib.PLUS_DI(resorted['high'], resorted['low'],
                              resorted['close'])
 plus_dm_real = talib.PLUS_DM(resorted['high'], resorted['low'])
 ppo_real = talib.PPO(resorted['close'])
 roc_real = talib.ROC(resorted['close'])
 rocp_real = talib.ROCP(resorted['close'])
 rocr_real = talib.ROCR(resorted['close'])
Ejemplo n.º 24
0
def add_ta_features(df, ta_settings):
    """Add technial analysis features from typical financial dataset that
    typically include columns such as "open", "high", "low", "price" and
    "volume".

    http://mrjbq7.github.io/ta-lib/

    Args:
        df(pandas.DataFrame): original DataFrame.
        ta_settings(dict): configuration.
    Returns:
        pandas.DataFrame: DataFrame with new features included.
    """

    open = df['open']
    high = df['high']
    low = df['low']
    close = df['price']
    volume = df['volume']

    if ta_settings['overlap']:

        df['ta_overlap_bbands_upper'], df['ta_overlap_bbands_middle'], df[
            'ta_overlap_bbands_lower'] = ta.BBANDS(close,
                                                   timeperiod=5,
                                                   nbdevup=2,
                                                   nbdevdn=2,
                                                   matype=0)
        df['ta_overlap_dema'] = ta.DEMA(
            close, timeperiod=15)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_ema'] = ta.EMA(close, timeperiod=30)
        df['ta_overlap_kama'] = ta.KAMA(close, timeperiod=30)
        df['ta_overlap_ma'] = ta.MA(close, timeperiod=30, matype=0)
        df['ta_overlap_mama_mama'], df['ta_overlap_mama_fama'] = ta.MAMA(close)
        period = np.random.randint(10, 20, size=len(close)).astype(float)
        df['ta_overlap_mavp'] = ta.MAVP(close,
                                        period,
                                        minperiod=2,
                                        maxperiod=30,
                                        matype=0)
        df['ta_overlap_midpoint'] = ta.MIDPOINT(close, timeperiod=14)
        df['ta_overlap_midprice'] = ta.MIDPRICE(high, low, timeperiod=14)
        df['ta_overlap_sar'] = ta.SAR(high, low, acceleration=0, maximum=0)
        df['ta_overlap_sarext'] = ta.SAREXT(high,
                                            low,
                                            startvalue=0,
                                            offsetonreverse=0,
                                            accelerationinitlong=0,
                                            accelerationlong=0,
                                            accelerationmaxlong=0,
                                            accelerationinitshort=0,
                                            accelerationshort=0,
                                            accelerationmaxshort=0)
        df['ta_overlap_sma'] = ta.SMA(close, timeperiod=30)
        df['ta_overlap_t3'] = ta.T3(close, timeperiod=5, vfactor=0)
        df['ta_overlap_tema'] = ta.TEMA(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_overlap_trima'] = ta.TRIMA(close, timeperiod=30)
        df['ta_overlap_wma'] = ta.WMA(close, timeperiod=30)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_overlap_ht_trendline'] = ta.HT_TRENDLINE(close)

    if ta_settings['momentum']:

        df['ta_momentum_adx'] = ta.ADX(high, low, close, timeperiod=14)
        df['ta_momentum_adxr'] = ta.ADXR(high, low, close, timeperiod=14)
        df['ta_momentum_apo'] = ta.APO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_aroondown'], df['ta_momentum_aroonup'] = ta.AROON(
            high, low, timeperiod=14)
        df['ta_momentum_aroonosc'] = ta.AROONOSC(high, low, timeperiod=14)
        df['ta_momentum_bop'] = ta.BOP(open, high, low, close)
        df['ta_momentum_cci'] = ta.CCI(high, low, close, timeperiod=14)
        df['ta_momentum_cmo'] = ta.CMO(close, timeperiod=14)
        df['ta_momentum_dx'] = ta.DX(high, low, close, timeperiod=14)
        df['ta_momentum_macd_macd'], df['ta_momentum_macd_signal'], df[
            'ta_momentum_macd_hist'] = ta.MACD(close,
                                               fastperiod=12,
                                               slowperiod=26,
                                               signalperiod=9)
        df['ta_momentum_macdext_macd'], df['ta_momentum_macdext_signal'], df[
            'ta_momentum_macdext_hist'] = ta.MACDEXT(close,
                                                     fastperiod=12,
                                                     fastmatype=0,
                                                     slowperiod=26,
                                                     slowmatype=0,
                                                     signalperiod=9,
                                                     signalmatype=0)
        df['ta_momentum_macdfix_macd'], df['ta_momentum_macdfix_signal'], df[
            'ta_momentum_macdfix_hist'] = ta.MACDFIX(close, signalperiod=9)
        df['ta_momentum_mfi'] = ta.MFI(high, low, close, volume, timeperiod=14)
        df['ta_momentum_minus_di'] = ta.MINUS_DI(high,
                                                 low,
                                                 close,
                                                 timeperiod=14)
        df['ta_momentum_minus_dm'] = ta.MINUS_DM(high, low, timeperiod=14)
        df['ta_momentum_mom'] = ta.MOM(close, timeperiod=10)
        df['ta_momentum_plus_di'] = ta.PLUS_DI(high, low, close, timeperiod=14)
        df['ta_momentum_plus_dm'] = ta.PLUS_DM(high, low, timeperiod=14)
        df['ta_momentum_ppo'] = ta.PPO(close,
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        df['ta_momentum_roc'] = ta.ROC(close, timeperiod=10)
        df['ta_momentum_rocp'] = ta.ROCP(close, timeperiod=10)
        df['ta_momentum_rocr'] = ta.ROCR(close, timeperiod=10)
        df['ta_momentum_rocr100'] = ta.ROCR100(close, timeperiod=10)
        df['ta_momentum_rsi'] = ta.RSI(close, timeperiod=14)
        df['ta_momentum_slowk'], df['ta_momentum_slowd'] = ta.STOCH(
            high,
            low,
            close,
            fastk_period=5,
            slowk_period=3,
            slowk_matype=0,
            slowd_period=3,
            slowd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHF(
            high, low, close, fastk_period=5, fastd_period=3, fastd_matype=0)
        df['ta_momentum_fastk'], df['ta_momentum_fastd'] = ta.STOCHRSI(
            close,
            timeperiod=14,
            fastk_period=5,
            fastd_period=3,
            fastd_matype=0)
        df['ta_momentum_trix'] = ta.TRIX(
            close, timeperiod=12)  # NOTE: Changed to avoid a lot of Nan values
        df['ta_momentum_ultosc'] = ta.ULTOSC(high,
                                             low,
                                             close,
                                             timeperiod1=7,
                                             timeperiod2=14,
                                             timeperiod3=28)
        df['ta_momentum_willr'] = ta.WILLR(high, low, close, timeperiod=14)

    if ta_settings['volume']:

        df['ta_volume_ad'] = ta.AD(high, low, close, volume)
        df['ta_volume_adosc'] = ta.ADOSC(high,
                                         low,
                                         close,
                                         volume,
                                         fastperiod=3,
                                         slowperiod=10)
        df['ta_volume_obv'] = ta.OBV(close, volume)

    if ta_settings['volatility']:

        df['ta_volatility_atr'] = ta.ATR(high, low, close, timeperiod=14)
        df['ta_volatility_natr'] = ta.NATR(high, low, close, timeperiod=14)
        df['ta_volatility_trange'] = ta.TRANGE(high, low, close)

    if ta_settings['price']:

        df['ta_price_avgprice'] = ta.AVGPRICE(open, high, low, close)
        df['ta_price_medprice'] = ta.MEDPRICE(high, low)
        df['ta_price_typprice'] = ta.TYPPRICE(high, low, close)
        df['ta_price_wclprice'] = ta.WCLPRICE(high, low, close)

    if ta_settings['cycle']:

        df['ta_cycle_ht_dcperiod'] = ta.HT_DCPERIOD(close)
        df['ta_cycle_ht_phasor_inphase'], df[
            'ta_cycle_ht_phasor_quadrature'] = ta.HT_PHASOR(close)
        df['ta_cycle_ht_trendmode'] = ta.HT_TRENDMODE(close)

