def pipeline_dli(filename, output_file, keywords, verbose=False): import numpy as np import linear_operators as lo import tamasis as tm # verbosity tm.var.verbose = verbose # define observation obs = tm.PacsObservation(filename, **keywords["PacsObservation"]) # extra masking tm.step_scanline_masking(obs, **keywords["scanline_masking"]) # get data tod = obs.get_tod(**keywords["get_tod"]) # deglitching tm.step_deglitching(obs, tod, **keywords["deglitching"]) # median filtering tod = tm.filter_median(tod, **keywords["filter_median"]) # define projector projection = tm.Projection(obs, **keywords["Projection"]) # build instrument model response = tm.ResponseTruncatedExponential(obs.pack( obs.instrument.detector.time_constant) / obs.SAMPLING_PERIOD) compression = tm.CompressionAverage(obs.slice.compression_factor) masking = tm.Masking(tod.mask) model = masking * compression * response * projection # set tod masked values to zero tod = masking(tod) # N^-1 operator invntt = tm.InvNtt(obs) # for the dli algorithm M = map_mask(tod, model, **keywords["map_mask"]) # recast model as a new-style LinearOperator from linear_operators package H = lo.aslinearoperator(model) * M.T N = lo.aslinearoperator(invntt) # vectorize data so it is accepted by LinearOperators y = tod.ravel() Ds = [tm.DiscreteDifference(axis=i, shapein=projection.shapein) for i in (0, 1)] Ds = [lo.aslinearoperator(D) for D in Ds] Ds = [D * M.T for D in Ds] D = lo.concatenate(Ds) # handle tau which needs to be an ndarray keywords["dli"]["tau"] *= np.ones(D.shape[0]) algo = lo.DoubleLoopAlgorithm(H, y, D, noise_covariance=N, fmin_args=keywords["fmin_args"], lanczos=keywords["lanczos"], **keywords["dli"]) # optimize xe = algo() # reshape xe = (M.T * xe).reshape(projection.shapein) # recast as tamasis map xe = tm.Map(xe) # save xe.save(output_file)
def pipeline_photproject(filenames, output_file, keywords): """ Perform regularized least-square inversion of state of the art PACS model. The PACS model includes tod mask, compression, response, projection and noise covariance (invntt). Processing steps are as follows : - define PacsObservation instance - mask first scanlines to avoid drift - get Time Ordered Data (get_tod) - 2nd level deglitching (with standard projector and tod median filtering with a narrow window) - median filtering - define projection - perform inversion on model - save file Arguments --------- filenames: list of strings List of data filenames. output_file : string Name of the output fits file. keywords: dict Dictionary containing options for all steps as dictionary. Returns ------- Returns nothing. Save result as a fits file. """ from scipy.sparse.linalg import cgs import tamasis as tm # define observation obs = tm.PacsObservation(filenames, **keywords["PacsObservation"]) # extra masking tm.step_scanline_masking(obs, **keywords["scanline_masking"]) # get data tod = obs.get_tod(**keywords["get_tod"]) # deglitching tm.step_deglitching(obs, tod, **keywords["deglitching"]) # median filtering tod = tm.filter_median(tod, **keywords["filter_median"]) # define projector projection = tm.Projection(obs, oversampling=False, **keywords["Projection"]) # build instrument model masking = tm.Masking(tod.mask) model = masking * projection # set tod masked values to zero tod = masking(tod) # perform map-making map_naive = tm.mapper_naive(tod, model, **keywords["mapper_naive"]) # save map_naive.save(output_file)
def noise_covariance(tod, obs): """ Defines the noise covariance matrix """ length = 2 ** np.ceil(np.log2(np.array(tod.nsamples) + 200)) invNtt = tm.InvNtt(length, obs.get_filter_uncorrelated()) fft = tm.Fft(length) padding = tm.Padding(left=invNtt.ncorrelations, right=length - tod.nsamples - invNtt.ncorrelations) masking = tm.Masking(tod.mask) cov = masking * padding.T * fft.T * invNtt * fft * padding * masking return cov
def pipeline_rls(filenames, output_file, keywords, verbose=False): """ Perform regularized least-square inversion of a simple model (tod mask and projection). Processing steps are as follows : - define PacsObservation instance - get Time Ordered Data (get_tod) - define projection - perform inversion on model - save file Arguments --------- filenames: list of strings List of data filenames. output_file : string Name of the output fits file. keywords: dict Dictionary containing options for all steps as dictionary. verbose: boolean (default False) Set verbosity. Returns ------- Returns nothing. Save result as a fits file. """ from scipy.sparse.linalg import cgs import tamasis as tm # verbosity keywords["mapper_rls"]["verbose"] = verbose # define observation obs_keys = keywords.get("PacsObservation", {}) obs = tm.PacsObservation(filenames, **obs_keys) # get data tod_keys = keywords.get("get_tod", {}) tod = obs.get_tod(**tod_keys) # define projector proj_keys = keywords.get("Projection", {}) projection = tm.Projection(obs, **proj_keys) # define mask masking_tod = tm.Masking(tod.mask) # define full model model = masking_tod * projection # perform map-making inversion mapper_keys = keywords.get("mapper_rls", {}) map_rls = tm.mapper_rls(tod, model, solver=cgs, **mapper_keys) # save map_rls.save(output_file)
def __call__(self, data, state): # get parameters C = state.get('compression') factor = state.get('compression_factor', 1) # decompress uc_data = uncompress(data, C, factor) uc_data.mask = state['mask'] # filter uc_data = tm.filter_median(uc_data, length=self.filter_length) tm.deglitch_l2mad(uc_data, state['model']) # define mask masking = tm.Masking(uc_data.mask) # update model state['deglitching_mask'] = uc_data.mask state['deglitching_mask_lo'] = masking state['model'] = masking * state['model'] state['deglitching_filter_length'] = self.filter_length return data
def pipeline_huber(filenames, output_file, keywords, verbose=False): """ Perform huber regularized inversion of state of the art PACS model. The PACS model includes tod mask, compression, response, projection and noise covariance (invntt). Processing steps are as follows : - define PacsObservation instance - mask first scanlines to avoid drift - get Time Ordered Data (get_tod) - 2nd level deglitching (with standard projector and tod median filtering with a narrow window) - median filtering - define projection - perform inversion on model - save file Arguments --------- filenames: list of strings List of data filenames. output_file : string Name of the output fits file. keywords: dict Dictionary containing options for all steps as dictionary. verbose: boolean (default False) Set verbosity. Returns ------- Returns nothing. Save result as a fits file. """ from scipy.sparse.linalg import cgs import tamasis as tm import linear_operators as lo # verbosity # define observation obs = tm.PacsObservation(filenames, **keywords["PacsObservation"]) # extra masking tm.step_scanline_masking(obs, **keywords["scanline_masking"]) # get data tod = obs.get_tod(**keywords["get_tod"]) # deglitching # need to adapt degltiching to any compression model tm.step_deglitching(obs, tod, **keywords["deglitching"]) # median filtering tod = tm.filter_median(tod, **keywords["filter_median"]) # define projector projection = tm.Projection(obs, **keywords["Projection"]) P = lo.aslinearoperator(projection) # build instrument model masking = tm.Masking(tod.mask) Mt = lo.aslinearoperator(masking) # compression mode = compressions[keywords["compression"].pop("mode")] factor = keywords["compression"].pop("factor") C = mode(data, factor, **keywords["compression"]) # define map mask M = map_mask(tod, model, **keywords["map_mask"]) # recast model as a new-style LinearOperator from linear_operators package H = Mt * C * P * M # vectorize data so it is accepted by LinearOperators y = tod.ravel() Ds = [ tm.DiscreteDifference(axis=i, shapein=projection.shapein) for i in (0, 1) ] Ds = [lo.aslinearoperator(D) for D in Ds] Ds = [D * M.T for D in Ds] # set tod masked values to zero tod = masking(tod) # perform map-making inversion hypers = (keywords["hacg"].pop("hyper"), ) * len(Ds) deltas = (keywords["hacg"].pop("delta"), ) * (len(Ds) + 1) map_huber = lo.hacg(H, tod.ravel(), priors=Ds, hypers=hypers, deltas=deltas, **keywords["hacg"]) # save map_huber = (M.T * map_huber).reshape(projection.shapein) map_huber = tm.Map(map_huber) map_huber.save(output_file)