        # NOTE: Commented to avoid a lot of Nan values
        # df['ta_cycle_ht_dcphase'] = ta.HT_DCPHASE(close)
        # df['ta_cycle_ht_sine_sine'], df['ta_cycle_ht_sine_leadsine'] = ta.HT_SINE(close)

    if ta_settings['pattern']:

        df['ta_pattern_cdl2crows'] = ta.CDL2CROWS(open, high, low, close)
        df['ta_pattern_cdl3blackrows'] = ta.CDL3BLACKCROWS(
            open, high, low, close)
        df['ta_pattern_cdl3inside'] = ta.CDL3INSIDE(open, high, low, close)
        df['ta_pattern_cdl3linestrike'] = ta.CDL3LINESTRIKE(
            open, high, low, close)
        df['ta_pattern_cdl3outside'] = ta.CDL3OUTSIDE(open, high, low, close)
        df['ta_pattern_cdl3starsinsouth'] = ta.CDL3STARSINSOUTH(
            open, high, low, close)
        df['ta_pattern_cdl3whitesoldiers'] = ta.CDL3WHITESOLDIERS(
            open, high, low, close)
        df['ta_pattern_cdlabandonedbaby'] = ta.CDLABANDONEDBABY(open,
                                                                high,
                                                                low,
                                                                close,
                                                                penetration=0)
        df['ta_pattern_cdladvanceblock'] = ta.CDLADVANCEBLOCK(
            open, high, low, close)
        df['ta_pattern_cdlbelthold'] = ta.CDLBELTHOLD(open, high, low, close)
        df['ta_pattern_cdlbreakaway'] = ta.CDLBREAKAWAY(open, high, low, close)
        df['ta_pattern_cdlclosingmarubozu'] = ta.CDLCLOSINGMARUBOZU(
            open, high, low, close)
        df['ta_pattern_cdlconcealbabyswall'] = ta.CDLCONCEALBABYSWALL(
            open, high, low, close)
        df['ta_pattern_cdlcounterattack'] = ta.CDLCOUNTERATTACK(
            open, high, low, close)
        df['ta_pattern_cdldarkcloudcover'] = ta.CDLDARKCLOUDCOVER(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdldoji'] = ta.CDLDOJI(open, high, low, close)
        df['ta_pattern_cdldojistar'] = ta.CDLDOJISTAR(open, high, low, close)
        df['ta_pattern_cdldragonflydoji'] = ta.CDLDRAGONFLYDOJI(
            open, high, low, close)
        df['ta_pattern_cdlengulfing'] = ta.CDLENGULFING(open, high, low, close)
        df['ta_pattern_cdleveningdojistar'] = ta.CDLEVENINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdleveningstar'] = ta.CDLEVENINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdlgapsidesidewhite'] = ta.CDLGAPSIDESIDEWHITE(
            open, high, low, close)
        df['ta_pattern_cdlgravestonedoji'] = ta.CDLGRAVESTONEDOJI(
            open, high, low, close)
        df['ta_pattern_cdlhammer'] = ta.CDLHAMMER(open, high, low, close)
        df['ta_pattern_cdlhangingman'] = ta.CDLHANGINGMAN(
            open, high, low, close)
        df['ta_pattern_cdlharami'] = ta.CDLHARAMI(open, high, low, close)
        df['ta_pattern_cdlharamicross'] = ta.CDLHARAMICROSS(
            open, high, low, close)
        df['ta_pattern_cdlhighwave'] = ta.CDLHIGHWAVE(open, high, low, close)
        df['ta_pattern_cdlhikkake'] = ta.CDLHIKKAKE(open, high, low, close)
        df['ta_pattern_cdlhikkakemod'] = ta.CDLHIKKAKEMOD(
            open, high, low, close)
        df['ta_pattern_cdlhomingpigeon'] = ta.CDLHOMINGPIGEON(
            open, high, low, close)
        df['ta_pattern_cdlidentical3crows'] = ta.CDLIDENTICAL3CROWS(
            open, high, low, close)
        df['ta_pattern_cdlinneck'] = ta.CDLINNECK(open, high, low, close)
        df['ta_pattern_cdlinvertedhammer'] = ta.CDLINVERTEDHAMMER(
            open, high, low, close)
        df['ta_pattern_cdlkicking'] = ta.CDLKICKING(open, high, low, close)
        df['ta_pattern_cdlkickingbylength'] = ta.CDLKICKINGBYLENGTH(
            open, high, low, close)
        df['ta_pattern_cdlladderbottom'] = ta.CDLLADDERBOTTOM(
            open, high, low, close)
        df['ta_pattern_cdllongleggeddoji'] = ta.CDLLONGLEGGEDDOJI(
            open, high, low, close)
        df['ta_pattern_cdllongline'] = ta.CDLLONGLINE(open, high, low, close)
        df['ta_pattern_cdlmarubozu'] = ta.CDLMARUBOZU(open, high, low, close)
        df['ta_pattern_cdlmatchinglow'] = ta.CDLMATCHINGLOW(
            open, high, low, close)
        df['ta_pattern_cdlmathold'] = ta.CDLMATHOLD(open,
                                                    high,
                                                    low,
                                                    close,
                                                    penetration=0)
        df['ta_pattern_cdlmorningdojistar'] = ta.CDLMORNINGDOJISTAR(
            open, high, low, close, penetration=0)
        df['ta_pattern_cdlmorningstar'] = ta.CDLMORNINGSTAR(open,
                                                            high,
                                                            low,
                                                            close,
                                                            penetration=0)
        df['ta_pattern_cdllonneck'] = ta.CDLONNECK(open, high, low, close)
        df['ta_pattern_cdlpiercing'] = ta.CDLPIERCING(open, high, low, close)
        df['ta_pattern_cdlrickshawman'] = ta.CDLRICKSHAWMAN(
            open, high, low, close)
        df['ta_pattern_cdlrisefall3methods'] = ta.CDLRISEFALL3METHODS(
            open, high, low, close)
        df['ta_pattern_cdlseparatinglines'] = ta.CDLSEPARATINGLINES(
            open, high, low, close)
        df['ta_pattern_cdlshootingstar'] = ta.CDLSHOOTINGSTAR(
            open, high, low, close)
        df['ta_pattern_cdlshortline'] = ta.CDLSHORTLINE(open, high, low, close)
        df['ta_pattern_cdlspinningtop'] = ta.CDLSPINNINGTOP(
            open, high, low, close)
        df['ta_pattern_cdlstalledpattern'] = ta.CDLSTALLEDPATTERN(
            open, high, low, close)
        df['ta_pattern_cdlsticksandwich'] = ta.CDLSTICKSANDWICH(
            open, high, low, close)
        df['ta_pattern_cdltakuri'] = ta.CDLTAKURI(open, high, low, close)
        df['ta_pattern_cdltasukigap'] = ta.CDLTASUKIGAP(open, high, low, close)
        df['ta_pattern_cdlthrusting'] = ta.CDLTHRUSTING(open, high, low, close)
        df['ta_pattern_cdltristar'] = ta.CDLTRISTAR(open, high, low, close)
        df['ta_pattern_cdlunique3river'] = ta.CDLUNIQUE3RIVER(
            open, high, low, close)
        df['ta_pattern_cdlupsidegap2crows'] = ta.CDLUPSIDEGAP2CROWS(
            open, high, low, close)
        df['ta_pattern_cdlxsidegap3methods'] = ta.CDLXSIDEGAP3METHODS(
            open, high, low, close)

    if ta_settings['statistic']:

        df['ta_statistic_beta'] = ta.BETA(high, low, timeperiod=5)
        df['ta_statistic_correl'] = ta.CORREL(high, low, timeperiod=30)
        df['ta_statistic_linearreg'] = ta.LINEARREG(close, timeperiod=14)
        df['ta_statistic_linearreg_angle'] = ta.LINEARREG_ANGLE(close,
                                                                timeperiod=14)
        df['ta_statistic_linearreg_intercept'] = ta.LINEARREG_INTERCEPT(
            close, timeperiod=14)
        df['ta_statistic_linearreg_slope'] = ta.LINEARREG_SLOPE(close,
                                                                timeperiod=14)
        df['ta_statistic_stddev'] = ta.STDDEV(close, timeperiod=5, nbdev=1)
        df['ta_statistic_tsf'] = ta.TSF(close, timeperiod=14)
        df['ta_statistic_var'] = ta.VAR(close, timeperiod=5, nbdev=1)

    if ta_settings['math_transforms']:

        df['ta_math_transforms_atan'] = ta.ATAN(close)
        df['ta_math_transforms_ceil'] = ta.CEIL(close)
        df['ta_math_transforms_cos'] = ta.COS(close)
        df['ta_math_transforms_floor'] = ta.FLOOR(close)
        df['ta_math_transforms_ln'] = ta.LN(close)
        df['ta_math_transforms_log10'] = ta.LOG10(close)
        df['ta_math_transforms_sin'] = ta.SIN(close)
        df['ta_math_transforms_sqrt'] = ta.SQRT(close)
        df['ta_math_transforms_tan'] = ta.TAN(close)

    if ta_settings['math_operators']:

        df['ta_math_operators_add'] = ta.ADD(high, low)
        df['ta_math_operators_div'] = ta.DIV(high, low)
        df['ta_math_operators_min'], df['ta_math_operators_max'] = ta.MINMAX(
            close, timeperiod=30)
        df['ta_math_operators_minidx'], df[
            'ta_math_operators_maxidx'] = ta.MINMAXINDEX(close, timeperiod=30)
        df['ta_math_operators_mult'] = ta.MULT(high, low)
        df['ta_math_operators_sub'] = ta.SUB(high, low)
        df['ta_math_operators_sum'] = ta.SUM(close, timeperiod=30)

    return df
Ejemplo n.º 25
0
def ta(name, price_h, price_l, price_c, price_v, price_o):
    # function 'MAX'/'MAXINDEX'/'MIN'/'MININDEX'/'MINMAX'/'MINMAXINDEX'/'SUM' is missing
    if name == 'AD':
        return talib.AD(np.array(price_h), np.array(price_l),
                        np.array(price_c), np.asarray(price_v, dtype='float'))
    if name == 'ADOSC':
        return talib.ADOSC(np.array(price_h),
                           np.array(price_l),
                           np.array(price_c),
                           np.asarray(price_v, dtype='float'),
                           fastperiod=2,
                           slowperiod=10)
    if name == 'ADX':
        return talib.ADX(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'ADXR':
        return talib.ADXR(np.array(price_h),
                          np.array(price_l),
                          np.asarray(price_c, dtype='float'),
                          timeperiod=14)
    if name == 'APO':
        return talib.APO(np.asarray(price_c, dtype='float'),
                         fastperiod=12,
                         slowperiod=26,
                         matype=0)
    if name == 'AROON':
        AROON_DWON, AROON2_UP = talib.AROON(np.array(price_h),
                                            np.asarray(price_l, dtype='float'),
                                            timeperiod=90)
        return (AROON_DWON, AROON2_UP)
    if name == 'AROONOSC':
        return talib.AROONOSC(np.array(price_h),
                              np.asarray(price_l, dtype='float'),
                              timeperiod=14)
    if name == 'ATR':
        return talib.ATR(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'AVGPRICE':
        return talib.AVGPRICE(np.array(price_o), np.array(price_h),
                              np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'BBANDS':
        BBANDS1, BBANDS2, BBANDS3 = talib.BBANDS(np.asarray(price_c,
                                                            dtype='float'),
                                                 matype=MA_Type.T3)
        return BBANDS1
    if name == 'BETA':
        return talib.BETA(np.array(price_h),
                          np.asarray(price_l, dtype='float'),
                          timeperiod=5)
    if name == 'BOP':
        return talib.BOP(np.array(price_o), np.array(price_h),
                         np.array(price_l), np.asarray(price_c, dtype='float'))
    if name == 'CCI':
        return talib.CCI(np.array(price_h),
                         np.array(price_l),
                         np.asarray(price_c, dtype='float'),
                         timeperiod=14)
    if name == 'CDL2CROWS':
        return talib.CDL2CROWS(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDL3BLACKCROWS':
        return talib.CDL3BLACKCROWS(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDL3INSIDE':
        return talib.CDL3INSIDE(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDL3LINESTRIKE':
        return talib.CDL3LINESTRIKE(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDL3OUTSIDE':
        return talib.CDL3OUTSIDE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDL3STARSINSOUTH':
        return talib.CDL3STARSINSOUTH(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDL3WHITESOLDIERS':
        return talib.CDL3WHITESOLDIERS(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLABANDONEDBABY':
        return talib.CDLABANDONEDBABY(np.array(price_o),
                                      np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'),
                                      penetration=0)
    if name == 'CDLADVANCEBLOCK':
        return talib.CDLADVANCEBLOCK(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLBELTHOLD':
        return talib.CDLBELTHOLD(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLBREAKAWAY':
        return talib.CDLBREAKAWAY(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLCLOSINGMARUBOZU':
        return talib.CDLCLOSINGMARUBOZU(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLCONCEALBABYSWALL':
        return talib.CDLCONCEALBABYSWALL(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLCOUNTERATTACK':
        return talib.CDLCOUNTERATTACK(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLDARKCLOUDCOVER':
        return talib.CDLDARKCLOUDCOVER(np.array(price_o),
                                       np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'),
                                       penetration=0)
    if name == 'CDLDOJI':
        return talib.CDLDOJI(np.array(price_o), np.array(price_h),
                             np.array(price_l),
                             np.asarray(price_c, dtype='float'))
    if name == 'CDLDOJISTAR':
        return talib.CDLDOJISTAR(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLDRAGONFLYDOJI':
        return talib.CDLDRAGONFLYDOJI(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLENGULFING':
        return talib.CDLENGULFING(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLEVENINGDOJISTAR':
        return talib.CDLEVENINGDOJISTAR(np.array(price_o),
                                        np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        penetration=0)
    if name == 'CDLEVENINGSTAR':
        return talib.CDLEVENINGSTAR(np.array(price_o),
                                    np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'),
                                    penetration=0)
    if name == 'CDLGAPSIDESIDEWHITE':
        return talib.CDLGAPSIDESIDEWHITE(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLGRAVESTONEDOJI':
        return talib.CDLGRAVESTONEDOJI(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLHAMMER':
        return talib.CDLHAMMER(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLHANGINGMAN':
        return talib.CDLHANGINGMAN(np.array(price_o), np.array(price_h),
                                   np.array(price_l),
                                   np.asarray(price_c, dtype='float'))
    if name == 'CDLHARAMI':
        return talib.CDLHARAMI(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLHARAMICROSS':
        return talib.CDLHARAMICROSS(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLHIGHWAVE':
        return talib.CDLHIGHWAVE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLHIKKAKE':
        return talib.CDLHIKKAKE(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLHIKKAKEMOD':
        return talib.CDLHIKKAKEMOD(np.array(price_o), np.array(price_h),
                                   np.array(price_l),
                                   np.asarray(price_c, dtype='float'))
    if name == 'CDLHOMINGPIGEON':
        return talib.CDLHOMINGPIGEON(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLIDENTICAL3CROWS':
        return talib.CDLIDENTICAL3CROWS(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLINNECK':
        return talib.CDLINNECK(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLINVERTEDHAMMER':
        return talib.CDLINVERTEDHAMMER(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLKICKING':
        return talib.CDLKICKING(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLKICKINGBYLENGTH':
        return talib.CDLKICKINGBYLENGTH(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))