C = lo.aslinearoperator( compression.aslinearoperator(shape=(tod.size / factor, tod.size))) ctod = compression.direct(tod) # uncompress for deglitching uctod = tod.copy(tod.shape) y0, t = lo.spl.cgs(C.T * C, C.T * ctod.flatten()) uctod[:] = y0.reshape(tod.shape) # deglitching projection = tm.Projection(pacs, header=header, resolution=3., npixels_per_sample=5) uctod.mask = tm.deglitch_l2mad(uctod, projection) ctod = compression.direct(uctod) # model masking = tm.Masking(uctod.mask) model = compression * masking * projection # remove drift #ctod = tm.filter_median(ctod, length=3000 / 8.) # first map M = lo.aslinearoperator(model.aslinearoperator()) #P = lo.aslinearoperator(projection.aslinearoperator()) #C = csh.averaging(tod.shape, factor=8) #I = lo.mask(uctod.mask) #M = C * I.T * I * P #M = C * P backmap = model.transpose(ctod) weights = model.transpose(ctod.ones(ctod.shape)) MM = lo.mask(weights == 0) M = M * MM.T # define algo
# reset pacs header to have a shape multiple of 4 #header = pacs.get_map_header() #header['NAXIS1'] = 192 #header['NAXIS2'] = 192 #header['CRPIX1'] = 96 #header['CRPIX2'] = 96 # data tod = pacs.get_tod() # remove bad pixels (by updating mask !) #tod = remove_bad_pixels(tod) # deglitching #projection = tm.Projection(pacs, header=header, resolution=3., npixels_per_sample=6) projection = tm.Projection(pacs, resolution=3., npixels_per_sample=6) tm.deglitch_l2mad(tod, projection) # model masking = tm.Masking(tod.mask) model = masking * projection # remove drift tod = tm.filter_median(tod, length=999) model = masking * projection # naive map backmap = model.transpose(tod) # coverage map weights = model.transpose(tod.ones(tod.shape)) # mask on map mask = weights == 0 M = lo.mask(mask) # preconditionner iweights = 1 / weights iweights[np.where(np.isfinite(iweights) == 0)] = 0.
def pipeline_wrls(filenames, output_file, keywords, verbose=False): """ Perform regularized least-square inversion of state of the art PACS model. The PACS model includes tod mask, compression, response, projection and noise covariance (invntt). Processing steps are as follows : - define PacsObservation instance - mask first scanlines to avoid drift - get Time Ordered Data (get_tod) - 2nd level deglitching (with standard projector and tod median filtering with a narrow window) - median filtering - define projection - perform inversion on model - save file Arguments --------- filenames: list of strings List of data filenames. output_file : string Name of the output fits file. keywords: dict Dictionary containing options for all steps as dictionary. verbose: boolean (default False) Set verbosity. Returns ------- Returns nothing. Save result as a fits file. """ from scipy.sparse.linalg import cgs import tamasis as tm # verbosity keywords["mapper_rls"]["verbose"] = verbose # define observation obs = tm.PacsObservation(filenames, **keywords["PacsObservation"]) # extra masking tm.step_scanline_masking(obs, **keywords["scanline_masking"]) # get data tod = obs.get_tod(**keywords["get_tod"]) # deglitching tm.step_deglitching(obs, tod, **keywords["deglitching"]) # median filtering tod = tm.filter_median(tod, **keywords["filter_median"]) # define projector projection = tm.Projection(obs, **keywords["Projection"]) # build instrument model response = tm.ResponseTruncatedExponential( obs.pack(obs.instrument.detector.time_constant) / obs.SAMPLING_PERIOD) compression = tm.CompressionAverage(obs.slice.compression_factor) masking = tm.Masking(tod.mask) model = masking * compression * response * projection # set tod masked values to zero tod = masking(tod) # N^-1 operator invntt = tm.InvNtt(obs) # perform map-making inversion map_rls = tm.mapper_rls(tod, model, invntt=invntt, solver=cgs, **keywords["mapper_rls"]) # save map_rls.save(output_file)
#!/usr/bin/env python import numpy as np import tamasis as tm import lo import scipy.sparse.linalg as spl # data pacs = tm.PacsObservation(filename=tm.tamasis_dir + 'tests/frames_blue.fits') tod = pacs.get_tod() # projector projector = tm.Projection(pacs, resolution=3.2, oversampling=False, npixels_per_sample=6) masking_tod = tm.Masking(tod.mask) model = masking_tod * projector # naive map backmap = model.transpose(tod) # coverage map weights = model.transpose(tod.ones(tod.shape)) # mask on map mask = weights == 0 M = lo.mask(mask) # preconditionner iweights = 1 / weights iweights[np.where(np.isfinite(iweights) == 0)] = 0. M0 = lo.diag(iweights.flatten()) # transform to lo P = lo.aslinearoperator(model.aslinearoperator()) # priors Dx = lo.diff(backmap.shape, axis=0)