    if name == 'CDLLADDERBOTTOM':
        return talib.CDLLADDERBOTTOM(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLLONGLEGGEDDOJI':
        return talib.CDLLONGLEGGEDDOJI(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLLONGLINE':
        return talib.CDLLONGLINE(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLMARUBOZU':
        return talib.CDLMARUBOZU(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLMATCHINGLOW':
        return talib.CDLMATCHINGLOW(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLMATHOLD':
        return talib.CDLMATHOLD(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLMORNINGDOJISTAR':
        return talib.CDLMORNINGDOJISTAR(np.array(price_o),
                                        np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        penetration=0)
    if name == 'CDLMORNINGSTAR':
        return talib.CDLMORNINGSTAR(np.array(price_o),
                                    np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'),
                                    penetration=0)
    if name == 'CDLONNECK':
        return talib.CDLONNECK(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLPIERCING':
        return talib.CDLPIERCING(np.array(price_o), np.array(price_h),
                                 np.array(price_l),
                                 np.asarray(price_c, dtype='float'))
    if name == 'CDLRICKSHAWMAN':
        return talib.CDLRICKSHAWMAN(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLRISEFALL3METHODS':
        return talib.CDLRISEFALL3METHODS(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CDLSEPARATINGLINES':
        return talib.CDLSEPARATINGLINES(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLSHOOTINGSTAR':
        return talib.CDLSHOOTINGSTAR(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLSHORTLINE':
        return talib.CDLSHORTLINE(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLSPINNINGTOP':
        return talib.CDLSPINNINGTOP(np.array(price_o), np.array(price_h),
                                    np.array(price_l),
                                    np.asarray(price_c, dtype='float'))
    if name == 'CDLSTALLEDPATTERN':
        return talib.CDLSTALLEDPATTERN(np.array(price_o), np.array(price_h),
                                       np.array(price_l),
                                       np.asarray(price_c, dtype='float'))
    if name == 'CDLSTICKSANDWICH':
        return talib.CDLSTICKSANDWICH(np.array(price_o), np.array(price_h),
                                      np.array(price_l),
                                      np.asarray(price_c, dtype='float'))
    if name == 'CDLTAKURI':
        return talib.CDLTAKURI(np.array(price_o), np.array(price_h),
                               np.array(price_l),
                               np.asarray(price_c, dtype='float'))
    if name == 'CDLTASUKIGAP':
        return talib.CDLTASUKIGAP(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLTHRUSTING':
        return talib.CDLTHRUSTING(np.array(price_o), np.array(price_h),
                                  np.array(price_l),
                                  np.asarray(price_c, dtype='float'))
    if name == 'CDLTRISTAR':
        return talib.CDLTRISTAR(np.array(price_o), np.array(price_h),
                                np.array(price_l),
                                np.asarray(price_c, dtype='float'))
    if name == 'CDLUNIQUE3RIVER':
        return talib.CDLUNIQUE3RIVER(np.array(price_o), np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'))
    if name == 'CDLUPSIDEGAP2CROWS':
        return talib.CDLUPSIDEGAP2CROWS(np.array(price_o), np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'))
    if name == 'CDLXSIDEGAP3METHODS':
        return talib.CDLXSIDEGAP3METHODS(np.array(price_o), np.array(price_h),
                                         np.array(price_l),
                                         np.asarray(price_c, dtype='float'))
    if name == 'CMO':
        return talib.CMO(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'CORREL':
        return talib.CORREL(np.array(price_h),
                            np.asarray(price_l, dtype='float'),
                            timeperiod=30)
    if name == 'DEMA':
        return talib.DEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'DX':
        return talib.DX(np.array(price_h),
                        np.array(price_l),
                        np.asarray(price_c, dtype='float'),
                        timeperiod=14)
    if name == 'EMA':
        return talib.EMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'HT_DCPERIOD':
        return talib.HT_DCPERIOD(np.asarray(price_c, dtype='float'))
    if name == 'HT_DCPHASE':
        return talib.HT_DCPHASE(np.asarray(price_c, dtype='float'))
    if name == 'HT_PHASOR':
        HT_PHASOR1, HT_PHASOR2 = talib.HT_PHASOR(
            np.asarray(price_c, dtype='float')
        )  # use HT_PHASOR1 for the indication of up and down
        return HT_PHASOR1
    if name == 'HT_SINE':
        HT_SINE1, HT_SINE2 = talib.HT_SINE(np.asarray(price_c, dtype='float'))
        return HT_SINE1
    if name == 'HT_TRENDLINE':
        return talib.HT_TRENDLINE(np.asarray(price_c, dtype='float'))
    if name == 'HT_TRENDMODE':
        return talib.HT_TRENDMODE(np.asarray(price_c, dtype='float'))
    if name == 'KAMA':
        return talib.KAMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'LINEARREG':
        return talib.LINEARREG(np.asarray(price_c, dtype='float'),
                               timeperiod=14)
    if name == 'LINEARREG_ANGLE':
        return talib.LINEARREG_ANGLE(np.asarray(price_c, dtype='float'),
                                     timeperiod=14)
    if name == 'LINEARREG_INTERCEPT':
        return talib.LINEARREG_INTERCEPT(np.asarray(price_c, dtype='float'),
                                         timeperiod=14)
    if name == 'LINEARREG_SLOPE':
        return talib.LINEARREG_SLOPE(np.asarray(price_c, dtype='float'),
                                     timeperiod=14)
    if name == 'MA':
        return talib.MA(np.asarray(price_c, dtype='float'),
                        timeperiod=30,
                        matype=0)
    if name == 'MACD':
        MACD1, MACD2, MACD3 = talib.MACD(np.asarray(price_c, dtype='float'),
                                         fastperiod=12,
                                         slowperiod=26,
                                         signalperiod=9)
        return MACD1
    if nam == 'MACDEXT':
        return talib.MACDEXT(np.asarray(price_c, dtype='float'),
                             fastperiod=12,
                             fastmatype=0,
                             slowperiod=26,
                             slowmatype=0,
                             signalperiod=9,
                             signalmatype=0)
    if name == 'MACDFIX':
        MACDFIX1, MACDFIX2, MACDFIX3 = talib.MACDFIX(np.asarray(price_c,
                                                                dtype='float'),
                                                     signalperiod=9)
        return MACDFIX1
    if name == 'MAMA':
        MAMA1, MAMA2 = talib.MAMA(np.asarray(price_c, dtype='float'),
                                  fastlimit=0,
                                  slowlimit=0)
        return MAMA1
    if name == 'MEDPRICE':
        return talib.MEDPRICE(np.array(price_h),
                              np.asarray(price_l, dtype='float'))
    if name == 'MINUS_DI':
        return talib.MINUS_DI(np.array(price_h),
                              np.array(price_l),
                              np.asarray(price_c, dtype='float'),
                              timeperiod=14)
    if name == 'MINUS_DM':
        return talib.MINUS_DM(np.array(price_h),
                              np.asarray(price_l, dtype='float'),
                              timeperiod=14)
    if name == 'MOM':
        return talib.MOM(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'NATR':
        return talib.NATR(np.array(price_h),
                          np.array(price_l),
                          np.asarray(price_c, dtype='float'),
                          timeperiod=14)
    if name == 'OBV':
        return talib.OBV(np.array(price_c), np.asarray(price_v, dtype='float'))
    if name == 'PLUS_DI':
        return talib.PLUS_DI(np.array(price_h),
                             np.array(price_l),
                             np.asarray(price_c, dtype='float'),
                             timeperiod=14)
    if name == 'PLUS_DM':
        return talib.PLUS_DM(np.array(price_h),
                             np.asarray(price_l, dtype='float'),
                             timeperiod=14)
    if name == 'PPO':
        return talib.PPO(np.asarray(price_c, dtype='float'),
                         fastperiod=12,
                         slowperiod=26,
                         matype=0)
    if name == 'ROC':
        return talib.ROC(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'ROCP':
        return talib.ROCP(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'ROCR100':
        return talib.ROCR100(np.asarray(price_c, dtype='float'), timeperiod=10)
    if name == 'RSI':
        return talib.RSI(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'SAR':
        return talib.SAR(np.array(price_h),
                         np.asarray(price_l, dtype='float'),
                         acceleration=0,
                         maximum=0)
    if name == 'SAREXT':
        return talib.SAREXT(np.array(price_h),
                            np.asarray(price_l, dtype='float'),
                            startvalue=0,
                            offsetonreverse=0,
                            accelerationinitlong=0,
                            accelerationlong=0,
                            accelerationmaxlong=0,
                            accelerationinitshort=0,
                            accelerationshort=0,
                            accelerationmaxshort=0)
    if name == 'SMA':
        return talib.SMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'STDDEV':
        return talib.STDDEV(np.asarray(price_c, dtype='float'),
                            timeperiod=5,
                            nbdev=1)
    if name == 'STOCH':
        STOCH1, STOCH2 = talib.STOCH(np.array(price_h),
                                     np.array(price_l),
                                     np.asarray(price_c, dtype='float'),
                                     fastk_period=5,
                                     slowk_period=3,
                                     slowk_matype=0,
                                     slowd_period=3,
                                     slowd_matype=0)
        return STOCH1
    if name == 'STOCHF':
        STOCHF1, STOCHF2 = talib.STOCHF(np.array(price_h),
                                        np.array(price_l),
                                        np.asarray(price_c, dtype='float'),
                                        fastk_period=5,
                                        fastd_period=3,
                                        fastd_matype=0)
        return STOCHF1
    if name == 'STOCHRSI':
        STOCHRSI1, STOCHRSI2 = talib.STOCHRSI(np.asarray(price_c,
                                                         dtype='float'),
                                              timeperiod=14,
                                              fastk_period=5,
                                              fastd_period=3,
                                              fastd_matype=0)
        return STOCHRSI1
    if name == 'T3':
        return talib.T3(np.asarray(price_c, dtype='float'),
                        timeperiod=5,
                        vfactor=0)
    if name == 'TEMA':
        return talib.TEMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TRANGE':
        return talib.TRANGE(np.array(price_h), np.array(price_l),
                            np.asarray(price_c, dtype='float'))
    if name == 'TRIMA':
        return talib.TRIMA(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TRIX':
        return talib.TRIX(np.asarray(price_c, dtype='float'), timeperiod=30)
    if name == 'TSF':
        return talib.TSF(np.asarray(price_c, dtype='float'), timeperiod=14)
    if name == 'TYPPRICE':
        return talib.TYPPRICE(np.array(price_h), np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'ULTOSC':
        return talib.ULTOSC(np.array(price_h),
                            np.array(price_l),
                            np.asarray(price_c, dtype='float'),
                            timeperiod1=7,
                            timeperiod2=14,
                            timeperiod3=28)
    if name == 'VAR':
        return talib.VAR(np.asarray(price_c, dtype='float'),
                         timeperiod=5,
                         nbdev=1)
    if name == 'WCLPRICE':
        return talib.WCLPRICE(np.array(price_h), np.array(price_l),
                              np.asarray(price_c, dtype='float'))
    if name == 'WILLR':
        return talib.WILLR(np.array(price_h),
                           np.array(price_l),
                           np.asarray(price_c, dtype='float'),
                           timeperiod=14)
    if name == 'WMA':
        return talib.WMA(np.asarray(price_c, dtype='float'), timeperiod=30)
Ejemplo n.º 26
0
def macdfix(col, signalperiod=9):
    values = ta.MACDFIX(col, signalperiod)
    return {"macd": values[0], "macdsignal": values[1], "macdhist": values[2]}
Ejemplo n.º 27
0
def Set_indicators(data, period):
    """
    :param data: dataframe containing ohlcv prices and indexed with date
    :param period: period used to calculate indicators
    :return: dataframe of Technical indicators of specefic timeframe

    """

    df = pd.DataFrame(index=data.index)
    df["mom" + str(period)] = talib.MOM(data[USED_CLOSE_PRICE],
                                        timeperiod=period)
    #change it later
    df["slowk" + str(period)], df["slowd" + str(period)] = talib.STOCH(
        data["High"],
        data["Low"],
        data[USED_CLOSE_PRICE],
        fastk_period=period,
        slowk_period=period,
        slowk_matype=0,
        slowd_period=period,
        slowd_matype=0)

    #WILLR
    df["willr" + str(period)] = talib.WILLR(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #MACDFIX - Moving Average Convergence/Divergence Fix 12/26
    df["macd" + str(period)], df["macdsignal" +
                                 str(period)], df["macdhist" +
                                                  str(period)] = talib.MACDFIX(
                                                      data[USED_CLOSE_PRICE],
                                                      signalperiod=period)

    #CCI
    df["cci" + str(period)] = talib.CCI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #Bollinger Bands
    df["upperband" +
       str(period)], df["middleband" +
                        str(period)], df["lowerband" +
                                         str(period)] = talib.BBANDS(
                                             data[USED_CLOSE_PRICE],
                                             timeperiod=period,
                                             nbdevup=2,
                                             nbdevdn=2,
                                             matype=0)

    #HIGH SMA
    df["smaHigh" + str(period)] = talib.SMA(data["High"], timeperiod=period)

    # SMA Adj Prices
    df["sma" + str(period)] = talib.SMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    df["smaHighLow" + str(period)] = talib.SMA(talib.MEDPRICE(
        data["High"], data["Low"]),
                                               timeperiod=period)

    #DEMA - Double Exponential Moving Average
    df["DEMA" + str(period)] = talib.DEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #EMA - Exponential Moving Average
    df["EMA" + str(period)] = talib.EMA(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #HT_TRENDLINE - Hilbert Transform - Instantaneous Trendline
    df["HT_TRENDLINE" + str(period)] = talib.HT_TRENDLINE(
        data[USED_CLOSE_PRICE])

    #KAMA - Kaufman Adaptive Moving Average
    df["KAMA" + str(period)] = talib.KAMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #T3 - Triple Exponential Moving Average (T3)
    df["T3-" + str(period)] = talib.T3(data[USED_CLOSE_PRICE],
                                       timeperiod=period,
                                       vfactor=0)

    #TEMA - Triple Exponential Moving Average
    df["TEMA" + str(period)] = talib.TEMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #TRIMA - Triangular Moving Average
    df["TRIMA" + str(period)] = talib.TRIMA(data[USED_CLOSE_PRICE],
                                            timeperiod=period)

    #WMA - Weighted Moving Average
    df["TRIMA" + str(period)] = talib.WMA(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    ##########

    #ADX - Average Directional Movement Index
    df["ADX" + str(period)] = talib.ADX(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ADXR - Average Directional Movement Index Rating
    df["ADXR" + str(period)] = talib.ADXR(data["High"],
                                          data["Low"],
                                          data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #AROON - Aroon
    df["aroondown" + str(period)], df["aroonup" + str(period)] = talib.AROON(
        data["High"], data["Low"], timeperiod=period)

    #AROONOSC - Aroon Oscillator
    df["aroondown" + str(period)] = talib.AROONOSC(data["High"],
                                                   data["Low"],
                                                   timeperiod=period)

    #CMO - Chande Momentum Oscillator
    df["CMO" + str(period)] = talib.CMO(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #DX - Directional Movement Index
    df["DX" + str(period)] = talib.DX(data["High"],
                                      data["Low"],
                                      data[USED_CLOSE_PRICE],
                                      timeperiod=period)

    #MINUS_DI - Minus Directional Indicator
    df["MINUS_DI" + str(period)] = talib.MINUS_DI(data["High"],
                                                  data["Low"],
                                                  data[USED_CLOSE_PRICE],
                                                  timeperiod=period)

    #MINUS_DM - Minus Directional Movement
    df["MINUS_DM" + str(period)] = talib.MINUS_DM(data["High"],
                                                  data["Low"],
                                                  timeperiod=period)

    #PLUS_DI - Plus Directional Indicator
    df["PLUS_DI" + str(period)] = talib.PLUS_DI(data["High"],
                                                data["Low"],
                                                data[USED_CLOSE_PRICE],
                                                timeperiod=period)

    #PLUS_DM - Plus Directional Movement
    df["PLUS_DM" + str(period)] = talib.PLUS_DM(data["High"],
                                                data["Low"],
                                                timeperiod=period)

    #ROC - Rate of change : ((price/prevPrice)-1)*100
    df["roc" + str(period)] = talib.ROC(data[USED_CLOSE_PRICE],
                                        timeperiod=period)

    #ROCP - Rate of change Percentage: (price-prevPrice)/prevPrice
    df["ROCP" + str(period)] = talib.ROCP(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR - Rate of change ratio: (price/prevPrice)
    df["ROCR" + str(period)] = talib.ROCR(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #ROCR100 - Rate of change ratio 100 scale: (price/prevPrice)*100
    df["ROCR100-" + str(period)] = talib.ROCR100(data[USED_CLOSE_PRICE],
                                                 timeperiod=period)

    #RSI - Relative Strength Index
    df["RSI-" + str(period)] = talib.RSI(data[USED_CLOSE_PRICE],
                                         timeperiod=period)

    #TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
    df["TRIX" + str(period)] = talib.TRIX(data[USED_CLOSE_PRICE],
                                          timeperiod=period)

    #MFI - Money Flow Index
    df["MFI" + str(period)] = talib.MFI(data["High"],
                                        data["Low"],
                                        data[USED_CLOSE_PRICE],
                                        data["Volume"],
                                        timeperiod=period)

    #ADOSC - Chaikin A/D Oscillator set periods later please
    df["ADOSC" + str(period)] = talib.ADOSC(data["High"],
                                            data["Low"],
                                            data[USED_CLOSE_PRICE],
                                            data["Volume"],
                                            fastperiod=np.round(period / 3),
                                            slowperiod=period)

    return df
Ejemplo n.º 28
0
def generateTechnicalDataframe(coin_dataframe):
    """Param:
    coin_dataframe: Dataframe type, exact same format as output of getCoinData

    Returns: dataframe of technical data, with index representing dates and
             columns representing each technical indicator"""
    
    Low_df = coin_dataframe['Low']
    High_df = coin_dataframe['High']
    Price_df = coin_dataframe['Adj. Close']
    
    LowList = Low_df.values.tolist()
    HighList = High_df.values.tolist()
    PriceList = Price_df.values.tolist()
    DateList = coin_dataframe.index.tolist()

    #converted to list

    z = 0

    while z < len(LowList):
        if isinstance(LowList[z], str):
            LowList[z] = float(LowList[z].replace(',', ''))
        z = z + 1

    y = 0

    while y < len(HighList):
        if isinstance(HighList[y], str):
            HighList[y] = float(HighList[y].replace(',', ''))
        y = y + 1

    x = 0

    while x < len(PriceList):
        if isinstance(PriceList[x], str):
            PriceList[x] = float(PriceList[x].replace(',', ''))
        x = x + 1

    #type conversions complete, string --> float

    Low = np.array(LowList)
    High = np.array(HighList)
    Close = np.array(PriceList)

    #Low, High, and Close converted to Array format (TA-Lib calls require Array)

    SARtoList = (talib.SAR(High, Low, acceleration = 0.2, maximum = 0.20))
    BBandsArray = (talib.BBANDS(Close, timeperiod = 5, nbdevup = 2, nbdevdn = 2, matype = 0))
    EMAList = talib.EMA(Close, timeperiod=30)
    KAMAList = talib.KAMA(Close, timeperiod=30)
    MAList = talib.MA(Close, timeperiod=30, matype=0)
    WMAList = talib.WMA(Close, timeperiod=30)
    TRIMAList = talib.TRIMA(Close, timeperiod=30)
    TEMAList = talib.TEMA(Close, timeperiod=30)
    HTList = talib.HT_TRENDLINE(Close)
    ADXList = talib.ADX(High, Low, Close, timeperiod=14)
    ADXRList = talib.ADXR(High, Low, Close, timeperiod=14)
    CMOList = talib.CMO(Close, timeperiod=14)
    DXList = talib.DX(High, Low, Close, timeperiod=14)
    MACDArray = talib.MACDFIX(Close, signalperiod=9)
    MINUS_DI_List = talib.MINUS_DI(High, Low, Close, timeperiod=14)
    PLUS_DI_List = talib.PLUS_DI(High, Low, Close, timeperiod=14)
    MOMList = talib.MOM(Close, timeperiod=10)
    RSIList = talib.RSI(Close, timeperiod=14)
    NATRList = talib.NATR(High, Low, Close, timeperiod=14)
    BETAList = talib.BETA(High, Low, timeperiod=5)
    ROCList = talib.ROC(Close, timeperiod=10)
    WILLRList = talib.WILLR(High, Low, Close, timeperiod=14)
    ULTOSCList = talib.ULTOSC(High, Low, Close, timeperiod1=7, timeperiod2=14, timeperiod3=28)


    #method calls to TA-Lib complete, results stored in SARtoList (list) and BBandsArray (array)

    toCombine = []

    BBandsUpperDF = pd.DataFrame(BBandsArray[0], columns = ['Upper Band',])
    toCombine.append(BBandsUpperDF)

    BBandsMiddleDF = pd.DataFrame(BBandsArray[1], columns = ['Middle Band',])
    toCombine.append(BBandsMiddleDF)

    BBandsLowerDF = pd.DataFrame(BBandsArray[2], columns = ['Lower Band',])
    toCombine.append(BBandsLowerDF)

    MACD_df = pd.DataFrame(MACDArray[0], columns = ['MACD',])
    toCombine.append(MACD_df)

    MACD_Hist_df = pd.DataFrame(MACDArray[1], columns = ['MACD_Hist',])
    toCombine.append(MACD_Hist_df)

    MACD_Sig_df = pd.DataFrame(MACDArray[2], columns = ['MACD_Sig',])
    toCombine.append(MACD_Sig_df)

    DateDF = pd.DataFrame({'Date': DateList,})
    toCombine.append(DateDF)

    SARdf = pd.DataFrame({'SAR': SARtoList,})
    toCombine.append(SARdf)

    EMAdf = pd.DataFrame({'EMA': EMAList,})
    toCombine.append(EMAdf)

    KAMAdf = pd.DataFrame({'KAMA': KAMAList,})
    toCombine.append(KAMAdf)

    MAdf = pd.DataFrame({'MA': MAList,})
    toCombine.append(MAdf)

    WMAdf = pd.DataFrame({'WMA': WMAList,})
    toCombine.append(WMAdf)

    TRIMAdf = pd.DataFrame({'TRIMA': TRIMAList,})
    toCombine.append(TRIMAdf)

    TEMAdf = pd.DataFrame({'TEMA': TEMAList,})
    toCombine.append(TEMAdf)

    HTdf = pd.DataFrame({'HT Trendline': HTList,})
    toCombine.append(HTdf)

    ADXdf = pd.DataFrame({'ADX': ADXList,})
    toCombine.append(ADXdf)

    ADXRdf = pd.DataFrame({'ADXR': ADXRList,})
    toCombine.append(ADXdf)

    CMOdf = pd.DataFrame({'CMO': CMOList,})
    toCombine.append(CMOdf)

    MINUSDI_df = pd.DataFrame({'MINUSDI': MINUS_DI_List,})
    toCombine.append(MINUSDI_df)

    PLUSDI_df = pd.DataFrame({'PLUSDI': PLUS_DI_List,})
    toCombine.append(PLUSDI_df)

    MOMdf = pd.DataFrame({'MOM': MOMList,})
    toCombine.append(MOMdf)

    RSIdf = pd.DataFrame({'RSI': RSIList,})
    toCombine.append(RSIdf)

    NATRdf = pd.DataFrame({'NATR': NATRList,})
    toCombine.append(NATRdf)

    BETAdf = pd.DataFrame({'BETA': BETAList,})
    toCombine.append(BETAdf)

    ROCdf = pd.DataFrame({'ROC': ROCList,})
    toCombine.append(ROCdf)

    WILLRdf = pd.DataFrame({'WILLR': WILLRList,})
    toCombine.append(WILLRdf)

    ULTOSCdf = pd.DataFrame({'ULTOSC': ULTOSCList,})
    toCombine.append(ULTOSCdf)

    #All data converted to DataFrame type

    TA_df = pd.concat(toCombine, axis = 1,)

    TA_df = TA_df.set_index('Date')

    return TA_df
Ejemplo n.º 29
0
def process_stock(ticker):
	returnString = ""
	buySignal = 0
	sellSignal = 0

	df = pd.read_csv(ticker)
	# print(df)
	if(not df.empty):
		# print(ticker)
		df["<DTYYYYMMDD>"] =  pd.to_datetime(df["<DTYYYYMMDD>"], format="%Y%m%d")
		df.reset_index(inplace=True)
		df.set_index("<DTYYYYMMDD>", inplace=True)
		df = df.drop("<PER>", axis=1)
		df = df.drop("index", axis=1)
		# df = df.dropna(inplace=True)
		# print(df)
		df = df.iloc[::-1]
	else:
		return "", ""
	# print(df)

	#print(df['<CLOSE>'])
	RSI = ta.RSI(np.array(df['<CLOSE>'].astype(float)))#under 30 should buy, higher than 70 should sell
	if RSI[-1]<30:
		buySignal += 1
		returnString += " RSI:buy "
	if RSI[-1]>70:
		sellSignal += 1
		returnString += " RSI:sell "
	#print("RSI")
	#print(RSI)
	MA10 = ta.EMA(np.array(df['<CLOSE>'].astype(float)), timeperiod=10)
	#print("MA10")d
	#print(MA10)
	MA30 = ta.EMA(np.array(df['<CLOSE>'].astype(float)), timeperiod=30)
	#print("MA30")
	#print(MA30)
	MA50 = ta.EMA(np.array(df['<CLOSE>'].astype(float)), timeperiod=50)#exponantial moving average
	#print("MA50")
	#print(MA50)
	if((MA10[-1] >= MA30[-1] and MA10[-2] < MA30[-2]) or ((MA30[-1] >= MA50[-1] and MA30[-2] < MA50[-2]))):
		buySignal += 1
		returnString += " MA:buy(simillar to MACDFIX) "
	if((MA10[-1] <= MA30[-1] and MA10[-2] > MA30[-2]) or (MA30[-1] <= MA50[-1] and MA30[-2] > MA50[-2])):
		sellSignal += 1
		returnString += " MA:sell(simillar to MACDFIX) "
	SAR = ta.SAR(np.array(df['<HIGH>'].astype(float)), np.array(df['<LOW>'].astype(float)))#best for stable markets and may cause premature signals
	if(SAR[-2]<df['<CLOSE>'].iloc[-2] and SAR[-1]>=df['<CLOSE>'].iloc[-1]):
		sellSignal += 1
		returnString += " SAR:buy(best for stable markets) "
	if(SAR[-2]>df['<CLOSE>'].iloc[-2] and SAR[-1]<=df['<CLOSE>'].iloc[-1]):
		buySignal += 1
		returnString += " SAR:sell(best for stable markets) "
	#print("SAR")
	# print(SAR)
	# Stoch = ta.STOCH(np.array(df['<HIGH>']), np.array(df['<LOW>']), np.array(df['<CLOSE>']))
	STOCH = np.array(STOD(df['<CLOSE>'], df['<LOW>'], df['<HIGH>'], 14))#Readings above 80 are considered overbought while readings below 20 are considered oversold.
	if STOCH[-1]<20:
		buySignal += 1
		returnString += " STOCH:buy(similar to RSI) "
	if STOCH[-1]>80:
		sellSignal += 1
		returnString += " STOCH:sell(similar to RSI) "
	# print("STOCH")
	# print(STOCH)
	'''
	print(Stoch[0][8:].max())
	print(Stoch[1].max())
	for i in range(len(Stoch[0])-8):
		Stoch[0][i+8] = Stoch[0][i+8]/Stoch[0][8:].max()*100
		Stoch[1][i+8] = Stoch[1][i+8]/Stoch[1][8:].max()*100
	print(Stoch)
	'''
	# ATR = ta.ATR(np.array(df['<HIGH>'].astype(float)), np.array(df['<LOW>'].astype(float)), np.array(df['<CLOSE>'].astype(float)), timeperiod=10)#difrrent in each case
	# print("ATR")
	# print(ATR)
	AD = ta.AD(np.array(df['<HIGH>'].astype(float)), np.array(df['<LOW>'].astype(float)), np.array(df['<CLOSE>'].astype(float)), np.array(df['<VOL>'], dtype=np.double))#Upward :more buying than selling
	if(AD[-1] > AD[-2] and AD[-2] > AD[-3]):
		buySignal += 1
		returnString += " AD:buy(not defenitive) "
	elif(AD[-1] < AD[-2] and AD[-2] < AD[-3]):
		sellSignal += 1
		returnString += " AD:sell(not defenitive) "
	# print("AD")
	# print(AD)
	ADX = ta.ADX(np.array(df['<HIGH>'].astype(float)), np.array(df['<LOW>'].astype(float)), np.array(df['<CLOSE>'].astype(float)))#readings below 20 that signal a weak trend or readings above 40 that signal a strong trend.
	if(ADX[-1]>40):
		buySignal += 1
		sellSignal += 1
		returnString += " ADX:strong trend "
	elif(ADX[-1]<20):
		buySignal -= 1
		sellSignal -= 1
		returnString += " ADX:week trend "
	# print("ADX")
	# print(ADX)
	AROONOSC = ta.AROONOSC(np.array(df['<HIGH>'].astype(float)), np.array(df['<LOW>'].astype(float)))
	if(AROONOSC[-1]>50):
		buySignal += 1
		returnString += " AROONOSC:buy "
	elif(AROONOSC[-1]<-50):
		sellSignal += 1
		returnString += " AROONOSC:sell "
	# print("AROONOSC")
	# print(AROONOSC)
	MACDFIX = ta.MACDFIX(np.array(df['<CLOSE>'].astype(float)))
	if(MACDFIX[0][-1]<0 and MACDFIX[0][-1]>=0):
		buySignal += 1
		returnString += " MACDFIX:buy "
	if(MACDFIX[0][-1]>0 and MACDFIX[0][-1]<=0):
		sellSignal += 1
		returnString += " MACDFIX:sell "
	# print(df['<CLOSE>'])
	# print(type(df['<DTYYYYMMDD>'].iloc[-1]))
	# print(MACDFIX)
	# plt.plot(df['<DTYYYYMMDD>'], df['<CLOSE>'])
	# df.plot(x='<DTYYYYMMDD>', y='<CLOSE>')
	# df['<CLOSE>'].plot()
	# plt.plot(ADX)
	# plt.plot(MACDFIX[1])
	# plt.plot(MACDFIX[2])
	# plt.legend(loc=4)
	# plt.xlabel('Date')
	# plt.ylabel('Price')
	# plt.show()



	# print(buySignal)
	# print(sellSignal)
	'''
	if(buySignal>sellSignal and buySignal>=3):
		# print("buy: {}".format(buySignal))
		return "buy: {}".format(buySignal)
	elif(buySignal<sellSignal and sellSignal>=3):
		# print("sell: {}".format(sellSignal))
		return "sell: {}".format(sellSignal)
	else:
		# print("hold")
		return "hold"
	'''
	return "buy: {} - sell: {}".format(buySignal, sellSignal), returnString
	'''
Ejemplo n.º 30
0
    def all_algo(self,curr_pair_history_data,db=False):
        order = np.zeros((self.num_curr,7,3))
        signal = np.zeros((self.num_curr,16))
        for i in range(len(self.curr_pair_list)):
            # Processing data
            close5=(curr_pair_history_data[i]['closeAsk'].tail(5).values+\
                    curr_pair_history_data[i]['closeBid'].tail(5).values)/2
            high5=(curr_pair_history_data[i]['highAsk'].tail(5).values+\
                   curr_pair_history_data[i]['highBid'].tail(5).values)/2
            low5=(curr_pair_history_data[i]['lowAsk'].tail(5).values+\
                  curr_pair_history_data[i]['lowBid'].tail(5).values)/2
            openv5=(curr_pair_history_data[i]['openAsk'].tail(5).values+\
                    curr_pair_history_data[i]['openBid'].tail(5).values)/2

            close=(curr_pair_history_data[i]['closeAsk'].values+\
                   curr_pair_history_data[i]['closeBid'].values)/2
            high=(curr_pair_history_data[i]['highAsk'].values+\
                  curr_pair_history_data[i]['highBid'].values)/2
            low=(curr_pair_history_data[i]['lowAsk'].values+\
                 curr_pair_history_data[i]['lowBid'].values)/2
            openv=(curr_pair_history_data[i]['openAsk'].values+\
                   curr_pair_history_data[i]['openBid'].values)/2

            # Generating signals
            pattern=talib.CDL3BLACKCROWS(openv5,high5,low5,close5)
            pattern_signal=pattern[-1]

            adx=talib.ADX(high,low,close,timeperiod=14)
            rsi=talib.RSI(close,timeperiod=14)
            adx_signal=adx[-1]
            rsi_signal=rsi[-1]

            bull, bear=talib.AROON(high,low,timeperiod=14)

            sma=talib.SMA(close,timeperiod=30)
            kama=talib.KAMA(close,timeperiod=30)

            DIF,DEA,BAR=talib.MACDFIX(close,signalperiod=9)

            mfi=talib.MFI(high,low,close,curr_pair_history_data[i]['volume'].values.astype(float),timeperiod=14)
            mfi_signal=mfi[-1]

            # Storing signals
            signal[i,0] = pattern_signal
            signal[i,1] = adx_signal
            signal[i,13] = rsi_signal
            signal[i,2] = bear[-2]
            signal[i,3] = bear[-1]
            signal[i,4] = bull[-2]
            signal[i,5] = bull[-1]
            signal[i,10] = kama[-2]
            signal[i,11] = kama[-1]
            signal[i,14] = sma[-2]
            signal[i,15] = sma[-1]
            signal[i,6] = DEA[-2]
            signal[i,7] = DEA[-1]
            signal[i,8] = DIF[-2]
            signal[i,9] = DIF[-1]
            signal[i,12] = mfi_signal

            # Creating orders
            if pattern_signal>0:
                #trader.create_buy_order(ticker,units)
                order[i,0,1] = 1
            elif pattern_signal<0:
                #trader.create_sell_order(ticker,units)
                order[i,0,2] = 1
            else:
                #print('No trade made')
                order[i,0,0] = 1

            if rsi_signal>70 and adx_signal>50:
                #trader.create_buy_order(ticker,units)
                order[i,1,1] = 1
            elif rsi_signal<30 and adx_signal>50:
                #trader.create_sell_order(ticker,units)
                order[i,1,2] = 1
            else:
                #print('No trade made')
                order[i,1,0] = 1

            if rsi_signal>70:
                #trader.create_buy_order(ticker,units)
                order[i,6,1] = 1
            elif rsi_signal<30:
                #trader.create_sell_order(ticker,units)
                order[i,6,2] = 1
            else:
                #print('No trade made')
                order[i,6,0] = 1

            if (bull[-1]>70 and bear[-1]<30) or (bull[-2]<bear[-2] and bull[-1]>=bear[-1]):
                #trader.create_buy_order(ticker,units)
                order[i,2,1] = 1
            elif (bull[-1]<30 and bear[-1]>70) or (bull[-2]>=bear[-2] and bull[-1]<bear[-1]):
                #trader.create_sell_order(ticker,units)
                order[i,2,2] = 1
            else:
                #print('No trade made')
                order[i,2,0] = 1

            if kama[-1]>=sma[-1] and kama[-2]<sma[-2]:
                #trader.create_buy_order(ticker,units)
                order[i,3,1] = 1
            elif kama[-1]<=sma[-1] and kama[-2]>=sma[-2]:
                #trader.create_sell_order(ticker,units)
                order[i,3,2] = 1
            else:
                #print("No trade made")
                order[i,3,0] = 1

            if DIF[-1]>0 and DEA[-1]>0 and DIF[-2]<DEA[-2] and DIF[-1]>DEA[-1]:
                #trader.create_buy_order(ticker,units)
                order[i,4,1] = 1
            elif DIF[-1]<0 and DEA[-1]<0 and DIF[-2]>DEA[-2] and DIF[-1]<DEA[-1]:
                #trader.create_sell_order(ticker,units)
                order[i,4,2] = 1
            else:
                #print("No trade made")
                order[i,4,0] = 1

            if mfi_signal>70:
                #trader.create_buy_order(ticker,units)
                order[i,5,1] = 1
            elif mfi_signal<30:
                #trader.create_sell_order(ticker,units)
                order[i,5,2] = 1
            else:
                #print('No trade made')
                order[i,5,0] = 1

            if db:
                #write to database here
                pass
        return order,signal